《光通信技术》课件:Lecture7_第1页
《光通信技术》课件:Lecture7_第2页
《光通信技术》课件:Lecture7_第3页
《光通信技术》课件:Lecture7_第4页
《光通信技术》课件:Lecture7_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

DepartmentofOpticalEngineeringAReviewCheckListTransmitterPartsLightsourceCouplingopticsDrivingelectronicsDataconversionNon-return-to-zerocodeReturn-to-zerocodeModulatorsMach-ZehnderElectroabsorptiveMonolithicLowopvoltageLED/LDbasicpropertiesFermilevel;FermiStatisticsInternalquantumefficiencyExternalquantumefficiencyE-OefficiencySlopeefficiencyDirectmodulationDelaytimeRecombinationtimeChirpMechanismPulsesourceNoisePhasefluctuationsIntensityfluctuationsEyediagramDistortionsJitterOvershootUndershoot……Principleofthep-njunctionPhotodiodeSchematicdiagramofareversebiasedp-njunctionphotodiodeSiO2Electrodernet–eNaeNdxxE(x)REmaxe–h+Iphhv

>EgWEnDepletionregionARcoatingVrElectrodeVoutNetspacechargeacrossthediodeinthe

depletionregion.

NdandNa:donorandacceptor

concentrationsinthepandnsides.

Thefieldinthedepletionregion.p+PhotocurrentisdependonnumberofEHPanddriftvelocity.Theelectrodedonotinjectcarriersbutallowexcesscarriersinthesampletoleaveandbecomecollectedbythebattery.Principleofpnjunctionphotodiode(a)Reversedbiasedp+njunctionphotodiode.Annularelectrodetoallowphotontoenterthedevice.Antireflectioncoating(Si3N4)toreducethereflection.Thep+-sidethickness<1μm.(b)Netspacechargedistribution,withinSCL.(c)TheEfieldacrossdepletionregion.Principleofthep-njunction(b)Energybanddiagramunderreversebias.(a)Cross-sectionviewofap-i-nphotodiode.(c)Carrierabsorptioncharacteristics.Operationofap-i-nphotodiode.Agenericphotodiode.Principleofthep-njunctionPhotodiodeVariationofphotonfluxwithdistance.Aphysicaldiagramshowingthedepletionregion.Aplotofthefluxasafunctionofdistance.ThereisalossduetoFresnelreflectionatthesurface,

followedbythedecayingexponentiallossduetoabsorption.Thephotonpenetrationdepthx0isdefinedasthe

depthatwhichthephotonfluxisreducedtoe-1ofitssurfacevalue.Principleofthep-njunctionPhotodiodeRAMO’sTheoremandExternalPhotocurrenttte-h+Iphoto(t)SemiconductorVx

lL

-

ltvhole0Lle–h+0t0Area=Charge=e

evh/Leve/LAnEHPisphotogeneratedatx=l.Theelectronandtheholedriftinopposite

directionswithdriftvelocitiesvh

andve.Theelectronarrivesattimetelectron

=(L-l)/ve

and

theholearrivesattimethole

=l/vh.photocurrentielectron(t)Etholetelectrontholeihole(t)i(t)telectrontholevelectroniphoto(t)Astheelectronandholedrift,eachgeneratesielectron(t)andihole(t).Thetotalphotocurrentisthesumofholeandelectronphotocurrentseachlastingadurationthandterespectively.RAMO’sTheoremandExternalPhotocurrentTransittimeRamo’sTheoremPhotocurrentThecollectedchargeisnot2ebutjust“oneelectron”.Ifachargeqisbeingdriftedwithavelocityvd(t)byafieldbetweentwobiasedelectrodesseparatedbyL,themotionofqgeneratesanexternalcurrent

givenbyAbsorptionCoefficientandPhotodiodeMaterialsAbsorbedPhotoncreatesElectron-HolePair.Cut-offwavelengthvs.EnergybandgapAbsorptioncoefficientIncidentphotonsbecomeabsorbedastheytravelinthesemiconductorandlightintensitydecaysexponentiallywithdistanceintothesemiconductor.AbsorptionCoefficientAbsorptioncoefficientαisamaterialproperty.Mostofthephotonabsorption(63%)occursoveradistance1/α(itiscalledpenetrationdepth

δ)DepartmentofOpticalEngineeringPhotodiodeFreeelectrons->electricconductionPhotonenergyabsorbedbyanelectrontoovercomeenergygapandbecomeafreeelectronDepartmentofOpticalEngineeringInput-outputCharacteristicInput: lightpowerPOutput: photocurrentIp->Ip=RPR:responsivity(A/W)DepartmentofOpticalEngineeringResponsivityv.s.WavelengthPhotocurrent:Ip=#ofelectrons/time=Ne/tLightpower:P=photons*energy/time=NpEp/tR=Ip/P=Ne/NpEp=(Ne/Np)(/hc)Quantumefficiency=Ne/Np

R=(/1248(eV/nm))Example:anInGaAsphotodiodew/q.e.70%,whatisR? Ans:energygapofInGaAs=0.75eV->1664nmR=(0.7/1248)1664=0.93A/WDepartmentofOpticalEngineeringAbsorptioncoefficientAbsorption:aprerequisiteofsignaldetectionBeer’slaw:Pabs=Pin(1-exp(-absw))DepartmentofOpticalEngineeringTwooperationmodesofphotodiodesPhotovoltaic->likeasolarcell,nobiasSlowresponsePhotoconductivemodeFastresponse(widebandwidth)AdvantagesofreversebiasingWithoutlight,nofreechargecarriers->notconductivelight->ehpairs,reversebiashelpstoseparatethepair->conductiveDriftcurrent(fast,b/cstrongelectricfield)indepletionregion;diffusioncurrent(slow)inpornregionDarkcurrent->thermallycreatedcarriersaresweptawaybyreversebiasingDepartmentofOpticalEngineeringBandwidthTwomechanismsrestrictingbandwidthTransittime

tr=w(10m)/vsat(105m/s)~100psInherentcapacitance

Cin=A/w~1-2pFRS=(Rs+RL)CinRLCin~100ps(50input)

BW=1/[2(tr+RS)]

~1Gbit/sToincreasebandwidth ->optimizewwiscontrolledbybiasvoltageHighw->longtransittime->lowerBW->lowcapacitance->increaseBWDepartmentofOpticalEngineeringSpecSheetParameterP/N

SuffixTest

ConditionsUnitsMin.Typ.Max.9µmfiber-5Lasersource

of10µWA/W.60----Spectral

Response-5--nm1150--1600Capacitance-5f=1MHzpF--.92.0Darkcurrent-5--nA--1.55FrequencyResponse-5--GHz1.0----Reliability--ID5nAhrs--2.0x108--

UnitsMin.Max.OperatingtemperatureC-4085StoragetemperatureC-40125ReversecurrentmA--1ThepinPhotodiodeThepnjunctionphotodiodehastwodrawbacks:Depletionlayercapacitanceisnotsufficientlysmalltoallowphotodetectionathighmodulationfrequencies(RCtimeconstantlimitation).NarrowSCL(spacechargeregion,atmostafewmicrons)longwavelengthsincidentphotonsareabsorbedoutsideSCLlowQEThepinphotodiodecansignificantlyreducetheseproblems.Intrinsiclayerhaslessdopingandwiderregion(5–50μm).

Reverse-biased

p-i-n

photodiodeThepinPhotodiode

pin

energy-band

diagram

pin

photodiode

circuit

SchematicdiagramofpinphotodiodeThepinPhotodiodeSmalldepletionlayercapacitancegiveshighmodulationfrequencies.HighQuantumefficiency.SiO2p+i-Sin+Electrodernet–eNaeNdxxE(x)RE0e–h+Iphhu

>EgWVrVoutElectrodeEIncontrasttopnjunctionbuilt-in-fieldisuniformAreversebiasedpinphotodiodeisilluminatedwithashortwavelengthphotonthatisabsorbedverynearthesurface.Thephoto-generatedelectronhastodiffusetothedepletionregionwhereitissweptintothei-

layeranddriftedacross.ThepinPhotodiodep-i-n

diodeThestructure;Equilibriumenergybanddiagram;Energybanddiagramunder

reversebias.ThepinPhotodiodeThepinPhotodiodeTheresponsivityofpinphotodiodesQuantumefficiencyversuswavelengthforvariousphotodetectors.PhotoconductiveDetectorsandPhotoconductivegain

Electricfieldofbiasedpin

Junction

capacitance

of

pinThepinPhotodiodeSmallcapacitance:HighmodulationfrequencyRCdeptimeconstantis

50psec.

Responsetime

Thespeedofpinphotodiodesareinvariablylimitedbythetransittimeofphotogeneratedcarriersacrossthei-Silayer.Fori-Silayerofwidth10m,thedrifttimeisaboutisabout0.1nsec.

Drift

velocity

vs.electricfieldforholesandelectronsinSilicon.102103104105107106105104Electricfield(Vm-1)ElectronHoleDriftvelocity(msec-1)The

pin

PhotodiodeDepartmentofOpticalEngineeringPINphotodiodeWhydoweneedp-i-njunction?

PowerandBWarehigh!MostwidelyusedinfiberopticsDepletionregioniscontrolledbyintrinsiclayerthickness,notbybiasElectron-holepairscreatedinilayer,highquantumefficiencyNofreechargeinilayer->efficientseparationofehpairs->highdriftspeedLowdarkcurrent:b/cthickdepletionregionLowbiasVerysmalldiffusioncurrent->highBW,b/cthinpandnlayersPINPD:thickdepletionregionType:FrontorRearilluminatedCompromisebetweenpowerefficiencyandbandwidthBW~1/trFrontIlluminationRearIlluminationHeavilydopedNtype,transparenttolightDepartmentofOpticalEngineeringPINphotodiodeExample:SiPIN(850nm)InGaAsPIN(1550nm)

abs~103cm-1abs~105cm-1

w~40mw~4m

vdrift=105m/sBW(Si)=w/2v=0.4Gbit/sBW(InGaAs)=w/2v=4Gbit/sDepartmentofOpticalEngineeringAvalanchePhotodiodeAPD:aspecialPINPDwithveryhighsensitivityHighreversebias~20VElectronsorholesareacceleratedtogainenergyeorhstrikeneutralatomsproducingsecondaryeorh->avalancheeffectOnephoton->10-100ehpairsQ.E.>1Gain-bandwidthproduct MxBW=1/2ee=kAtr

p+SiO2ElectrodernetxxE(x)Rhu>EgpIphotoe–h+AbsorptionregionAvalancheregionElectroden+EAvalanchePhotodiode(APD)h+n+pe–AvalancheregionEe-h+EcEvImpactionizationprocessesresultingavalanchemultiplicationImpactofanenergetic

electron'skineticenergyexcitesVBelectrontotheCV.SiO2GuardringElectrodeAntireflectioncoatingnnn+p+pSubstrateElectroden+p+pSubstrateElectrodeAvalanchebreakdownSiAPDstructurewithoutaguardring

MorepracticalSiAPDAvalanchePhotodiode(APD)SchematicdiagramoftypicalSiAPD.

Breakdownvoltagearoundperipheryishigherandavalancheis

confinedmoretoilluminatedregion(n+pjunction).

ENnElectrodexE(x)RhuIphAbsorptionregionAvalancheregionInPInGaAsh+e–InPP+n+VrVoutEAPDPhotodetectorsHeterojunctionPhotodiodeSeparateAbsorptionandMultiplication(SAM)APDInGaAs-InPheterostructure

SeparateAbsorptionandMultiplication

APDPandNrefertop-andn-typewider-bandgapsemiconductor.InPInGaAsh+e–EcEvEcEvInPInGaAsEvEvh+DEv

E

PhotodetectorsHeterojunction+SeparateAbsorptionandMultiplication(SAM)APDInGaAsPgradinglayer(a)Energybanddiagramfora

SAMheterojunctionAPDwhere

thereisavalencebandstep

DEv

fromInGaAstoInPthatslows

holeentryintotheInPlayer.(b)Aninterposinggradinglayer

(InGaAsP)withanintermediate

bandgapbreaksDEvandmakesit

easierfortheholetopasstotheInP

layer.xRe–h+iphhu

>EgWVrPhotogeneratedelectronconcentrationexp(-ax)attimet=0BAvdeEAPDPhotodetector:PhotogeneratedelectronconcentrationDepartmentofOpticalEngineeringTypicalcharacteristicsofPINsandAPDsDepartmentofOpticalEngineeringNoisesourcesinphotodetectorsNoisesourcesShotnoise(unit:amperespersquarerootofhertz)Deviationofactualnumberofelectronsfromtheaverage

ThermalnoiseThedeviationsofaninstantaneousnumberofelectronsfromtheiraveragevaluebecauseoftemperaturechange

DarkcurrentnoiseThesameasshotnoiseI->Idark1/fnoiseNoiseisnotfindependent(whitenoise),=2,=1-1.5,f=modulationfreq.(Operationfreq.)

DepartmentofOpticalEngineeringNoisecalculationAPINPDInput0.1W,BW=2.5Gbit/s,R=1.0A/W,T=300KAnalyzeitsnoises:Ans:1.P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论