


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
优质资料word版本——下载后可编辑优质资料word版本——下载后可编辑6/6优质资料word版本——下载后可编辑高二选修(2—1)第三章3.1空间向量及其运算测试一、选择题1抛物线的准线方程是()A.B.C.D.2.已知两点、,且是与的等差中项,则动点的轨迹方程是 () A. B. C. D.1.已知向量=(3,-2,1),=(-2,4,0),则4+2等于()A.(16,0,4) B.(8,-16,4)C.(8,16,4)D.(8,0,4)2.在三棱柱ABCA1B1C1中,若eq\o(CA,\s\up15(→))=a,eq\o(CB,\s\up15(→))=b,eq\o(CC1,\s\up15(→))=c,则eq\o(A1B,\s\up15(→))=()A.a+b-c B.a-b+cC.-a+b+cD.-a+b-c4.在下列条件中,使M与A、B、C一定共面的是()A.eq\o(OM,\s\up7(→))=2eq\o(OA,\s\up7(→))-eq\o(OB,\s\up7(→))-eq\o(OC,\s\up7(→)) B.eq\o(OM,\s\up7(→))=eq\f(1,5)eq\o(OA,\s\up7(→))+eq\f(1,3)eq\o(OB,\s\up7(→))+eq\f(1,2)eq\o(OC,\s\up7(→))C.eq\o(MA,\s\up7(→))+eq\o(MB,\s\up7(→))+eq\o(MC,\s\up7(→))=0 D.eq\o(OM,\s\up7(→))+eq\o(OA,\s\up7(→))+eq\o(OB,\s\up7(→))+eq\o(OC,\s\up7(→))=06.在正方体ABCDA1B1C1D1中,给出以下向量表达式:①(eq\o(A1D1,\s\up7(→))-eq\o(A1A,\s\up7(→)))-eq\o(AB,\s\up7(→));②(eq\o(BC,\s\up7(→))+eq\o(BB1,\s\up7(→)))-eq\o(D1C1,\s\up7(→));③(eq\o(AD,\s\up7(→))-eq\o(AB,\s\up7(→)))-2eq\o(DD1,\s\up7(→));④(eq\o(B1D1,\s\up7(→))+eq\o(A1A,\s\up7(→)))+eq\o(DD1,\s\up7(→)).其中能够化简为向量eq\o(BD1,\s\up7(→))的是()A.①②B.②③C.③④D.①④7.已知向量a=(1,-1,1),b=(-1,2,1),且ka-b与a-3b互相垂直,则k的值是A.1B.eq\f(1,5)C.eq\f(3,5)D.-eq\f(20,9)8.若a=(2,-3,1),b=(2,0,3),c=(0,2,2),a·(b+c)的值为()A.4B.15C.7D.39.已知四边形ABCD满足:eq\o(AB,\s\up7(→))·eq\o(BC,\s\up7(→))>0,eq\o(BC,\s\up7(→))·eq\o(CD,\s\up7(→))>0,eq\o(CD,\s\up7(→))·eq\o(DA,\s\up7(→))>0,eq\o(DA,\s\up7(→))·eq\o(AB,\s\up7(→))>0,则该四边形为()A.平行四边形B.梯形C.长方形D.空间四边形11.如图所示,在平行六面体ABCDA1B1C1D1中,M为A1C1与B1D1的交点.若eq\o(AB,\s\up15(→))=a,eq\o(AD,\s\up15(→))=b,eq\o(AA1,\s\up15(→))=c,则下列向量中与eq\o(BM,\s\up15(→))相等的向量是()A.-eq\f(1,2)a+eq\f(1,2)b+c B.eq\f(1,2)a+eq\f(1,2)b+cC.-eq\f(1,2)a-eq\f(1,2)b+c D.eq\f(1,2)a-eq\f(1,2)b+c11.已知A,B为双曲线E的左,右顶点,点M在E上,ΔABM为等腰三角形,且顶角为120°,则E的离心率为A.B.2C.D.是椭圆上的点,、是椭圆的两个焦点,,则的面积等于.已知双曲线过点,且渐近线方程为,则该双曲线的标准方程为.14.已知向量a=(-1,2,3),b=(1,1,1),则向量a在b方向上的投影为________.16.如果三点A(1,5,-2),B(2,4,1),C(a,3,b+2)共线,那么a-b=________.19.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5).(1)求以向量eq\o(AB,\s\up7(→)),eq\o(AC,\s\up7(→))为一组邻边的平行四边形的面积S;(2)若向量a分别与向量eq\o(AB,\s\up7(→)),eq\o(AC,\s\up7(→))垂直,且|a|=eq\r(3),求向量a的坐标.21.已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4),设a=eq\o(AB,\s\up15(→)),b=eq\o(AC,\s\up15(→)).(1)求a与b的夹角θ的余弦值;(2)若向量ka+b与ka-2b互相垂直,求k的值.(本小题満分12分)已知中心在原点的双曲线C的右焦点为(2,0),右顶点为。(1)求双曲线C的方程;(2)若直线l:与双曲线C恒有两个不同的交点A和B,且(其中O为原点),求k的取值范围。1.D提示:4+2=4(3,-2,1)+2(-2,4,0)=(12,-8,4)+(-4,8,0)=(8,0,4).2.D提示:eq\o(A1B,\s\up15(→))=eq\o(A1A,\s\up15(→))+eq\o(AB,\s\up15(→))=-c+(b-a)=-a+b-c.3\D提示:向量的夹角是两个向量始点放在一起时所成的角,经检验只有=eq\f(1,2).4.C提示:eq\o(MA,\s\up7(→))+eq\o(MB,\s\up7(→))+eq\o(MC,\s\up7(→))=0,即eq\o(MA,\s\up7(→))=-(eq\o(MB,\s\up7(→))+eq\o(MC,\s\up7(→))),所以M与A、B、C共面.5\解析C∵a+b,a-b分别与a、b、2a共面,∴它们分别与a+b,a-b均不能构成一组基底.6.A提示:①(eq\o(A1D1,\s\up7(→))-eq\o(A1A,\s\up7(→)))-eq\o(AB,\s\up7(→))=eq\o(AD1,\s\up7(→))-eq\o(AB,\s\up7(→))=eq\o(BD,\s\up7(→))1;②(eq\o(BC,\s\up7(→))+eq\o(BB1,\s\up7(→)))-eq\o(D1C1,\s\up7(→))=eq\o(BC1,\s\up7(→))-eq\o(D1C1,\s\up7(→))=eq\o(BD1,\s\up7(→));③(eq\o(AD,\s\up7(→))-eq\o(AB,\s\up7(→)))-2eq\o(DD1,\s\up7(→))=eq\o(BD,\s\up7(→))-2eq\o(DD1,\s\up7(→))≠eq\o(BD1,\s\up7(→));④(eq\o(B1D1,\s\up7(→))+eq\o(A1A,\s\up7(→)))+eq\o(DD1,\s\up7(→))=eq\o(B1D,\s\up7(→))+eq\o(DD1,\s\up7(→))=eq\o(B1D1,\s\up7(→))≠eq\o(BD1,\s\up7(→)),故选A.7.D提示:∵ka-b=(k+1,-k-2,k-1),a-3b=(4,-7,-2),(ka-b)⊥(a-3b),∴4(k+1)-7(-k-2)-2(k-1)=0,∴k=-eq\f(20,9).8\解析D∵b+c=(2,2,5),∴a·(b+c)=(2,-3,1)·(2,2,5)=3.9.解析D由已知条件得四边形的四个外角均为锐角,但在平面四边形中任一四边形的外角和是360°,这与已知条件矛盾,所以该四边形是一个空间四边形.10.解析Aeq\o(OG1,\s\up7(→))=eq\o(OA,\s\up7(→))+eq\o(AG1,\s\up7(→))=eq\o(OA,\s\up7(→))+eq\f(2,3)×eq\f(1,2)(eq\o(AB,\s\up7(→))+eq\o(AC,\s\up7(→)))=eq\o(OA,\s\up7(→))+eq\f(1,3)[(eq\o(OB,\s\up7(→))-eq\o(OA,\s\up7(→)))+(eq\o(OC,\s\up7(→))-eq\o(OA,\s\up7(→)))]=eq\f(1,3)(eq\o(OA,\s\up7(→))+eq\o(OB,\s\up7(→))+eq\o(OC,\s\up7(→))),由OG=3GG1知,eq\o(OG,\s\up7(→))=eq\f(3,4)eq\o(OG1,\s\up7(→))=eq\f(1,4)(eq\o(OA,\s\up7(→))+eq\o(OB,\s\up7(→))+eq\o(OC,\s\up7(→))),∴(x,y,z)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,4),\f(1,4),\f(1,4))).11\A解析由图形知:eq\o(BM,\s\up15(→))=eq\o(BB1,\s\up15(→))+eq\o(B1M,\s\up15(→))=eq\o(AA1,\s\up15(→))+eq\f(1,2)(eq\o(AD,\s\up15(→))-eq\o(AB,\s\up15(→)))=-eq\f(1,2)a+eq\f(1,2)b+c.12.B解析①中a与b所在的直线也有可能重合,故①是假命题;②中当a=0,b≠0时,找不到实数λ,使b=λa,故②是假命题;可以证明③中A,B,C,M四点共面,因为eq\f(1,3)eq\o(OA,\s\up15(→))+eq\f(1,3)eq\o(OB,\s\up15(→))+eq\f(1,3)eq\o(OC,\s\up15(→))=eq\o(OM,\s\up15(→)),等式两边同时加上eq\o(MO,\s\up15(→)),则eq\f(1,3)(eq\o(MO,\s\up15(→))+eq\o(OA,\s\up15(→)))+eq\f(1,3)(eq\o(MO,\s\up15(→))+eq\o(OB,\s\up15(→)))+eq\f(1,3)(eq\o(MO,\s\up15(→))+eq\o(OC,\s\up15(→)))=0,即eq\o(MA,\s\up15(→))+eq\o(MB,\s\up15(→))+eq\o(MC,\s\up15(→))=0,eq\o(MA,\s\up15(→))=-eq\o(MB,\s\up15(→))-eq\o(MC,\s\up15(→)),则eq\o(MA,\s\up15(→))与eq\o(MB,\s\up15(→)),eq\o(MC,\s\up15(→))共面,又M是三个有向线段的公共点,故A,B,C,M四点共面,所以M是△ABC的重心,所以点M在平面ABC上,且在△ABC的内部,故③是真命题.13.解析eq\o(AB,\s\up15(→))=(3,4,5),eq\o(AC,\s\up15(→))=(1,2,2),eq\o(AD,\s\up15(→))=(9,14,16),设eq\o(AD,\s\up15(→))=xeq\o(AB,\s\up15(→))+yeq\o(AC,\s\up15(→)).即(9,14,16)=(3x+y,4x+2y,5x+2y),∴eq\b\lc\{\rc\(\a\vs4\al\co1(x=2,,y=3,))从而A、B、C、D四点共面.14.eq\f(4\r(3),3)解析向量a在b方向上的投影为:|a|·cosa,b=eq\r(14)×eq\f(-1+2+3,\r(14)×\r(3))=eq\f(4\r(3),3).15.3解析因为eq\o(OA,\s\up7(→))+eq\o(AG,\s\up7(→))=eq\o(OG,\s\up7(→)),eq\o(OB,\s\up7(→))+eq\o(BG,\s\up7(→))=eq\o(OG,\s\up7(→)),eq\o(OC,\s\up7(→))+eq\o(CG,\s\up7(→))=eq\o(OG,\s\up7(→)),且eq\o(AG,\s\up7(→))+eq\o(BG,\s\up7(→))+eq\o(CG,\s\up7(→))=0,所以eq\o(OA,\s\up7(→))+eq\o(OB,\s\up7(→))+eq\o(OC,\s\up7(→))=3eq\o(OG,\s\up7(→)).16.1解析:eq\o(AB,\s\up7(→))=(1,-1,3),eq\o(BC,\s\up7(→))=(a-2,-1,b+1),若使A、B、C三点共线,须满足eq\o(BC,\s\up7(→))=λeq\o(AB,\s\up7(→)),即(a-2,-1,b+1)=λ(1,-1,3),所以eq\b\lc\{\rc\(\a\vs4\al\co1(a-2=λ,,-1=-λ,,b+1=3λ,))解得a=3,b=2,所以a-b=1.17.解析(1)eq\o(EF,\s\up15(→))·eq\o(BA,\s\up15(→))=eq\f(1,2)eq\o(BD,\s\up15(→))·eq\o(BA,\s\up15(→))=eq\f(1,2)|eq\o(BD,\s\up15(→))||eq\o(BA,\s\up15(→))|cos〈eq\o(BD,\s\up15(→)),eq\o(BA,\s\up15(→))〉=eq\f(1,2)cos60°=eq\f(1,4).(2)eq\o(EF,\s\up15(→))·eq\o(BD,\s\up15(→))=eq\f(1,2)eq\o(BD,\s\up15(→))·eq\o(BD,\s\up15(→))=eq\f(1,2)cos0°=eq\f(1,2).(3)eq\o(EF,\s\up15(→))·eq\o(DC,\s\up15(→))=eq\f(1,2)eq\o(BD,\s\up15(→))·eq\o(DC,\s\up15(→))=eq\f(1,2)|eq\o(BD,\s\up15(→))||eq\o(DC,\s\up15(→))|cos〈eq\o(BD,\s\up15(→)),eq\o(DC,\s\up15(→))〉=eq\f(1,2)cos120°=-eq\f(1,4).18.解析∵eq\o(BC,\s\up7(→))=eq\o(AC,\s\up7(→))-eq\o(AB,\s\up7(→)),∴eq\o(OA,\s\up7(→))·eq\o(BC,\s\up7(→))=eq\o(OA,\s\up7(→))·eq\o(AC,\s\up7(→))-eq\o(OA,\s\up7(→))·eq\o(AB,\s\up7(→))=|eq\o(OA,\s\up7(→))|·|eq\o(AC,\s\up7(→))|·cos〈eq\o(OA,\s\up7(→)),eq\o(AC,\s\up7(→))〉-|eq\o(OA,\s\up7(→))|·|eq\o(AB,\s\up7(→))|·cos〈eq\o(OA,\s\up7(→)),eq\o(AB,\s\up7(→))〉=8×4×cos135°-8×6×cos120°=24-16eq\r(2).∴cos〈eq\o(OA,\s\up7(→)),eq\o(BC,\s\up7(→))〉=eq\f(\o(OA,\s\up7(→))·\o(BC,\s\up7(→)),|\o(OA,\s\up7(→))|·|\o(BC,\s\up7(→))|)=eq\f(24-16\r(2),8×5)=eq\f(3-2\r(2),5).∴OA与BC夹角的余弦值为eq\f(3-2\r(2),5).19.解析(1)∵eq\o(AB,\s\up7(→))=(-2,-1,3),eq\o(AC,\s\up7(→))=(1,-3,2),∴cos∠BAC=eq\f(\o(AB,\s\up7(→))·\o(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 质量保证培训
- 五年级上册数学一课一练-第一单元 小数乘法 第6课时 解决问题(1)(含详细解析)人教版
- 团队协作能力增强计划
- 孩子想象力培养的有效步骤
- 水务企业市场竞争力提升计划
- 珠宝客服部半年工作总结
- 胎膜早破的护理常规
- 生产计划中的库存管理方法
- 通信业务处理课件
- 肿瘤患者口腔黏膜反应的护理
- 设计院挂靠合作协议书范本
- 母婴护理师、月嫂考试、产妇护理重点知识考试题(附答案)
- 2025年中国电子信息产业集团有限公司招聘笔试参考题库含答案解析
- 2025年江苏省职业院校技能大赛高职组(智慧物流)参考试题库资料及答案
- 2025年《中央一号文件》参考试题库资料100题及答案(含单选、多选、判断题)
- 上海市松江区届2024-2025学年高三上学期一模考试历史试题(解析版)
- 2025年浙江省高职单招《职业适应性测试》高频必练考试题(附答案)
- 《影视照明技术》课件:照亮影视作品的灵魂
- 生物科技产业园区发展现状与挑战
- 2025年上海青浦新城发展(集团)限公司自主招聘9名高频重点模拟试卷提升(共500题附带答案详解)
- 雪茄烟叶晾制技术规程
评论
0/150
提交评论