版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图示,三棱锥的底面是等腰直角三角形,,且,,则与面所成角的正弦值等于()A. B. C. D.2.已知函数是上的偶函数,且当时,函数是单调递减函数,则,,的大小关系是()A. B.C. D.3.已知斜率为的直线与双曲线交于两点,若为线段中点且(为坐标原点),则双曲线的离心率为()A. B.3 C. D.4.关于函数有下述四个结论:()①是偶函数;②在区间上是单调递增函数;③在上的最大值为2;④在区间上有4个零点.其中所有正确结论的编号是()A.①②④ B.①③ C.①④ D.②④5.已知为等差数列,若,,则()A.1 B.2 C.3 D.66.下列函数中,既是偶函数又在区间上单调递增的是()A. B. C. D.7.如图,正方体的棱长为1,动点在线段上,、分别是、的中点,则下列结论中错误的是()A., B.存在点,使得平面平面C.平面 D.三棱锥的体积为定值8.函数的图象如图所示,则它的解析式可能是()A. B.C. D.9.在中,角所对的边分别为,已知,.当变化时,若存在最大值,则正数的取值范围为A. B. C. D.10.已知实数集,集合,集合,则()A. B. C. D.11.i是虚数单位,若,则乘积的值是()A.-15 B.-3 C.3 D.1512.如图,圆是边长为的等边三角形的内切圆,其与边相切于点,点为圆上任意一点,,则的最大值为()A. B. C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数为上的奇函数,满足.则不等式的解集为________.14.若满足约束条件,则的最小值是_________,最大值是_________.15.正三棱柱的底面边长为2,侧棱长为,为中点,则三棱锥的体积为________.16.设实数x,y满足,则点表示的区域面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)一个工厂在某年里连续10个月每月产品的总成本(万元)与该月产量(万件)之间有如下一组数据:1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通过画散点图,发现可用线性回归模型拟合与的关系,请用相关系数加以说明;(2)①建立月总成本与月产量之间的回归方程;②通过建立的关于的回归方程,估计某月产量为1.98万件时,产品的总成本为多少万元?(均精确到0.001)附注:①参考数据:,,,,.②参考公式:相关系数,,.18.(12分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线与直线的直角坐标方程;(2)若曲线与直线交于两点,求的值.19.(12分)已知函数.(1)若函数,求的极值;(2)证明:.(参考数据:)20.(12分)已知等差数列满足,公差,等比数列满足,,.求数列,的通项公式;若数列满足,求的前项和.21.(12分)某贫困地区几个丘陵的外围有两条相互垂直的直线型公路,以及铁路线上的一条应开凿的直线穿山隧道,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,以所在的直线分别为轴,轴,建立平面直角坐标系,如图所示,山区边界曲线为,设公路与曲线相切于点,的横坐标为.(1)当为何值时,公路的长度最短?求出最短长度;(2)当公路的长度最短时,设公路交轴,轴分别为,两点,并测得四边形中,,,千米,千米,求应开凿的隧道的长度.22.(10分)已知函数,.(1)讨论的单调性;(2)当时,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
首先找出与面所成角,根据所成角所在三角形利用余弦定理求出所成角的余弦值,再根据同角三角函数关系求出所成角的正弦值.【详解】由题知是等腰直角三角形且,是等边三角形,设中点为,连接,,可知,,同时易知,,所以面,故即为与面所成角,有,故.故选:A.【点睛】本题主要考查了空间几何题中线面夹角的计算,属于基础题.2、D【解析】
利用对数函数的单调性可得,再根据的单调性和奇偶性可得正确的选项.【详解】因为,,故.又,故.因为当时,函数是单调递减函数,所以.因为为偶函数,故,所以.故选:D.【点睛】本题考查抽象函数的奇偶性、单调性以及对数函数的单调性在大小比较中的应用,比较大小时注意选择合适的中间数来传递不等关系,本题属于中档题.3、B【解析】
设,代入双曲线方程相减可得到直线的斜率与中点坐标之间的关系,从而得到的等式,求出离心率.【详解】,设,则,两式相减得,∴,.故选:B.【点睛】本题考查求双曲线的离心率,解题方法是点差法,即出现双曲线的弦中点坐标时,可设弦两端点坐标代入双曲线方程相减后得出弦所在直线斜率与中点坐标之间的关系.4、C【解析】
根据函数的奇偶性、单调性、最值和零点对四个结论逐一分析,由此得出正确结论的编号.【详解】的定义域为.由于,所以为偶函数,故①正确.由于,,所以在区间上不是单调递增函数,所以②错误.当时,,且存在,使.所以当时,;由于为偶函数,所以时,所以的最大值为,所以③错误.依题意,,当时,,所以令,解得,令,解得.所以在区间,有两个零点.由于为偶函数,所以在区间有两个零点.故在区间上有4个零点.所以④正确.综上所述,正确的结论序号为①④.故选:C【点睛】本小题主要考查三角函数的奇偶性、单调性、最值和零点,考查化归与转化的数学思想方法,属于中档题.5、B【解析】
利用等差数列的通项公式列出方程组,求出首项和公差,由此能求出.【详解】∵{an}为等差数列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故选:B.【点睛】本题考查等差数列通项公式求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.6、C【解析】
结合基本初等函数的奇偶性及单调性,结合各选项进行判断即可.【详解】A:为非奇非偶函数,不符合题意;B:在上不单调,不符合题意;C:为偶函数,且在上单调递增,符合题意;D:为非奇非偶函数,不符合题意.故选:C.【点睛】本小题主要考查函数的单调性和奇偶性,属于基础题.7、B【解析】
根据平行的传递性判断A;根据面面平行的定义判断B;根据线面垂直的判定定理判断C;由三棱锥以三角形为底,则高和底面积都为定值,判断D.【详解】在A中,因为分别是中点,所以,故A正确;在B中,由于直线与平面有交点,所以不存在点,使得平面平面,故B错误;在C中,由平面几何得,根据线面垂直的性质得出,结合线面垂直的判定定理得出平面,故C正确;在D中,三棱锥以三角形为底,则高和底面积都为定值,即三棱锥的体积为定值,故D正确;故选:B【点睛】本题主要考查了判断面面平行,线面垂直等,属于中档题.8、B【解析】
根据定义域排除,求出的值,可以排除,考虑排除.【详解】根据函数图象得定义域为,所以不合题意;选项,计算,不符合函数图象;对于选项,与函数图象不一致;选项符合函数图象特征.故选:B【点睛】此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,常见方法为排除法.9、C【解析】
因为,,所以根据正弦定理可得,所以,,所以,其中,,因为存在最大值,所以由,可得,所以,所以,解得,所以正数的取值范围为,故选C.10、A【解析】
可得集合,求出补集,再求出即可.【详解】由,得,即,所以,所以.故选:A【点睛】本题考查了集合的补集和交集的混合运算,属于基础题.11、B【解析】,∴,选B.12、C【解析】
建立坐标系,写出相应的点坐标,得到的表达式,进而得到最大值.【详解】以D点为原点,BC所在直线为x轴,AD所在直线为y轴,建立坐标系,设内切圆的半径为1,以(0,1)为圆心,1为半径的圆;根据三角形面积公式得到,可得到内切圆的半径为可得到点的坐标为:故得到故得到,故最大值为:2.故答案为C.【点睛】这个题目考查了向量标化的应用,以及参数方程的应用,以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
构造函数,利用导数判断出函数的单调性,再将所求不等式变形为,利用函数的单调性即可得解.【详解】设,则,设,则.当时,,此时函数单调递减;当时,,此时函数单调递增.所以,函数在处取得极小值,也是最小值,即,,,,即,所以,函数在上为增函数,函数为上的奇函数,则,,则不等式等价于,又,解得.因此,不等式的解集为.故答案为:.【点睛】本题主要考查不等式的求解,构造函数,求函数的导数,利用导数和函数单调性之间的关系是解决本题的关键.综合性较强.14、06【解析】
作不等式组对应的平面区域,利用目标函数的几何意义,即可求出结果.【详解】作出可行域,如图中的阴影部分:求的最值,即求直线在轴上的截距最小和最大时,当直线过点时,轴上截距最大,即z取最小值,.当直线过点时,轴上截距最小,即z取最大值,.故答案为:0;6.【点睛】本题主要考查了线性规划中的最值问题,利用数形结合是解决问题的基本方法,属于中档题.15、【解析】
试题分析:因为正三棱柱的底面边长为,侧棱长为为中点,所以底面的面积为,到平面的距离为就是底面正三角形的高,所以三棱锥的体积为.考点:几何体的体积的计算.16、【解析】
先画出满足条件的平面区域,求出交点坐标,利用定积分即可求解.【详解】画出实数x,y满足表示的平面区域,如图(阴影部分):则阴影部分的面积,故答案为:【点睛】本题考查了定积分求曲边梯形的面积,考查了微积分基本定理,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)①②3.386(万元)【解析】
(1)利用代入数值,求出后即可得解;(2)①计算出、后,利用求出后即可得解;②把代入线性回归方程,计算即可得解.【详解】(1)由已知条件得,,∴,说明与正相关,且相关性很强.(2)①由已知求得,,所以,所求回归直线方程为.②当时,(万元),此时产品的总成本约为3.386万元.【点睛】本题考查了相关系数的应用以及线性回归方程的求解和应用,考查了计算能力,属于中档题.18、(1)曲线的直角坐标方程为;直线的直角坐标方程为(2)【解析】
(1)由公式可化极坐标方程为直角坐标方程,消参法可化参数方程为普通方程;(2)联立两曲线方程,解方程组得两交点坐标,从而得两点间距离.【详解】解:(1)曲线的直角坐标方程为直线的直角坐标方程为(2)据解,得或【点睛】本题考查极坐标与直角坐标的互化,考查参数方程与普通方程的互化,属于基础题.19、(1)见解析;(1)见证明【解析】
(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;(1)问题转化为证ex﹣x1﹣xlnx﹣1>0,根据xlnx≤x(x﹣1),问题转化为只需证明当x>0时,ex﹣1x1+x﹣1>0恒成立,令k(x)=ex﹣1x1+x﹣1,(x≥0),根据函数的单调性证明即可.【详解】(1),,当,,当,,在上递增,在上递减,在取得极大值,极大值为,无极大值.(1)要证f(x)+1<ex﹣x1.即证ex﹣x1﹣xlnx﹣1>0,先证明lnx≤x﹣1,取h(x)=lnx﹣x+1,则h′(x)=,易知h(x)在(0,1)递增,在(1,+∞)递减,故h(x)≤h(1)=0,即lnx≤x﹣1,当且仅当x=1时取“=”,故xlnx≤x(x﹣1),ex﹣x1﹣xlnx≥ex﹣1x1+x﹣1,故只需证明当x>0时,ex﹣1x1+x﹣1>0恒成立,令k(x)=ex﹣1x1+x﹣1,(x≥0),则k′(x)=ex﹣4x+1,令F(x)=k′(x),则F′(x)=ex﹣4,令F′(x)=0,解得:x=1ln1,∵F′(x)递增,故x∈(0,1ln1]时,F′(x)≤0,F(x)递减,即k′(x)递减,x∈(1ln1,+∞)时,F′(x)>0,F(x)递增,即k′(x)递增,且k′(1ln1)=5﹣8ln1<0,k′(0)=1>0,k′(1)=e1﹣8+1>0,由零点存在定理,可知∃x1∈(0,1ln1),∃x1∈(1ln1,1),使得k′(x1)=k′(x1)=0,故0<x<x1或x>x1时,k′(x)>0,k(x)递增,当x1<x<x1时,k′(x)<0,k(x)递减,故k(x)的最小值是k(0)=0或k(x1),由k′(x1)=0,得=4x1﹣1,k(x1)=﹣1+x1﹣1=﹣(x1﹣1)(1x1﹣1),∵x1∈(1ln1,1),∴k(x1)>0,故x>0时,k(x)>0,原不等式成立.【点睛】本题考查了函数的单调性,极值问题,考查导数的应用以及不等式的证明,考查转化思想,属于中档题.20、,;.【解析】
由,公差,有,,成等比数列,所以,解得.进而求出数列,的通项公式;当时,由,所以,当时,由,,可得,进而求出前项和.【详解】解:由题意知,,公差,有1,,成等比数列,所以,解得.所以数列的通项公式.数列的公比,其通项公式.当时,由,所以.当时,由,,两式相减得,所以.故所以的前项和,.又时,,也符合上式,故.【点睛】本题主要考查等差数列和等比数列的概念,通项公式,前项和公式的应用等基础知识;考查运算求解能力,方程思想,分类讨论思想,应用意识,属于中档题.21、(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度城市公共安全服务承包合同
- 蛇皮市场发展预测和趋势分析
- 眼镜挂绳市场发展现状调查及供需格局分析预测报告
- 04版铲车租赁合同:设备租赁及临时施工权
- 2024年度物流服务与仓储合同协议书
- 2024年度智能物流机器人研发与制造合同
- 合同欠债结清承诺书4
- 2024年度旅游服务合同服务项目与价格
- 2024年度建筑工程BIM模型制作与咨询服务合同
- 2024年度物业管理合同:住宅小区的管理与服务
- 锅炉浇注料施工方案
- 矿山地质环境保护与治理恢复方案(技术标)投标文件
- 七年级动点问题大全给力教育课资
- 农村土地承包法解说PPT课件
- 中国宏观经济形势分析框架PPT课件
- 儿童英文自我介绍课件PPT
- 厂房、设施、设备维护保养计划(完整版)
- 供应商冲突矿产调查表填写说明[沐风教学]
- 人教中职数学球PPT学习教案
- [QC成果]户外主变安装防坠落悬挂装置的研制范本
- 技工院校安全管理工作总结
评论
0/150
提交评论