版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的程序框图,若输出的值为8,则框图中①处可以填().A. B. C. D.2.复数(i是虚数单位)在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.执行如图所示的程序框图,则输出的()A.2 B.3 C. D.4.函数在的图象大致为A. B.C. D.5.已知集合,则()A. B. C. D.6.已知双曲线的一条渐近线的倾斜角为,且,则该双曲线的离心率为()A. B. C.2 D.47.已知函数,其中,记函数满足条件:为事件,则事件发生的概率为A. B.C. D.8.已知,为两条不同直线,,,为三个不同平面,下列命题:①若,,则;②若,,则;③若,,则;④若,,则.其中正确命题序号为()A.②③ B.②③④ C.①④ D.①②③9.一个几何体的三视图如图所示,则这个几何体的体积为()A. B.C. D.10.等比数列中,,则与的等比中项是()A.±4 B.4 C. D.11.已知函数,对任意的,,当时,,则下列判断正确的是()A. B.函数在上递增C.函数的一条对称轴是 D.函数的一个对称中心是12.的展开式中,满足的的系数之和为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设为锐角,若,则的值为____________.14.(5分)函数的定义域是____________.15.已知非零向量,满足,且,则与的夹角为____________.16.函数在区间(-∞,1)上递增,则实数a的取值范围是____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:的两个焦点是,,在椭圆上,且,为坐标原点,直线与直线平行,且与椭圆交于,两点.连接、与轴交于点,.(1)求椭圆的标准方程;(2)求证:为定值.18.(12分)管道清洁棒是通过在管道内释放清洁剂来清洁管道内壁的工具,现欲用清洁棒清洁一个如图1所示的圆管直角弯头的内壁,其纵截面如图2所示,一根长度为的清洁棒在弯头内恰好处于位置(图中给出的数据是圆管内壁直径大小,).(1)请用角表示清洁棒的长;(2)若想让清洁棒通过该弯头,清洁下一段圆管,求能通过该弯头的清洁棒的最大长度.19.(12分)已知抛物线:()的焦点到点的距离为.(1)求抛物线的方程;(2)过点作抛物线的两条切线,切点分别为,,点、分别在第一和第二象限内,求的面积.20.(12分)某工厂的机器上有一种易损元件A,这种元件在使用过程中发生损坏时,需要送维修处维修.工厂规定当日损坏的元件A在次日早上8:30之前送到维修处,并要求维修人员当日必须完成所有损坏元件A的维修工作.每个工人独立维修A元件需要时间相同.维修处记录了某月从1日到20日每天维修元件A的个数,具体数据如下表:日期1日2日3日4日5日6日7日8日9日10日元件A个数91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A个数12241515151215151524从这20天中随机选取一天,随机变量X表示在维修处该天元件A的维修个数.(Ⅰ)求X的分布列与数学期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前维修处有两名工人从事维修工作,为使每个维修工人每天维修元件A的个数的数学期望不超过4个,至少需要增加几名维修工人?(只需写出结论)21.(12分)设,(1)求的单调区间;(2)设恒成立,求实数的取值范围.22.(10分)已知函数.(1)讨论函数单调性;(2)当时,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据程序框图写出几次循环的结果,直到输出结果是8时.【详解】第一次循环:第二次循环:第三次循环:第四次循环:第五次循环:第六次循环:第七次循环:第八次循环:所以框图中①处填时,满足输出的值为8.故选:C【点睛】此题考查算法程序框图,根据循环条件依次写出每次循环结果即可解决,属于简单题目.2、B【解析】
利用复数的四则运算以及几何意义即可求解.【详解】解:,则复数(i是虚数单位)在复平面内对应的点的坐标为:,位于第二象限.故选:B.【点睛】本题考查了复数的四则运算以及复数的几何意义,属于基础题.3、B【解析】
运行程序,依次进行循环,结合判断框,可得输出值.【详解】起始阶段有,,第一次循环后,,第二次循环后,,第三次循环后,,第四次循环后,,所有后面的循环具有周期性,周期为3,当时,再次循环输出的,,此时,循环结束,输出,故选:B【点睛】本题主要考查程序框图的相关知识,经过几次循环找出规律是关键,属于基础题型.4、A【解析】
因为,所以排除C、D.当从负方向趋近于0时,,可得.故选A.5、B【解析】
计算,再计算交集得到答案【详解】,表示偶数,故.故选:.【点睛】本题考查了集合的交集,意在考查学生的计算能力.6、A【解析】
由倾斜角的余弦值,求出正切值,即的关系,求出双曲线的离心率.【详解】解:设双曲线的半个焦距为,由题意又,则,,,所以离心率,故选:A.【点睛】本题考查双曲线的简单几何性质,属于基础题7、D【解析】
由得,分别以为横纵坐标建立如图所示平面直角坐标系,由图可知,.8、C【解析】
根据直线与平面,平面与平面的位置关系进行判断即可.【详解】根据面面平行的性质以及判定定理可得,若,,则,故①正确;若,,平面可能相交,故②错误;若,,则可能平行,故③错误;由线面垂直的性质可得,④正确;故选:C【点睛】本题主要考查了判断直线与平面,平面与平面的位置关系,属于中档题.9、B【解析】
还原几何体可知原几何体为半个圆柱和一个四棱锥组成的组合体,分别求解两个部分的体积,加和得到结果.【详解】由三视图还原可知,原几何体下半部分为半个圆柱,上半部分为一个四棱锥半个圆柱体积为:四棱锥体积为:原几何体体积为:本题正确选项:【点睛】本题考查三视图的还原、组合体体积的求解问题,关键在于能够准确还原几何体,从而分别求解各部分的体积.10、A【解析】
利用等比数列的性质可得,即可得出.【详解】设与的等比中项是.
由等比数列的性质可得,.
∴与的等比中项
故选A.【点睛】本题考查了等比中项的求法,属于基础题.11、D【解析】
利用辅助角公式将正弦函数化简,然后通过题目已知条件求出函数的周期,从而得到,即可求出解析式,然后利用函数的性质即可判断.【详解】,又,即,有且仅有满足条件;又,则,,函数,对于A,,故A错误;对于B,由,解得,故B错误;对于C,当时,,故C错误;对于D,由,故D正确.故选:D【点睛】本题考查了简单三角恒等变换以及三角函数的性质,熟记性质是解题的关键,属于基础题.12、B【解析】
,有,,三种情形,用中的系数乘以中的系数,然后相加可得.【详解】当时,的展开式中的系数为.当,时,系数为;当,时,系数为;当,时,系数为;故满足的的系数之和为.故选:B.【点睛】本题考查二项式定理,掌握二项式定理和多项式乘法是解题关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
∵为锐角,,∴,∴,,故.14、【解析】
要使函数有意义,则,即,解得,故函数的定义域是.15、(或写成)【解析】
设与的夹角为,通过,可得,化简整理可求出,从而得到答案.【详解】设与的夹角为可得,故,将代入可得得到,于是与的夹角为.故答案为:.【点睛】本题主要考查向量的数量积运算,向量垂直转化为数量积为0是解决本题的关键,意在考查学生的转化能力,分析能力及计算能力.16、【解析】
根据复合函数单调性同增异减,结合二次函数的性质、对数型函数的定义域列不等式组,解不等式求得的取值范围.【详解】由二次函数的性质和复合函数的单调性可得解得.故答案为:【点睛】本小题主要考查根据对数型复合函数的单调性求参数的取值范围,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】
(1)根据椭圆的定义可得,将代入椭圆方程,即可求得的值,求得椭圆方程;(2)设直线的方程,代入椭圆方程,求得直线和的方程,求得和的横坐标,表示出,根据韦达定理即可求证为定值.【详解】(1)因为,由椭圆的定义得,,点在椭圆上,代入椭圆方程,解得,所以的方程为;(2)证明:设,,直线的斜率为,设直线的方程为,联立方程组,消去,整理得,所以,,直线的直线方程为,令,则,同理,所以:,代入整理得,所以为定值.【点睛】本小题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,考查椭圆中的定值问题,属于中档题.18、(1);(2).【解析】
(1)过作的垂线,垂足为,易得,进一步可得;(2)利用导数求得最大值即可.【详解】(1)如图,过作的垂线,垂足为,在直角中,,,所以,同理,.(2)设,则,令,则,即.设,且,则当时,,所以单调递减;当时,,所以单调递增,所以当时,取得极小值,所以.因为,所以,又,所以,又,所以,所以,所以,所以能通过此钢管的铁棒最大长度为.【点睛】本题考查导数在实际问题中的应用,考查学生的数学运算求解能力,是一道中档题.19、(1)(2)【解析】
(1)因为,可得,即可求得答案;(2)分别设、的斜率为和,切点,,可得过点的抛物线的切线方程为:,联立直线方程和抛物线方程,得到关于一元二次方程,根据,求得,,进而求得切点,坐标,根据两点间距离公式求得,根据点到直线距离公式求得点到切线的距离,进而求得的面积.【详解】(1),,解得,抛物线的方程为.(2)由题意可知,、的斜率都存在,分别设为和,切点,,过点的抛物线的切线:,由,消掉,可得,,即,解得,,又由,得,,,同理可得,,,,,切线的方程为,点到切线的距离为,,即的面积为.【点睛】本题主要考查了求抛物线方程和抛物线中三角形面积问题,解题关键是掌握抛物线定义和圆锥曲线与直线交点问题时,通常用直线和圆锥曲线联立方程组,通过韦达定理建立起目标的关系式20、(Ⅰ)分布列见解析,;(Ⅱ);(Ⅲ)至少增加2人.【解析】
(Ⅰ)求出X的所有可能取值为9,12,15,18,24,求出概率,得到X的分布列,然后求解期望即可.(Ⅱ)当P(a≤X≤b)取到最大值时,求出a,b的可能值,然后求解P(a≤X≤b)的最大值即可.(Ⅲ)利用前两问的结果,判断至少增加2人.【详解】(Ⅰ)X的取值为:9,12,15,18,24;,,,,,X的分布列为:X912151824P故X的数学期望;(Ⅱ)当P(a≤X≤b)取到最大值时,a,b的值可能为:,或,或.经计算,,,所以P(a≤X≤b)的最大值为.(Ⅲ)至少增加2人.【点睛】本题考查离散型随机变量及其分布列,离散型随机变量的期望与方差,属于中等题.21、(1)单调递增区间为,单调递减区间为;(2)【解析】
(1),令,解不等式即可;(2),令得,即,且的最小值为,令,结合即可解决.【详解】(1),当时,,递增,当时,,递减.故的单调递增区间为,单调递减区间为.(2),,,设的根为,即有可得,,当时,,递减,当时,,递增.,所以,①当;②当时,设,递增,,所以.综上,.【点睛】本题考查了利用导数研究函数单调性以及函数恒成立问题,这里要强调一点,处理恒成立问题时,通常是构造函数,将问题转化为函数的极值或最值来处理.22、(1)见解析(2)见解析【解析】
(1)根据的导函数进行分类讨论单调性(2)欲证,只
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度教育咨询服务办学许可证转让及服务协议3篇
- 2025年临时用工合作协议确保二零二五年度客户服务品质3篇
- 2025年二零二五企业仓储物流场地租赁服务合同3篇
- 2025年度年度影视行业兼职演员聘用协议2篇
- 二零二五年度销售团队保密责任协议
- 2025年度新型城镇化工程款结算与进度管理协议3篇
- 2025年度全新竞业协议解除后一个月竞业限制合同3篇
- 二零二五年度新能源汽车购买协议3篇
- 2025年度公司与个人合作代收代付电商业务合同模板3篇
- 二零二五年度农产品电商平台用户行为分析合作协议3篇
- 2024年辽宁经济职业技术学院单招职业倾向性测试题库附答案
- 启明计划工信部青年人才
- 《陆上风电场工程设计概算编制规定及费用标准》(NB-T 31011-2019)
- 居家服侍老人协议书
- 2024年-(多附件条款版)个人汽车租赁给公司合同电子版
- 建工意外险培训课件
- 三年级必读书目《格林童话》阅读测试题(附答案)
- 人口老龄化社会的挑战与机遇
- 三级(高级)电子商务师理论考试题库含答案
- 社区宣传工作方案及措施
- 安全教育主题班会:防恐怖、防极端、防不法侵害
评论
0/150
提交评论