第2讲第一章基本概念_第1页
第2讲第一章基本概念_第2页
第2讲第一章基本概念_第3页
第2讲第一章基本概念_第4页
第2讲第一章基本概念_第5页
已阅读5页,还剩182页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章概率论的基本概念第一节随机试验第二节样本空间随机事件第三节频率与概率第四节等可能概型(古典概型)第五节条件概率第六节独立性第一节随机试验几个具体试验随机试验小结上一讲中,我们了解到,随机现象有其偶然性的一面,也有其必然性的一面,这种必然性表现在大量重复试验或观察中呈现出的固有规律性,称为随机现象的统计规律性.而概率论正是研究随机现象统计规律性的一门学科.现在,就让我们一起,步入这充满随机性的世界,开始第一步的探索和研究.从观察试验开始研究随机现象,首先要对研究对象进行观察试验.这里的试验是一个含义广泛的术语.它包括各种各样的科学试验,甚至对某一事物的某一特征的观察也认为是一种试验.几个具体试验

:

的情况.和反面观察正面将一枚硬币抛掷三次,THE2出现

:

观察正面将一枚硬币抛掷三次,HE7出现的次数.在一批灯泡中任意抽取一支,测试它的寿命.上述试验具有下列共同的特点:(1)试验可以在相同的条件下重复进行;

(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能的结果;

(3)进行一次试验之前不能确定哪一个结果会出现.

在概率论中将具有上述特点的试验称为随机试验.用表示随机试验.小结几个试验实例随机试验的定义第二节样本空间随机事件样本空间随机事件事件间的关系与事件的运算小结试验是在一定条件下进行的

寿命试验测试在同一工艺条件下生产出的灯泡的寿命.

:

的情况.和反面观察正面将一枚硬币抛掷三次,THE2出现

:

观察正面将一枚硬币抛掷三次,HE7出现的次数.试验有一个需要观察的目的我们注意到根据这个目的,试验被观察到多个不同的结果.

试验的全部可能结果,是在试验前就明确的;或者虽不能确切知道试验的全部可能结果,但可知道它不超过某个范围.试验是在一定条件下进行的试验有一个需要观察的目的样本点e.

S现代集合论为表述随机试验提供了一个方便的工具.一、样本空间例如,试验是将一枚硬币抛掷两次,观察正面H、反面T出现的情况:

S={(H,H),(H,T),(T,H),(T,T)}第1次第2次HHTHHTTT(H,T):(T,H):(T,T):(H,H):在每次试验中必有一个样本点出现且仅有一个样本点出现.则样本空间如果试验是测试某灯泡的寿命:则样本点是一非负数,由于不能确知寿命的上界,所以可以认为任一非负实数都是一个可能结果,S={t:t≥0}样本空间故若试验是将一枚硬币抛掷两次,观察正面出现的次数:则样本空间由以上两个例子可见,样本空间的元素是由试验的目的所确定的.调查城市居民(以户为单位)烟、酒的年支出,结果可以用(x,y)表示,x,y分别是烟、酒年支出的元数.

也可以按某种标准把支出分为高、中、低三档.这时,样本点有(高,高),(高,中),…,(低,低)等9种,样本空间就由这9个样本点构成.这时,样本空间由坐标平面第一象限内一定区域内一切点构成.

:

观察正面将一枚硬币抛掷三次,HE7出现的次数.

请注意:

实际中,在进行随机试验时,我们往往会关心满足某种条件的那些样本点所组成的集合.例如在测试某灯泡的寿命这一试验中,若规定灯泡的寿命(小时)小于500为次品,那么我们关心灯泡的寿命是否满足.或者说,我们关心满足这一条件的样本点组成的一个集合.这就是随机事件试验的样本空间的子集称为的随机事件.二、随机事件如在掷骰子试验中,观察掷出的点数.事件B={掷出奇数点}事件A={掷出1点}事件C{出现的点数大于4}=基本事件:(相对于观察目的不可再分解的事件)事件

B={掷出奇数点}如在掷骰子试验中,观察掷出的点数.事件Ai

={掷出i点},i=1,2,3,4,5,6由一个样本点组成的单点集.基本事件

当且仅当集合A中的一个样本点出现时,称事件A发生.如在掷骰子试验中,观察掷出的点数.事件B={掷出奇数点}B发生当且仅当B中的样本点1,3,5中的某一个出现.两个特殊的事件:必件然事例如,在掷骰子试验中,“掷出点数小于7”是必然事件;即在试验中必定发生的事件,常用S表示;不件可事能而“掷出点数8”则是不可能事件.即在一次试验中不可能发生的事件,常用表示.Æ三、事件间的关系与事件的运算则称为

两事件A、B互斥:两事件A、B互逆或互为对立事件即A与B不可能同时发生.除要求A、B互斥()外,还要求

事件的运算满足的规律四、小结样本空间和随机事件的定义事件间的关系与事件的运算那么要问:如何求得某事件的概率呢?下面几节就来回答这个问题.研究随机现象,不仅关心试验中会出现哪些事件,更重要的是想知道事件出现的可能性大小,也就是事率件概的第三节频率与概率频率的定义概率的定义小结

研究随机现象,不仅关心试验中会出现哪些事件,更重要的是想知道事件出现的可能性大小,也就是事件的概率.概率是随机事件发生可能性大小的度量

事件发生的可能性越大,概率就越大!了解事件发生的可能性即概率的大小,对人们的生活有什么意义呢?我先给大家举几个例子,也希望你们再补充几个例子.

例如,了解发生意外人身事故的可能性大小,确定保险金额.

了解来商场购物的顾客人数的各种可能性大小,合理配置服务人员.了解每年最大洪水超警戒线可能性大小,合理确定堤坝高度.一、频率的定义试验者抛币次数n“正面向上”次数频率DeMorgan208410610.518Bufen404020480.5069Pearson1200060190.5016Pearson24000120120.5005抛掷钱币试验记录可见,在大量重复的试验中,随机事件出现的频率具

有稳定性.即通常所说的统计规律性.二、概率的定义三、小结频率的定义概率的公理化定义及概率的性质事件在一次试验中是否发生具有随机性,它发生的可能性大小是其本身所固有的性质,概率是度量某事件发生可能性大小的一种数量指标.它介于0与1之间.第四节等可能概型(古典概型)古典概型的定义古典概率的求法举例小结我们首先引入的计算概率的数学模型,是在概率论的发展过程中最早出现的研究对象,通常称为古典概型一、古典概型假定某个试验有有限个可能的结果

假定从该试验的条件及实施方法上去分析,我们找不到任何理由认为其中某一结果例如

ei,比任一其它结果,例如

ej,更有优势,则我们只好认为所有结果在试验中有同等可能的出现机会,即1/N的出现机会.e1,e2,…,eN

,常常把这样的试验结果称为“等可能的”.e1,e2,…,eN

试验结果你认为哪个结果出现的可能性大?23479108615

例如,一个袋子中装有10个大小、形状完全相同的球.将球编号为1-10.把球搅匀,蒙上眼睛,从中任取一球.因为抽取时这些球是完全平等的,我们没有理由认为10个球中的某一个会比另一个更容易取得.也就是说,10个球中的任一个被取出的机会是相等的,均为1/10.1324567891010个球中的任一个被取出的机会都是1/1023479108615我们用i表示取到i号球,i=1,2,…,10.称这样一类随机试验为古典概型.34791086152且每个样本点(或者说基本事件)出现的可能性相同.S={1,2,…,10},则该试验的样本空间如i=2称这种试验为等可能随机试验或古典概型.

若随机试验满足下述两个条件:

(1)它的样本空间只有有限多个样本点;

(2)每个样本点出现的可能性相同.

定义1二、古典概型中事件概率的计算记

A={摸到2号球}

P(A)=?

P(A)=1/10记

B={摸到红球}

P(B)=?

P(B)=6/10223479108615132456这里实际上是从“比例”

转化为“概率”记B={摸到红球},P(B)=6/10静态动态当我们要求“摸到红球”的概率时,只要找出它在静态时相应的比例.23479108615

三、古典概率计算举例例1

把C、C、E、E、I、N、S七个字母分别写在七张同样的卡片上,并且将卡片放入同一盒中,现从盒中任意一张一张地将卡片取出,并将其按取到的顺序排成一列,假设排列结果恰好拼成一个英文单词:CISNCEE问:在多大程度上认为这样的结果是奇怪的,甚至怀疑是一种魔术?拼成英文单词SCIENCE

的情况数为故该结果出现的概率为:这个概率很小,这里算出的概率有如下的实际意义:如果多次重复这一抽卡试验,则我们所关心的事件在1260次试验中大约出现1次.解七个字母的排列总数为7!这样小概率的事件在一次抽卡的试验中就发生了,人们有比较大的把握怀疑这是魔术.具体地说,可以99.9%的把握怀疑这是魔术.解=0.3024允许重复的排列问错在何处?例2

某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率.计算样本空间样本点总数和所求事件所含样本点数计数方法不同.从10个不同数字中取5个的排列例3

设有N件产品,其中有M件次品,现从这N件中任取n件,求其中恰有k件次品的概率.这是一种无放回抽样.解令B={恰有k件次品}P(B)=?次品正品……M件次品N-M件正品解把2n只鞋分成n堆,每堆2只的分法总数为而出现事件A的分法数为n!,故例4

n双相异的鞋共2n只,随机地分成n堆,每堆2只.问:“各堆都自成一双鞋”(事件A)的概率是多少?

“等可能性”是一种假设,在实际应用中,我们需要根据实际情况去判断是否可以认为各基本事件或样本点是等可能的.1、在应用古典概型时必须注意“等可能性”的条件.请注意:在许多场合,由对称性和均衡性,我们就可以认为基本事件是等可能的并在此基础上计算事件的概率.2、在用排列组合公式计算古典概率时,必须注意不要重复计数,也不要遗漏.例如:从5双不同的鞋子中任取4只,这4只鞋子中“至少有两只配成一双”(事件A)的概率是多少?下面的算法错在哪里?错在同样的“4只配成两双”算了两次.97321456810从5双中取1双,从剩下的8只中取2只例如:从5双不同的鞋子中任取4只,这4只鞋子中“至少有两只配成一双”(事件A)的概率是多少?正确的答案是:请思考:还有其它解法吗?2、在用排列组合公式计算古典概率时,必须注意不要重复计数,也不要遗漏.3、许多表面上提法不同的问题实质上属于同一类型:有n个人,每个人都以相同的概率1/N(N≥n)被分在

N间房的每一间中,求指定的n间房中各有一人的概率.人房3、许多表面上提法不同的问题实质上属于同一类型:有n个人,设每个人的生日是任一天的概率为1/365.求这n(n≤365)个人的生日互不相同的概率.人任一天3、许多表面上提法不同的问题实质上属于同一类型:有n个旅客,乘火车途经N个车站,设每个人在每站下车的概率为1/N(N≥n),求指定的n个站各有一人下车的概率.旅客车站3、许多表面上提法不同的问题实质上属于同一类型:某城市每周发生7次车祸,假设每天发生车祸的概率相同.求每天恰好发生一次车祸的概率.车祸天你还可以举出其它例子,留作课下练习.

这一节,我们介绍了古典概型.古典概型虽然比较简单,但它有多方面的应用.是常见的几种模型.箱中摸球分球入箱随机取数分组分配课下可通过作业进一步掌握.四、小结古典概型的定义古典概率的求法第五节条件概率条件概率乘法公式小结

在解决许多概率问题时,往往需要在有某些附加信息(条件)下求事件的概率.一、条件概率1.条件概率的概念如在事件B发生的条件下求事件A发生的概率,将此概率记作P(A|B).一般地P(A|B)≠P(A)

P(A)=1/6,例如,掷一颗均匀骰子,A={掷出2点},

B={掷出偶数点},P(A|B)=?掷骰子已知事件B发生,此时试验所有可能结果构成的集合就是B,

P(A|B)=1/3.

B中共有3个元素,它们的出现是等可能的,其中只有1个在集A中.于是容易看到P(A|B)P(A)=3/10,又如,10件产品中有7件正品,3件次品,7件正品中有3件一等品,4件二等品.现从这10件中任取一件,记

B={取到正品}A={取到一等品},P(A|B)则P(A)=3/10,

B={取到正品}P(A|B)=3/7本例中,计算P(A)时,依据的前提条件是10件产品中一等品的比例.A={取到一等品},计算P(A|B)时,这个前提条件未变,只是加上“事件B已发生”这个新的条件.这好象给了我们一个“情报”,使我们得以在某个缩小了的范围内来考虑问题.

若事件B已发生,则为使A也发生,试验结果必须是既在B中又在A中的样本点,即此点必属于AB.由于我们已经知道B已发生,故B变成了新的样本空间,于是

有(1).设A、B是两个事件,且P(B)>0,则称

(1)2.条件概率的定义为在事件B发生的条件下,事件A的条件概率.3.条件概率的性质(自行验证)

2)从加入条件后改变了的情况去算

4.条件概率的计算1)用定义计算:P(B)>0掷骰子例:A={掷出2

点},

B={掷出偶数点}P(A|B)=B发生后的缩减样本空间所含样本点总数在缩减样本空间中A所含样本点个数

例1

掷两颗均匀骰子,已知第一颗掷出6点,问“掷出点数之和不小于10”的概率是多少?解法1解法2解

设A={掷出点数之和不小于10}B={第一颗掷出6点}应用定义在B发生后的缩减样本空间中计算由条件概率的定义:即若P(B)>0,则P(AB)=P(B)P(A|B)(2)而P(AB)=P(BA)二、乘法公式若已知P(B),P(A|B)时,可以反求P(AB).将A、B的位置对调,有故P(A)>0,则P(AB)=P(A)P(B|A)(3)若

P(A)>0,则P(BA)=P(A)P(B|A)

(2)和(3)式都称为乘法公式,利用它们可计算两个事件同时发生的概率注意P(AB)与P(A|B)的区别!请看下面的例子

例2

甲、乙两厂共同生产1000个零件,其中300件是乙厂生产的.而在这300个零件中,有189个是标准件,现从这1000个零件中任取一个,问这个零件是乙厂生产的标准件的概率是多少?所求为P(AB).甲、乙共生产1000个189个是标准件300个乙厂生产300个乙厂生产设B={零件是乙厂生产},A={是标准件}所求为P(AB).设B={零件是乙厂生产}A={是标准件}若改为“发现它是乙厂生产的,问它是标准件的概率是多少?”求的是P(A|B).B发生,在P(AB)中作为结果;在P(A|B)中作为条件.甲、乙共生产1000个189个是标准件300个乙厂生产

例3

设某种动物由出生算起活到20年以上的概率为0.8,活到25年以上的概率为0.4.问现年20岁的这种动物,它能活到25岁以上的概率是多少?解设A={能活20年以上},B={能活25年以上}依题意,P(A)=0.8,P(B)=0.4所求为P(B|A).条件概率P(A|B)与P(A)的区别

每一个随机试验都是在一定条件下进行的,设A是随机试验的一个事件,则P(A)是在该试验条件下事件A发生的可能性大小.P(A)与P(A|B)的区别在于两者发生的条件不同,它们是两个不同的概念,在数值上一般也不同.

而条件概率P(A|B)是在原条件下又添加“B发生”这个条件时A发生的可能性大小,即P(A|B)仍是概率.乘法公式应用举例一个罐子中包含b个白球和r个红球.随机地抽取一个球,观看颜色后放回罐中,并且再加进c个与所抽出的球具有相同颜色的球.这种手续进行四次,试求第一、二次取到白球且第三、四次取到红球的概率.

(波里亚罐子模型)b个白球,r个红球于是W1W2R3R4表示事件“连续取四个球,第一、第二个是白球,第三、四个是红球.”

b个白球,r个红球随机取一个球,观看颜色后放回罐中,并且再加进c个与所抽出的球具有相同颜色的球.解

设Wi={第i次取出是白球},i=1,2,3,4Rj={第j次取出是红球},j=1,2,3,4用乘法公式容易求出当c>0时,由于每次取出球后会增加下一次也取到同色球的概率.这是一个传染病模型.每次发现一个传染病患者,都会增加再传染的概率.=P(W1)P(W2|W1)P(R3|W1W2)P(R4|W1W2R3)P(W1W2R3R4)一场精彩的足球赛将要举行,5个球迷好不容易才搞到一张入场券.大家都想去,只好用抽签的方法来解决.

入场券5张同样的卡片,只有一张上写有“入场券”,其余的什么也没写.将它们放在一起,洗匀,让5个人依次抽取.后抽比先抽的确实吃亏吗?

“先抽的人当然要比后抽的人抽到的机会大.”到底谁说的对呢?让我们用概率论的知识来计算一下,每个人抽到“入场券”的概率到底有多大?“大家不必争先恐后,你们一个一个按次序来,谁抽到‘入场券’的机会都一样大.”“先抽的人当然要比后抽的人抽到的机会大。”

我们用Ai表示“第i个人抽到入场券”

i=1,2,3,4,5.显然,P(A1)=1/5,P()=4/5第1个人抽到入场券的概率是1/5.也就是说,则表示“第i个人未抽到入场券”因为若第2个人抽到了入场券,第1个人肯定没抽到.也就是要想第2个人抽到入场券,必须第1个人未抽到,计算得:由于由乘法公式

P(A2)=(4/5)(1/4)=1/5这就是有关抽签顺序问题的正确解答.同理,第3个人要抽到“入场券”,必须第1、第2个人都没有抽到.因此=(4/5)(3/4)(1/3)=1/5继续做下去就会发现,每个人抽到“入场券”的概率都是1/5.抽签不必争先恐后.也就是说,

有三个箱子,分别编号为1,2,3.1号箱装有1个红球4个白球,2号箱装有2红3白球,3号箱装有3红球.某人从三箱中任取一箱,从中任意摸出一球,求取得红球的概率.解记

Ai={球取自i号箱},

i=1,2,3;

B={取得红球}B发生总是伴随着A1,A2,A3之一同时发生,123其中A1、A2、A3两两互斥看一个例子:三、全概率公式将此例中所用的方法推广到一般的情形,就得到在概率计算中常用的全概率公式.对求和中的每一项运用乘法公式得P(B)=P(A1B)+P(A2B)+P(A3B)代入数据计算得:P(B)=8/15运用加法公式得到即B=A1B+A2B+A3B,

且A1B、A2B、A3B两两互斥一个事件发生.某一事件A的发生有各种可能的原因

,如果A是由原因Bi(i=1,2,…,n)所引起,则A发生的概率是每一原因都可能导致A发生,故A发生的概率是各原因引起A发生概率的总和,即全概率公式.P(ABi)=P(Bi)P(A|Bi)全概率公式.我们还可以从另一个角度去理解由此可以形象地把全概率公式看成为“由原因推结果”,每个原因对结果的发生有一定的“作用”,即结果发生的可能性与各种原因的“作用”大小有关.全概率公式表达了它们之间的关系.B1B2B3B4B5B6B7B8A诸Bi是原因B是结果

甲、乙、丙三人同时对飞机进行射击,三人击中的概率分别为0.4、0.5、0.7.飞机被一人击中而击落的概率为0.2,被两人击中而击落的概率为0.6,若三人都击中,飞机必定被击落,求飞机被击落的概率.设A={飞机被击落}

Bi={飞机被i人击中},i=1,2,3由全概率公式则A=B1A+B2A+B3A解依题意,P(A|B1)=0.2,P(A|B2)=0.6,

P(A|B3)=1P(A)=P(B1)P(A|B1)+P(B2)P(A|B2)+P(B3)P(A|B3)可求得为求P(Bi

),

设Hi={飞机被第i人击中},i=1,2,3将数据代入计算得P(B1)=0.36;P(B2)=0.41;P(B3)=0.14.P(A)=P(B1)P(A|B1)+P(B2)P(A|B2)+P(B3)P(A|B3)=0.458=0.36×0.2+0.41×0.6+0.14×1即飞机被击落的概率为0.458.于是该球取自哪号箱的可能性最大?这一类问题是“已知结果求原因”.在实际中更为常见,它所求的是条件概率,是已知某结果发生条件下,探求各原因发生可能性大小.某人从任一箱中任意摸出一球,发现是红球,求该球是取自1号箱的概率.1231红4白或者问:四、贝叶斯公式看一个例子:接下来我们介绍为解决这类问题而引出的贝叶斯公式有三个箱子,分别编号为1,2,3,1号箱装有1个红球4个白球,2号箱装有2红球3白球,3号箱装有3红球.某人从三箱中任取一箱,从中任意摸出一球,发现是红球,求该球是取自1号箱的概率

.1231红4白?某人从任一箱中任意摸出一球,发现是红球,求该球是取自1号箱的概率.记Ai={球取自i号箱},i=1,2,3;

B={取得红球}求P(A1|B)运用全概率公式计算P(B)将这里得到的公式一般化,就得到贝叶斯公式1231红4白?该公式于1763年由贝叶斯(Bayes)给出.它是在观察到事件B已发生的条件下,寻找导致B发生的每个原因的概率.贝叶斯公式在实际中有很多应用.它可以帮助人们确定某结果(事件B)发生的最可能原因.

某一地区患有癌症的人占0.005,患者对一种试验反应是阳性的概率为0.95,正常人对这种试验反应是阳性的概率为0.04,现抽查了一个人,试验反应是阳性,问此人是癌症患者的概率有多大?则表示“抽查的人不患癌症”.已知

P(C)=0.005,P()=0.995,

P(A|C)=0.95,P(A|)=0.04求解如下:设C={抽查的人患有癌症},

A={试验结果是阳性},求P(C|A).现在来分析一下结果的意义.由贝叶斯公式,可得代入数据计算得

P(C|A)=0.10662.检出阳性是否一定患有癌症?1.这种试验对于诊断一个人是否患有癌症有无意义?如果不做试验,抽查一人,他是患者的概率患者阳性反应的概率是0.95,若试验后得阳性反应则根据试验得来的信息,此人是患者的概率为从0.005增加到0.1066,将近增加约21倍.1.这种试验对于诊断一个人是否患有癌症有意义.P(C|A)=0.1066

P(C)=0.005

试验结果为阳性,此人确患癌症的概率为

P(C|A)=0.1066

2.即使你检出阳性,尚可不必过早下结论你有癌症,这种可能性只有10.66%(平均来说,1000个人中大约只有107人确患癌症),此时医生常要通过再试验来确认.

P(Ai)(i=1,2,…,n)是在没有进一步信息(不知道事件B是否发生)的情况下,人们对诸事件发生可能性大小的认识.当有了新的信息(知道B发生),人们对诸事件发生可能性大小P(Ai|B)有了新的估计.贝叶斯公式从数量上刻划了这种变化在贝叶斯公式中,P(Ai)和P(Ai

|B)分别称为原因的验前概率和验后概率.这一节我们介绍了全概率公式贝叶斯公式它们是加法公式和乘法公式的综合运用,同学们可通过进一步的练习去掌握它们.五、小结条件概率的概念,给出了计算两个或多个事件同时发生的概率的乘法公式,它在计算概率时经常使用,需要牢固掌握.第六节独立性两个事件的独立性多个事件的独立性独立性的概念在计算概率中的应用小结显然P(A|B)=P(A)这就是说,已知事件B发生,并不影响事件A发生的概率,这时称事件A、B独立.一、两事件的独立性A={第二次掷出6点},B={第一次掷出6点},先看一个例子:将一颗均匀骰子连掷两次,设

由乘法公式知,当事件A、B独立时,有

P(AB)=P(A)P(B)

用P(AB)=P(A)P(B)刻划独立性,比用

P(A|B)=P(A)或

P(B|A)=P(B)更好,它不受P(B)>0或P(A)>0的制约.若两事件A、B满足

P(AB)=P(A)P(B)

(1)则称A、B相互独立,简称A、B独立.两事件独立的定义

从一副不含大小王的扑克牌中任取一张,记A={抽到K},B={抽到的牌是黑色的}可见,P(AB)=P(A)P(B)

由于P(A)=4/52=1/13,故事件A、B独立.问事件A、B是否独立?解P(AB)=2/52=1/26.P(B)=26/52=1/2,前面我们是根据两事件独立的定义作出结论的,也可以通过计算条件概率去做:

从一副不含大小王的扑克牌中任取一张,记A={抽到K},B={抽到的牌是黑色的},在实际应用中,往往根据问题的实际意义去判断两事件是否独立.

可见P(A)=P(A|B),

即事件A、B独立.则P(A)=1/13,P(A|B)=2/26=1/13在实际应用中,往往根据问题的实际意义去判断两事件是否独立.

由于“甲命中”并不影响“乙命中”的概率,故认为A、B独立.甲、乙两人向同一目标射击,记A={甲命中},B={乙命中},A与B是否独立?例如(即一事件发生与否并不影响另一事件发生的概率)

一批产品共n件,从中抽取2件,设

Ai={第i件是合格品}i=1,2若抽取是有放回的,则A1与A2独立.因为第二次抽取的结果受到第一次抽取的影响.又如:因为第二次抽取的结果不受第一次抽取的影响.若抽取是无放回的,则A1与A2不独立.请问:如图的两个事件是独立的吗?

若A、B互斥,且P(A)>0,P(B)>0,则A与B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论