




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PARTIFUNDAMENTALPRINCIPLES(基本原理)InpartI,wecoversomeofthebasicprinciplesthatapplytoaerodynamicsingeneral.ThesearethepillarsonwhichallofaerodynamicsisbasedChapter1Aerodynamics:SomeIntroductoryThoughtsTheterm“aerodynamics”isgenerallyusedforproblemsarisingfromflightandothertopicsinvolvingtheflowofair.LudwigPrandtl,1949Aerodynamics:Thedynamicsofgases,especiallyofatmosphericinteractionswithmovingobjects.TheAmericanHeritageDictionaryofEnglishLanguage,19691.1ImportanceofAerodynamics:
HistoricalExamplesSeabattlebetweenEnglishfleetandSpanishfleet,Englishchannel,8-8-1588(英国与西班牙海战,英吉利海峡)FirstflightofWrightbrothers,12-27-1903(怀特兄弟首次飞行)MinimizingofaerodynamicheatingofICBMs(洲际弹道导弹气动热降低问题)Impetustothestudyoffluidmechnics(流体力学研究的推动力)1.Newton’ssine-squarelaw2.ExperimentscarriedoutbyD’Alembert3.Euler’sdescriptionoftheflowmodel1.Newton’ssine-squarelawa)Newtonconsideredafluidflowasauniform,rectilinearstreamofparticles,muchlikeacloudofpelletsfromashotgunblast.b)Newtonassumedthatuponstrikingasurfaceinclinedataangletothestream,theparticleswouldtransfertheirnormalmomentumtothesurfacebuttheirtangentialmomentumwouldbepreserved.Hence,aftercollisionwiththesurface,theparticleswouldthenmovealongthesurface.Thisledtoanexpressionforthehydrodynamicsforceonthesurfacewhichvariesas2.D’Alembert
Theexperimentresultsshow:therulethatforobliqueresistancevarieswiththesinesquareoftheangleoftheincidenceholdsgoodonlyforanglebetween50and90degandmustbeabandonedforlesserangles3.Eulernoted
Thefluidmovingtowardabody“beforereachingthelatter,bendsitsdirectionanditsvelocitysothatwhenitreachesthebodyitflowspassitalongthesurface,andexercisenootherforceonthebodyexceptthepressurecorrespondingtothesinglepointsofthecontact.”4.Realcaseforfluidapproachingabody
Allthefluidparticlesareinrandommotion,andhasaaveragevelocity.Duringtheirmotion,theycollidewitheachother.
Themoleculesstrikeontothesolidsurfacewillberebounded,andthesereboundedmoleculeswillmakecollisiontoothermolecules.
Thisprocesstransfersthemessageoftheexistenceofthebody,andmostoftheparticleswillgootherround.Afterthecollisionbetweenfluidparticlesandsolidsurface,the
momentumchangeoftheparticlesisintheperpendiculardirectionofthesurface.FirstflightofWrightbrothersDec.17,1903WilburandOrvilleWright'sWrightFlyerwasthefirstsuccessfulairplane.OnDecember17,1903,atKittyHawk,NorthCarolina,OrvilleWrightflewthefirstheavier-than-airmachineinapowered,controlled,andsustainedflight.TheFlyer,constructedofwood,wire,andmuslin,wentadistanceof120feetin12seconds.Itwasatremendoussuccess,comingfromalongseriesofaeronauticsexperimentsthattheWrightBrothersstartedin1899withakite.Attherearofthe1903WrightFlyeronefindsapairofpusherpropellers.Thepropellersarelong,thin,twistedpiecesofwoodwhicharespunathighspeed.Controlofroll:WINGWARPOverviewofWrightBrothersDiscoveriesAerodynamicheatingofthereentryvehicle
ICBMsreentrytheatmosphereatthespeedsoffrom6to6.7km/s.Theaerodynamicheatingofthereentryvehiclesbecomessevere,thecoverofthewarheadwillbeheatedupto10,000K.Bluntreentrybodydesigncanminimizetheaerodynamicheatingproblem.1.2Aerodynamics:ClassificationandPracticalObjectives
(空气动力学:分类和应用目标)Distinctionofsolids,liquids,andgasesPracticalapplicationsinengineeringSolids,liquids,andgasesinacontainerThesolidobjectwillnotchange:itsshapeandboundarieswillremindthesame.Theliquidwillchangeitsshapetoconformtothatofthecontainerandwilltaketakeonthesameboundariesasthecontaineruptothemaximumdepthoftheliquid.Thegaswillcompletelyfillthecontainer,takingonthesameboundariesasthecontainer.Solidand“fluid”(aliquidoragas)underatangentialforce==deformation固体和流体在受到剪应力时,各自形状所发生的变化方式截然不同。Underaforceappliedtangentiallytothesurfaceofasolidbody,thesolidbodywillundergoafinitedeformation,andthetangentialforceperunitarea—theshearstress—willusuallybeproportionaltotheamountofdeformation.Ifthecasehappensforafluid,then,thefluidwillexperienceacontinuouslyincreasingdeformationandtheshearstresswillusuallybeproportionaltotherateofthedeformation.Solid:fluid:Shearstress剪应力Deformation变形Rateofdeformation变形率Mechanicsdistinctionofsolids,liquids,andgasesDistinctionofsolids,liquids,andgasesrespectstotheintermolecularforcesFluiddynamicsissubdividedintothreeareas:
Hydrodynamics---flowofliquidsGasdynamics---flowofgases
Aerodynamics---flowofairPracticalobjectivesofAerodynamics1.Thepredictionofforcesandmomentsonandheattransferto,bodiesmovingthroughafluid.2.Determinationofflowsmovinginternallythroughducts3.Externalaerodynamics4.Internalaerodynamics1.3RoadMapofthischapterWhat’stheusageoftheroadmapAtthebeginningofeachchapter,roadmapgiveyouthesenseforyougettoknowwhereyouare,whereyouaregoing,andhowcanyougetthereShowtheinterrelationshipofthematerialsinthechapterAttheendofthechapter,afteryoulookbackovertheroadmap,youwillseewhereyoustarted,whereyouarenow,andwhatyoulearnedinbetween.1.4SomefundamentalAerodynamicVariablesAerodynamicvariablesaresomethingliketechnicalvocabularyforthephysicalscienceandengineeringunderstandingFirstintroducedaerodynamicvariables:
pressure,density,temperature,andflowvelocityThevelocitydescriptionofafluidisquitedifferenttothatofasolidbody.VelocityofaflowinggasatanyfixedpointBinspaceisthevelocityofasmallfluidelementasitsweepsthroughB.1.5AerodynamicforcesandmomentsAerodynamicforcesandmomentsonamovingbodyareduetoonlytwobasicsources:1.Pressuredistributionoverthebodysurface2.ShearstressdistributionoverthebodysurfaceBothpressureandshearstresshavedimensionsofforceperunitarea.
pressureactsnormaltothebodysurface.shearstressactstangentialtothesurface.TheneteffectofthepressureandshearstressdistributionresultsinaaerodynamicforceRandmomentMonthebody.TheresultantforceRcanbesplitintocomponentsL=lift:componentofRperpendiculartoD=drag:componentsofRparallelto(windsystem)N=normalforce:componentofRperpendiculartoc
A=axialforce:componentsofRparalleltoc
(bodysystem)Afterthe
pressureandshearstress
distributionsbeingdefined,andthegeometryshapeofthebodybeingknown,theresultantaerodynamicforcecanbeobtainedbytheintegrationofthepressureandshearstress
distributionsalongthesurfaceofthebody.FromEqs.(1.7),(1.8)and(1.11),wecanseeclearly,thatthesourcesoftheaerodynamiclift,drag,andmomentsonabodyarethepressureandshearstressdistributionintegratedoverthebody.Thebasictaskoftheoreticalaerodynamicsistocalculatep(s)andτ(s)foragivenbodyshapeandfreestreamconditions,andthenobtaintheaerodynamicforcesandmomentswiththeuseofEqs.(1.7),(1.8)and(1.11)Dimensionlessaerodynamicforceandmomentcoefficientsareevenmoreimportantthantheaerodynamicforcesandmoments.Definitionofanddensityandvelocityinthefreestream,whichisfaraheadofthebody.Definitionofdynamicpressure
ThedynamicpressurehastheunitofpressureDefinitionofdimensionlessforceandmomentcoefficientsLiftcoefficient:
Dragcoefficient:
Normalforcecoefficient:
Axialforcecoefficient:Momentcoefficient:
:reference
area:reference
length
Definitionofandmaybedifferentfordifferentshapesofthebodybeingconcerned.Thesymbolsincapitalletters,suchasrepresentstheforceandmomentcoefficientsforathree-dimensionalbody.Thesymbolsinlowercaselettersdenotetheforceandmomentcoefficientsforatwo-dimensionalbody
areforceandmomentsperunitspanTwoadditionaldimensionlessquantitiesofimmediateusearePressurecoefficientSkinfrictioncoefficientWhereisthe
freestreampressure1.6Centerofpressure(压力中心)Thecenterofthepressureisapointonthebodyaboutwhichtheaerodynamicmomentcontributedbythepressureandshearstressdistributionsisequaltozero.Ifisdefinedasthemomentgeneratedbythedistributedloads,andisthecomponentoftheresultantforce,thenthepressurecentermustbelocateddownstreamoftheleadingedgeIftheangleofattackissmall,,thusItiscleartoseethatasliftapproachestozero,thecenterofpressuremovestoinfinity.So,thecenterofpressureisnotalwaysaconvenientconceptinaerodynamics.Thereareotherwaystodefinetheforce-and-momentsystemonanairfoil1.7Dimensionalanalysis:TheBuchinghamPItheorem(量纲分析:PI定理)※Whatphysicalquantitiesdeterminethevariationoftheaerodynamicforcesandmoments?Onaphysical,intuitivebasis,weexpectRisdependon:1.Freestreamvelocity2.Freestreamdensity3.Viscosityofthefluid4.Thesizeofthebody5.Thecompressibilityofthefluid※
Howtofindaprecisefunctionalrelationfortheequationabove?Executehugeamountofwindtunnelexperimentmightbeoneway.Isthereanyotherwaycandomoreeffectively?Methodofdimensionalanalysis※AnobviousfactforthedimensionalanalysisAllthetermsinthisphysicalrelationmusthavethesamedimensions※BuckinghamPItheorem1.LetKtobethenumberoffundamentaldimensionsrequiredtodescribethephysicalvariables2.LetrepresentNphysicalvariablesinthephysicalrelation3.Thenthephysicalrelationcanbereexpressedasarelationof(N-K)dimensionlessproducts.4.EveryproductisadimensionlessproductofasetofK
physicalvariablesplusoneotherphysicalvariable.5.iscalledrepeatingvariables.Thesevariablesshouldincludeall
theKdimensionsusedintheproblem.※Aerodynamicforceonagivenbodyatagivenangleofattack.1.Eq.(1.23)canbeexpressedas2.FollowingBuckinghamtheoremandourphysicalintuition,thefundamentaldimensionsarem,landt.Hence,
K=33.Thephysicalvariablesandtheirdimensionsareand
N=64.AsexplainedbyBuckinghamtheorem,Eq.(1.27)canbereexpressedintermsofN-K=3
dimensionlessproducts,thatis5.Now,wechoseasrepeatingvariables,fromEq.(1.26),theseproductsare5.Assume
indimensionalform6.Asisdimensionless,then7.TheaboveEquationsgived=-1,b=-2,ande=-2,thenwehaveor
whereS
isdefinedasreferencearea8.Inthesameway,wecanobtaintheremainingproductsasfollowsReynoldsNumber雷诺数
isaforcecoefficient,definedasMachNumber马赫数9.InsertingalltheproductsintoEq.(1.28)
oror10.Importantconclusion:Inthegeneralfunctionform,RisexpressedwithfiveindependentphysicalvariablesAfterourdimensionalanalysis,Rcanbeexpressedwithonly
twoindependentvariables
RcanbeexpressedintermsofadimensionlessforcecoefficientisafunctionofonlyReand11.ImportantapplicationsofReand.
similarityparameters
12.Asliftanddragarecomponentsoftheresultantforce,thentheliftanddragcoefficientsarealsofunctionsofonlyRe
and.Moreover,arelationsimilartoaerodynamicforcesholdsforaerodynamicmoments,anddimensionanalysisyields13.Iftheangleofattackisallowedtovary,then,thelift,dragandmomentcoefficientswillingeneraldependonthevalueof.14.Othersimilarityparametersassociatedwiththermodynamicsandheattransfer.Physicalvariablesshouldbeaddedtemperature,specificheat,thermalconductivity,temperatureofthebodysurfaceFundamentaldimensionshouldbeaddedunitofthetemperature(K)Similarityparameterscreated1.8Flowsimilarity(流动相似)※DefinitionofflowsimilarityDifferentflowsaredynamicallysimilarif:Thestreamlinepatternsaregeometricallysimilar2.Thedistributionsofetc.,throughouttheflowfieldarethesamewhenplottedagainstcommonnondimensionalcoordinates.3.Theforcecoefficientsarethesame※CriteriatoensureflowsimilarityThebodiesandanyothersolidboundariesaregeometricallysimilarforbothflows.2.Thesimilarityparametersareidenticalforbothflows.3.ReynoldsandMachnumberarethemostdominantsimilarityparametersformanyaerodynamicproblems.※Examples1.4and1.51.9FluidStatics:BuoyancyForce
(流体静力学:浮力)Skippedover1.10TypesofFlow(流动类型)1.Thepurposeforcategorizingdifferenttypesofflow.2.Thestrategytosimplifytheflowproblems.3.Itemizationandcomparisonofdifferenttypesofflow,andbriefdescriptionoftheirmostimportantphysicalphenomena.1.10.1Continuumversusfreemoleculeflow1.Definitionofmean-free
path.2.Continuumflow.3.Freemoleculeflow4.Inmostaerodynamicproblems,wewillalwaystreatthefluidascontinuumflow.1.10.2Inviscidversusviscousflow1.Therandommotionofthemoleculewilltransporttheirmass,momentum,andenergyfromonelocationtoanotherinthefluid.Thistransportonamoleculescalegivesrisetothephenomenaofmassdiffusion,viscosity,andthermalconduction.Allrealflowsexhibittheeffectofthesetransportphenomena;suchflowsarecallviscousflows.2.Aflowthatisassumedfreewithallthesephenomenaaboveiscalledinviscidflow.3.InviscidflowisapproachedinthelimitastheReynoldsnumbergoestoinfinity.4.TheflowwithhighReynoldsnumber,canbeassumedtobeinviscid.Andtheinfluenceof
friction,thermalconduction,anddiffusionislimitedintheboundarylayer.5.Theinviscidtheorycanbeusedtopredictsthepressuredistributionandlift.However,itcannotpredictstotaldrag.6.Flowsdominatedbyviscouseffects.
FlowaroundairfoilathighangleofattackFlowaroundbluntbody7.Noinviscidtheorycanindependentlypredicttheaerodynamicsofsuchflows.
1.10.3IncompressibleversuscompressibleFlowsAflowinwhichthedensityisconstantiscalledincompressible.Incontrast,aflowwherethedensityisvariableiscalledcompressible.
2.Alltheflowsarecompressible,moreorless3.Thereareanumberofaerodynamicproblemsthatcanbemodeled
asbeingincompressible
withoutanydetrimentallossofaccuracy.4.Inmanycases,whetherthecompressibilityshouldbeconsideredornot,ismanlybasedon
theMachnumberoftheflow.1.10.4MachnumberregimesLocaldefinitionSubsonicifSonicif
Supersonicif
WhereisthelocalMachnumberatanarbitrarypointinaflowfield.2.Definitionforwholeflowfield3.Blockdiagramcategorizingthetypesofaerodynamicflows1.11Appliedaerodynamics:Theaerodynamiccoefficients—TheirmagnitudeandvariationsDifferencebetweenthefundamentals
andapplicationsofaerodynamics.
2.Aerodynamiccoefficients,suchaslift,drag,andmomentcoefficients,aretheprimarylanguageofapplicationexternalaerodynamics.3.Typicalvaluesfortheaerodynamiccoefficientsforsomecommonaerodynamicshapesandit’svariationwithMachnumberandReynoldsnumber.4.Sometypicaldragcoefficientsforvariousaerodynamicconfigurationsinlowspeedflows.
Comparisonthroughcaseatoc:
theReynoldsnumbersforallthesethreecasesarethesamebasedond(diameter).thewakesaregettingsmallerinsizefromatoc
alsobecomessmallerfromcase
atoc
Comparisonbetweencasebandd:
theReynoldsnumberincaseb:theReynoldsnumberincased
:isthesameforcasebtod
foracircularcylinderisrelativelyindependentofReynoldsnumberbetweenRe=andComparisonbetweencasebtoe:
theReynoldsnumberincaseb:theReynoldsnumberincasee:incaseeis0.6
smallerwakebehindthecylinderincasee
comparedtothatincase
b.Note:Withbasedonthefrontalprojectedarea(S=d(1)perunitspan),thevalueofrangefromamaximum2tonumbersaslowas0.12.MagnitudeofReynoldsnumberofaflowaroundacircularcylinderatstandardsealevel,where,
Th
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年计算机基础考试整体试题及答案
- 统计学考试综合案例剖析试题及答案
- 红十字知识试题及答案
- 舞蹈歌手笔试试题及答案
- 玻璃采购面试题目及答案
- 物流主管模拟面试题及答案
- 应对变化的2024统计学考试试题及答案
- 常见药物误用案例分析试题及答案
- 考生分享药理学复习经验试题及答案
- 2024年食品质检员考试归纳总结及答案
- 民政局发布的离婚协议书样本
- 2023年全国统一高考语文试卷(全国甲卷)(含答案与解析)
- 消防安全评估消防安全评估方案
- 驾驶员汛期安全行车知识
- 小学劳动教育三上第三单元2《制作风车》课件
- 隐患排查统计分析报告
- 给小学数学教师的建议
- 中国古代文学史二复习资料
- 2024年重庆发展投资有限公司招聘笔试参考题库含答案解析
- 成熟生产线评价报告
- 足球准确传球训练技巧:提高准确传球能力掌控比赛节奏
评论
0/150
提交评论