流体力学课件1章_第1页
流体力学课件1章_第2页
流体力学课件1章_第3页
流体力学课件1章_第4页
流体力学课件1章_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

流体力学王浩2010-8建筑环境与设备工程专业绪论流体力学是研究流体机械运动规律及其应用的科学,是力学的一个重要分支。流体力学研究的对象——液体和气体。流体力学发展简史流体力学的研究方法作用在流体上的力流体的主要力学性质流体力学的模型流体力学发展简史第一阶段(16世纪以前):流体力学形成的萌芽阶段第二阶段(16世纪文艺复兴以后-18世纪中叶)流体力学成为一门独立学科的基础阶段第三阶段(18世纪中叶-19世纪末)流体力学沿着两个方向发展——欧拉、伯努利第四阶段(19世纪末以来)流体力学飞跃发展返回第一阶段(16世纪以前):流体力学形成的萌芽阶段公元前2286年-公元前2278年大禹治水——疏壅导滞(洪水归于河)公元前300多年

李冰都江堰——深淘滩,低作堰公元584年-公元610年隋朝南北大运河、船闸应用埃及、巴比伦、罗马、希腊、印度等地水利、造船、航海产业发展系统研究古希腊哲学家阿基米德《论浮体》(公元前250年)奠定了流体静力学的基础返回返回

李冰李冰(公元前302—235)是我国科学治水的典范,伟大的水利学家。他领导创建了目前世界上历史最悠久的水利工程——都江堰。李冰总结了前人治水的经验,在渠首工程的选点上作了深刻的科学研究。精心地选择在成都平原顶点的岷江上游出山口处作为工程地点,采用乘势利导、因时制宜的治水方略,修建了都江堰水利工程:无坝引水的鱼嘴分水堤,泄洪排沙的溢洪道,保证成都平原引足春水和控制洪水的咽喉工程宝瓶口。使鱼嘴分水堤、宝瓶口、飞沙堰溢洪道三大主体工程各有其独特的功能和作用。它们之间相互依存,相互制约,形成布局合理的系统工程,联合发挥分流分沙、泄洪排沙、引水输沙的重要作用。其科学合理的设计方案,仍令当今科学界赞叹不已。都江堰保证了流区千万亩农田和城市用水的需要,使其枯水不缺、洪水不淹、泥沙少淤、水旱从人,堪称“天然佳构”。

李冰是在大禹之精神激励下完成建堰伟业的。综观都江堰的创建史,“大禹肇其端,开明继其业,李冰总其成”。铜壶漏滴 我国古代计时是用铜壶滴漏,它使水从高度不等的几个容器里依次滴下来,最后滴到最低的有浮标的容器里,根据浮标上的刻度也就是根据最低容器里的水位来读取时间。这样,就使无形的时间改换成有形的尺寸了。光阴自然可以用寸来计量。铜壶漏滴中的最低容器里的水位,是由高处的水一滴一滴流下来,经过长时间的积累而形成的,所以铜壶滴漏的计时原理实质上就是水滴总数的自动累计。返回第二阶段(16世纪文艺复兴以后-18世纪中叶)流体力学成为一门独立学科的基础阶段1586年斯蒂芬——水静力学原理1650年帕斯卡——“帕斯卡原理”1612年伽利略——物体沉浮的基本原理1686年牛顿——牛顿内摩擦定律1738年伯努利——理想流体的运动方程即伯努利方程1775年欧拉——理想流体的运动方程即欧拉运动微分方程返回帕斯卡发现帕斯卡定律,指封闭容器中的静止流体的某一部分发生的压强变化,将毫无损失地传递至流体的各个部分和容器壁压强等于作用力除以作用面积。根据帕斯卡原理,在水力系统中的一个活塞上施加一定的压强,必将在另一个活塞上产生相同的压强增量。如果第二个活塞的面积是第一个活塞的面积的10倍,那么作用于第二个活塞上的力将增大为第一个活塞的10倍,而两个活塞上的压强仍然相等。水压机就是帕斯卡原理的实例。它具有多种用途,如液压制动等。

帕斯卡

丹·伯努利

丹·伯努利(DanielBernoull,1700—1782):瑞士科学家,曾在俄国彼得堡科学院任教,他在流体力学、气体动力学、微分方程和概率论等方面都有重大贡献,是理论流体力学的创始人。 伯努利以《流体动力学》(1738)一书著称于世,书中提出流体力学的一个定理,反映了理想流体(不可压缩、不计粘性的流体)中能量守恒定律。这个定理和相应的公式称为伯努利定理和伯努利公式。他的固体力学论著也很多。他对好友欧拉提出建议,使欧拉解出弹性压杆失稳后的形状,即获得弹性曲线的精确结果。1733—1734年他和欧拉在研究上端悬挂重链的振动问题中用了贝塞尔函数,并在由若干个重质点串联成离散模型的相应振动问题中引用了拉格尔多项式。他在1735年得出悬臂梁振动方程;1742年提出弹性振动中的叠加原理,并用具体的振动试验进行验证;他还考虑过不对称浮体在液面上的晃动方程等。欧拉

L欧拉(LeonhardEuler,1707—1783):瑞士数学家、力学家、天文学家、物理学家,变分法的奠基人,复变函数论的先驱者,理论流体力学的创始人。

欧拉曾任彼得堡科学院教授,柏林科学院的创始人之一。他是刚体力学和流体力学的奠基者,弹性系统稳定性理论的开创人。他认为质点动力学微分方程可以应用于液体(1750)。他曾用两种方法来描述流体的运动,即分别根据空间固定点(1755)和根据确定的流体质点(1759)描述流体速度场。前者称为欧拉法,后者称为拉格朗日法。欧拉奠定了理想流体的理论基础,给出了反映质量守恒的连续方程(1752)和反映动量变化规律的流体动力学方程(1755)。

欧拉在固体力学方面的著述也很多,诸等。

欧拉的专著和论文多达800多种。如弹性压杆失稳后的形状,上端悬挂重链的振动问题,等第三阶段(18世纪中叶-19世纪末)流体力学沿着两个方向发展——欧拉(理论)、伯努利(实验)工程技术快速发展,提出很多经验公式1769年谢才——谢才公式(计算流速、流量)1895年曼宁——曼宁公式(计算谢才系数)1732年比托——比托管(测流速)1797年文丘里——文丘里管(测流量)理论1823年纳维,1845年斯托克斯分别提出粘性流体运动方程组(N-S方程)返回第四阶段(19世纪末以来)流体力学飞跃发展理论分析与试验研究相结合量纲分析和相似性原理起重要作用1883年雷诺——雷诺实验(判断流态)1903年普朗特——边界层概念(绕流运动)1933-1934年尼古拉兹——尼古拉兹实验(确定阻力系数)……流体力学与相关的邻近学科相互渗透,形成很多新分支和交叉学科返回返回1738年瑞士数学家:伯努利在名著《流体动力学》中提出了伯努利方程。1755年欧拉在名著《流体运动的一般原理》中提出理想流体概念,并建立了理想流体基本方程和连续方程,从而提出了流体运动的解析方法,同时提出了速度势的概念。1781年拉格朗日首先引进了流函数的概念。1826年法国工程师纳维,1845年英国数学家、物理学家斯托克思提出了著名的N-S方程。1876年雷诺发现了流体流动的两种流态:层流和紊流。1858年亥姆霍兹指出了理想流体中旋涡的许多基本性质及旋涡运动理论,并于1887年提出了脱体绕流理论。19世纪末,相似理论提出,实验和理论分析相结合。1904年普朗特提出了边界层理论。20世纪60年代以后,计算流体力学得到了迅速的发展。流体力学内涵不断地得到了充实与提高。

主要的流体力学事件有:流体力学的研究方法理论分析方法、实验方法、数值方法相互配合,互为补充理论研究方法力学模型→物理基本定律→求解数学方程→分析和揭示本质和规律实验方法相似理论→模型实验装置数值方法计算机数值方法是现代分析手段中发展最快的方法之一返回第一节作用在流体上的力质量力表面力返回下一节作用在流体上的力1.质量力:作用在所研究的流体质量中心,与质量成正比重力惯性力单位质量力返回重力2.表面力:外界对所研究流体表面的作用力,作用在外表面,与表面积大小成正比应力切线方向:切向应力——剪切力内法线方向:法向应力——压强ΔFΔAΔFnΔFτ表面力具有传递性流体相对运动时因粘性而产生的内摩擦力返回第二节流体的主要力学性质

惯性、粘性、压缩(膨胀)性1.惯性密度常见的密度(在一个标准大气压下):4℃时的水20℃时的空气容重(重度)比重2.粘性:在外力作用下,流体微元间出现相对运动时,随之产生阻抗相对运动的内摩擦力微观机制:分子间吸引力、分子不规则运动的动量交换牛顿内摩擦定律:切应力:zvv+dvvxzdzya.速度梯度的物理意义——角变形速度(剪切变形速度)vdt(v+dv)dtdvdtdzdθ流体与固体在摩擦规律上完全不同正比于dv/dz正比于正压力,与速度无关b.动力粘度(系数)μ:与流体性质有关Pa·S运动粘度(系数):m2/s微观机制:液体吸引力T↑μ↓气体热运动T↑μ↑温度(℃)μ(kpa·s)ν(106m2/s)温度(℃)μ(kpa·s)ν(106m2/s)01.7811.785400.6530.65851.5181.519450.5890.595101.3001.306500.5470.553151.1391.139600.4660.474201.0021.003700.4040.413250.8900.893800.3540.364300.7980.800900.3150.326350.6930.6981000.2820.294水的粘滞系数(一个大气压下)

温度(℃)μ(kpa·s)ν(106m2/s)温度(℃)μ(kpa·s)ν(106m2/s)00.017213.7900.021622.9100.017814.71000.021823.6200.018315.71200.022826.2300.018716.61400.023628.5400.019217.61600.024230.6500.019618.61800.025133.2600.020119.62000.025935.8700.020420.52500.028042.8800.021021.73000.029849.9空气的粘滞系数(一个大气压下)

图1.2粘度随温度变化趋势

τdv/dz牛顿流体o牛顿流体——服从牛顿内摩擦定律的流体(水、大部分轻油、气体等)c.牛顿流体与非牛顿流体ττ0dv/dzo塑性流体非牛顿流体塑性流体——克服初始应力τ0后,τ才与速度梯度成正比(牙膏、新拌水泥砂浆、中等浓度的悬浮液等)例:汽缸内壁的直径D=12cm,活塞的直径d=11.96cm,活塞长度L=14cm,活塞往复运动的速度为1m/s,润滑油的μ

=0.1Pa·s。求作用在活塞上的粘性力。解:注意:面积、速度梯度的取法dDL例:旋转圆筒粘度计,外筒固定,内筒转速n=10r/min。内外筒间充入实验液体。内筒r1=1.93cm,外筒r2=2cm,内筒高h=7cm,转轴上扭距M=0.0045N·m。求该实验液体的粘度。解:注意:1.面积A的取法;2.单位统一hnr1r2得3.压缩(膨胀)性a.压缩系数

αp在一定温度下,密度的变化率与压强的变化成正比——体积模量(弹性模量)式中αp——液体体积压缩系数,m2/N;pa-1;

V——压缩前液体的体积,m3;dV——液体体积变化量,m3;dp——压强的增加值,N/m2。式中的负号是由于dp>0,dV<0,为使压缩系数为正值而加的。压缩系数的倒数为液体弹性模量,用E表示,单位是N/m2。即αp值愈大或E愈小,则液体的压缩性也愈大。压强(kPa)5001000200040008000压缩系数m2/N0.538×10-90.536×10-90.531×10-90.528×10-90.515×10-90℃水在不同压强下的压缩系数

从表中可以看出,水的压缩系数是很小的。如压强由4000kPa增加到8000kPa时相对体积的变化为:该数值表明,此时水的相对体积的变化大约为0.2%。所以工程上一般可将液体视为不可压缩的,即认为液体的体积(或密度)与压强无关液体的热胀性一般用体积热胀系数αv来度量。在一定的压力下,液体原有的体积为V,当温度升高dT时,体积变化为dV,则热胀系数为:式中αv——液体的体积热胀系数,1/℃;

V——热胀前液体的体积,m3;dV——液体体积变化量,m3;dT——温度的增加值,℃。水的密度在4℃时具有最大值,高于4℃后,水的密度随温度升高而下降,液体热胀性非常小,表1.3列举了水在一个大气压下,不同温度时的容重及密度。b.膨胀系数αv温度(℃)容重(N/m.3)密度(kg/m3)温度(℃)容重(N/m.3)密度(kg/m3)温度(℃)容重(N/m.3)密度(kg/m3)09806999.9209790998.2609645983.219806999.9259778997.1659617980.6298071000309775995.7709590977.8398071000359749994.1759561974.9498071000409731992.2809529971.8598071000459710990.2859500968.7109805999.7509690988.1909467965.3159799999.1559657985.71009399958.4一个大气压下水的容重及密度

气体和液体在这方面大不相同,压强和温度的改变对气体密度的影响很大,当许多实际气体远离其液相状态时,这些气体可以近似地看作理想气体。理想气体的压强、温度、密度间的关系应服从理想气体状态方程,c.气体理想气体状态方程R——气体常数空气R=8.31/0.029=287J/kg·K等温过程:压缩系数等压过程:膨胀系数绝热过程:压缩系数低速(标准状态,v<68m/s)气流可按不可压缩流体处理标准大气压(760mmHg)下,空气在不同温度时的容重及密度。温度(℃)容重(N/m3)密度(kg/m3)温度(℃)容重(N/m3)密度(kg/m3)温度(℃)容重(N/m3)密度(kg/m3)012.701.2932511.621.1856010.401.060512.471.2703011.431.1657010.101.0291012.241.2483511.231.146809.811.0001512.021.2264011.051.128909.550.9732011.801.2055010.721.0931009.300.947标准大气压下空气的容重及密度

表面张力和毛细现象1.表面张力σ:由分子的内聚力引起单位

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论