下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省佛山市中学2023年高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知椭圆的离心率,则实数k的值为()A.3 B.3或 C. D.或参考答案:B【考点】K4:椭圆的简单性质.【分析】当K>5时,由e===求得K值,当0<K<5时,由e===,求得K值.【解答】解:当K>5时,e===,K=.当0<K<5时,e===,K=3.综上,K=3,或.故选B.2.已知两个正数a,b的等差中项为4,则a,b的等比中项的最大值为(
)A.2
B,.4
C.8
D.6参考答案:B3.与直线x+y+3=0平行,且它们之间的距离为的直线方程为()A.x﹣y+8=0或x﹣y﹣1=0 B.x+y+8=0或x+y﹣1=0C.x+y﹣3=0或x+y+3=0 D.x+y﹣3=0或x+y+9=0参考答案:D【考点】两条平行直线间的距离.【分析】设所求直线方程为x+y+m=0,运用两平行直线的距离公式,解关于m的方程,即可得到所求方程.【解答】解:设所求直线方程为x+y+m=0,则由两平行直线的距离公式可得d==3,解得m=9或﹣3.则所求直线方程为x+y﹣3=0或x+y+9=0,故选D.4.若存在x0>1,使不等式(x0+1)ln
x0<a(x0﹣1)成立,则实数a的取值范围是()A.(﹣∞,2) B.(2,+∞) C.(1,+∞) D.(4,+∞)参考答案:B【考点】函数恒成立问题;对数函数的图象与性质.【专题】转化思想;转化法;函数的性质及应用.【分析】若存在x0>1,使不等式(x0+1)lnx0<a(x0﹣1)成立,则存在x0>1,使不等式a>成立,令f(x)==(1+)lnx,x>1,求出函数的极限,可得数a的取值范围.【解答】解:若存在x0>1,使不等式(x0+1)lnx0<a(x0﹣1)成立,则存在x0>1,使不等式a>成立,令f(x)==(1+)lnx,x>1,此时f(x)为增函数,由=+=→2故a>2,即实数a的取值范围是(2,+∞),【点评】本题考查的知识点是函数存在性问题,函数的单调性,极限运算,难度中档.5.双曲线的焦距为
()A.
B.
C.
D.参考答案:D略6.斜边为1的直角三角形的面积的最大值为(
)A.1
B.
C.
D.
参考答案:B略7.“”是“”的(
)条件
A.充分不必要
B.必要不充分
C.充要
D.既不充分也不必要参考答案:B8.曲线在点处的切线方程为A.
B.
C.
D.参考答案:A
9.设是定义在上的奇函数,当时,,则
A.
B.
C.1D.3参考答案:A略10.①学校为了解高一学生的情况,从每班抽2人进行座谈;②一次数学竞赛中,某班有10人在110分以上,40人在90~100分,12人低于90分.现在从中抽取12人了解有关情况;③运动会服务人员为参加400m决赛的6名同学安排跑道.就这三件事,合适的抽样方法为
()A.分层抽样,分层抽样,简单随机抽样
B.系统抽样,系统抽样,简单随机抽样C.分层抽样,简单随机抽样,简单随机抽样
D.系统抽样,分层抽样,简单随机抽样参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.将三个分别标有A,B,C的球随机放入编号为1,2,3,4的四个盒子中,则1号盒子中有球的不同放法种数为.
参考答案:3712.设F1,F2是双曲线的两个焦点,P是双曲线上的一点,且,则的面积等于
▲
.参考答案:24【分析】先由双曲线的方程求出|F1F2|=10,再由3|PF1|=4|PF2|,求出|PF1|=8,|PF2|=6,由此能求出△PF1F2的面积.【详解】双曲线的两个焦点F1(﹣5,0),F2(5,0),|F1F2|=10,由3|PF1|=4|PF2|,设|PF2|=x,则|PF1|=x,由双曲线的性质知x﹣x=2,解得x=6.∴|PF1|=8,|PF2|=6,∵|F1F2|=10,∴∠F1PF2=90°,∴△PF1F2的面积=×8×6=24.故答案为:24.【点睛】本题考查双曲线的性质和应用,考查三角形面积的计算,属于基础题.
13.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(经过圆锥旋转轴的截面中两条母线的夹角)是
参考答案:60°14.一条直线经过P(1,2),且与A(2,3)、B(4,﹣5)距离相等,则直线l为. 参考答案:3x+2y﹣7=0和4x+y﹣6=0【考点】点到直线的距离公式. 【专题】数形结合;转化思想;直线与圆. 【分析】①当所求直线与AB平行时,求出kAB,利用点斜式即可得出. ②当所求直线经过线段AB的中点M(3,﹣1)时,求出斜率,利用点斜式即可得出. 【解答】解:①当所求直线与AB平行时,kAB==﹣4,可得y﹣2=﹣4(x﹣1),化为4x+y﹣6=0; ②当所求直线经过线段AB的中点M(3,﹣1)时,k==﹣,可得y﹣2=﹣(x﹣1),化为3x+2y﹣7=0. 综上可得所求直线方程为:4x+y﹣6=0;或3x+2y﹣7=0. 故答案为:4x+y﹣6=0;或3x+2y﹣7=0. 【点评】本题考查了中点坐标公式、斜率计算公式、点斜式、平行线之间的斜率关系,考查了推理能力与计算能力,属于基础题. 15.已知直线与抛物线,则“”是“直线与抛物线有两个不同交点”的
条件.参考答案:直线与抛物线有两个不同交点方程组有两组不同的实数解方程有两个不同的实根且,故填必要而不充分条件.16.已知椭圆C的中心在坐标原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线x2=4y的焦点,则椭圆C的标准方程为_.参考答案:【分析】设椭圆方程.由离心率等于,它的一个顶点恰好是抛物线x2=4y的焦点,列方程组求出a,b,由此能求出椭圆C的方程.【详解】∵椭圆C的中心在坐标原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线x2=4y的焦点.由题意,设椭圆方程为(a>b>0),则有,解得a,b=c=1,∴椭圆C的方程:.故答案为:.点睛】本题考查椭圆方程的求法,椭圆与抛物线的简单性质的应用,考查运算求解能力,函数与方程思想,是中档题.17.某企业三月中旬生产A、B、C三种产品共3000件,根据分层抽样的结果,企业统计员作了如下统计表格。产品类别ABC产品数量(件)
1300
样本容量(件)
130
由于不小心,表格中A、C产品的有关数据已被污染看不清楚,统计员记得A产品的样本容量比C产品的样本容量多10,根据以上信息,可得C产品的数量是___________。参考答案:800三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=(x﹣k)ex(k∈R).(1)求f(x)的单调区间和极值;(2)求f(x)在x∈[1,2]上的最小值;(3)设g(x)=f(x)+f′(x),若对及?x∈[0,1]有g(x)≥λ恒成立,求实数λ的取值范围.参考答案:【考点】导数在最大值、最小值问题中的应用;利用导数研究函数的极值;利用导数求闭区间上函数的最值.【分析】(1)由f(x)=(x﹣k)ex,求导f′(x)=(x﹣k+1)ex,令f′(x)=0,求得x=k﹣1,令f′(x)<0,解得函数的单调递减区间,f′(x)>0,解得函数的单调递增区间,根据函数的单调性即可求得f(x)的极值;(2)当k﹣1≤1时,f(x)在[1,2]单调递增,f(x)的最小值为f(1),当k﹣1≥2时,f(x)在[1,2]单调递减,f(x)的最小值为f(2),当1<k﹣1<2时,则x=k﹣1时,f(x)取最小值,最小值为:﹣ek﹣1;(3)由g(x)=(2x﹣2k+1)ex,求导g′(x)=(2x﹣2k+3)ex,当g′(x)<0,解得:x<k﹣,求得函数的单调递减区间,当g′(x)>0,解得:x>k﹣,求得函数的单调递增区间,由题意可知g(x)≥λ,?x∈[0,1]恒成立,等价于g(k﹣)=﹣2e≥λ,由﹣2e≥λ,对?k∈[,]恒成立,根据函数的单调性,即可求得实数λ的取值范围.【解答】解:(1)f(x)=(x﹣k)ex(k∈R),求导f′(x)=(x﹣k)ex+ex=(x﹣k+1)ex,令f′(x)=0,解得:x=k﹣1,当x<k﹣1时,f′(x)<0,当x>k﹣1时,f′(x)>0,x(﹣∞,k﹣1)k﹣1(k﹣1,+∞)f′(x)﹣0+f(x)↓﹣e﹣k﹣1↑∴f(x)的单调递增区间(k﹣1,+∞),单调递减区间(﹣∞,k﹣1),极小值为﹣ek﹣1,无极大值;(2)当k﹣1≤1时,即k≤2时,f(x)在[1,2]单调递增,f(x)的最小值为f(1)=(1﹣k)e;当k﹣1≥2时,即k≥3时,f(x)在[1,2]单调递减,∴当x=2时,f(x)的最小值为f(2)=(2﹣k)e3;当1<k﹣1<2时,解得:2<k<3时,∴f(x)在[1,k﹣1]单调递减,在[k﹣1,2]单调递增,∴当x=k﹣1时,f(x)取最小值,最小值为:﹣ek﹣1;(3)g(x)=f(x)+f'(x)=(x﹣k)ex+(x﹣k+1)ex=(2x﹣2k+1)ex,求导g′(x)=(2x﹣2k+1)ex+2ex=(2x﹣2k+3)ex,令g′(0)=0,2x﹣2k+3=0,x=k﹣,当x<k﹣时,g′(x)<0,当x>k﹣时,g′(x)>0,∴g(x)在(﹣∞,k﹣)单调递减,在(k﹣,+∞)单调递增,故当x=k﹣,g(x)取最小值,最小值为:g(k﹣)=﹣2e,∵k∈[,],即k﹣∈[0,1],∴?x∈[0,1],g(x)的最小值,g(k﹣)=﹣2e,∴g(x)≥λ,?x∈[0,1]恒成立,等价于g(k﹣)=﹣2e≥λ,由﹣2e≥λ,对?k∈[,]恒成立,∴λ≤(﹣2e)最小值,令h(k)=﹣2e,k∈[,],由指数函数的性质,函数h(k)在k∈[,]单调递增,∴当k=时,h(k)取最小值,h()=﹣2e,∴λ≤﹣2e.∴实数λ的取值范围(﹣∞,﹣2e).19.(本小题满分12分)已知直线经过两点,.(1)求直线的方程;(2)圆的圆心在直线上,并且与轴相切于点,求圆的方程.参考答案:(1)由已知,直线的斜率,所以,直线的方程为.(2)因为圆的圆心在直线上,可设圆心坐标为,因为圆与轴相切于点,所以圆心在直线上,所以,所以圆心坐标为,半径为1,所以,圆的方程为.20.(本小题满分12分)正三角形的一个顶点位于原点,另外两个顶点在抛物线上,求这个正三角形的边长.参考答案:解:设正三角形的另两个顶点为A、B,由抛物线的对称性知A、B关于轴对称设,则解得∴即正三角形的边长为
·····12分略21.已知过点P(2,2)的直线l和圆C:(x﹣1)2+y2=6交于A,B两点.(Ⅰ)若点P恰好为线段AB的中点,求直线l的方程;(Ⅱ)若,求直线l的方程.参考答案:【考点】直线与圆的位置关系.【分析】(Ⅰ)若点P恰好为线段AB的中点,则l⊥CP,求出斜率,即可求直线l的方程;(Ⅱ)若,分类讨论,即可求直线l的方程.【解答】解:(Ⅰ)由已知l⊥CP,因为,所以,故直线l的方程为x+2y﹣6=0…(Ⅱ)设圆心C到直线l的距离为d,则d=1当直线l的斜率不存在时,符合题意,此时直线的方程为x=2;…当直线l的斜率存在时,设斜率为k,则直线l的方程为y﹣2=k(x﹣2),即kx﹣y+2﹣2k=0,所以,则,此时直线的方程为3x﹣4y+2=0综上,直线l的方程为x=2或3x﹣4y+2=0…22.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取出两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,设该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,设该球的编号为n,求n<m+2的概率.
参考答案:(1)从袋中随机取出两个球,编号之和不大于4的事件有1和2,1和3两个,·2分而随机取两球其一切可能的事件有6个.···················4分∴所求概率为P==.··························6分(2)由题意其一切结果设为(m,n)有:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 装饰圣诞树用闪亮金属片市场发展现状调查及供需格局分析预测报告
- 2024年度堡坎施工合同知识产权保护协议
- 2024年度影视作品版权代理销售合同
- 2024年度新能源项目开发补充合同
- 2024年度泵车租赁合同质量监督合同
- 2024年度特许连锁经营合同businessformatfranchisingagreement
- 紧身衣市场发展预测和趋势分析
- 2024年度企业资产重组与整合合同
- 2024年度技术咨询合同:新能源汽车技术研发咨询
- 2024年度影视剧本创作合同:影视制作公司与编剧就创作电影剧本《逆流而上》签订合同
- 临床试验样本量简易计算器
- 课题设计论证活页
- 水冷冷水机组安装使用说明书
- 祖国不会忘记合唱谱(1)
- 小学二年级家长课堂-动物的世界(课堂PPT)
- (整理版)圆的参数方程及应用
- 色彩搭配-颜色搭配PPT课件
- 员工竞业限制管理PPT课件
- 2022年地壳运动与变化教案与学案
- 上海市单位退工证明退工单(四联)
- 宝鸡市某办公楼空调用制冷机房设计
评论
0/150
提交评论