电工学第2章 电力电子器件课件_第1页
电工学第2章 电力电子器件课件_第2页
电工学第2章 电力电子器件课件_第3页
电工学第2章 电力电子器件课件_第4页
电工学第2章 电力电子器件课件_第5页
已阅读5页,还剩135页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2章电力电子器件

2.1电力电子器件概述

2.2不可控器件——电力二极管

2.3半控型器件——晶闸管

2.4典型全控型器件

2.5其他新型电力电子器件

2.6功率集成电路与集成电力电子模块

本章小结

1引言■模拟和数字电子电路的基础

——晶体管和集成电路等电子器件

电力电子电路的基础

——电力电子器件■本章主要内容:◆对电力电子器件的概念、特点和分类等问题作了简要概述。◆分别介绍各种常用电力电子器件的工作原理、基本特性、主要参数以及选择和使用中应注意的一些问题。

22.1电力电子器件概述

2.1.1电力电子器件的概念和特征

2.1.2应用电力电子器件的系统组成

2.1.3电力电子器件的分类

2.1.4本章内容和学习要点32.1.1电力电子器件的概念和特征■电力电子器件同信息电子器件相比,具有如下特征的特征:

◆所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数,一般都远大于处理信息的电子器件。◆为了减小本身的损耗,提高效率,一般都工作在开关状态。◆电力电子器件往往由信息电子电路来控制

,而且需要驱动电路。

◆自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器。

52.1.1电力电子器件的概念和特征☞通态损耗是电力电子器件功率损耗的主要成因。☞当器件的开关频率较高时,开关损耗会随之增大而可能成为器件功率损耗的主要因素。

通态损耗断态损耗开关损耗开通损耗关断损耗☞电力电子器件的功率损耗在器件关断的转换过程中产生的损耗导通时器件上有一定的通态压降阻断时器件上有微小的断态漏电流流过

在器件开通的转换过程中产生的损耗6

2.1.2应用电力电子器件的系统组成

■电力电子器件在实际应用中,一般是由控制电路、驱动电路和以电力电子器件为核心的主电路组成一个系统。

电气隔离图2-1电力电子器件在实际应用中的系统组成在主电路和控制电路中附加一些电路,以保证电力电子器件和整个系统正常可靠运行驱动电路主电路控制电路7有的电力电子系统中,还需要有检测电路。广义上往往其和驱动电路这些主电路之外的电路都归为控制电路,从而粗略地说电力电子系统是由主电路和控制电路组成的。控制电路检测电路驱动电路RL主电路V1V2保护电路控制电路

2.1.2应用电力电子器件的系统组成

9主电路中的电压和电流一般都较大,而控制电路的元器件只能承受较小的电压和电流,因此在主电路和控制电路连接的路径上,如驱动电路与主电路的连接处,或者驱动电路与控制信号的连接处,以及主电路与检测电路的连接处,一般需要进行电气隔离,通过其它手段如光、磁等来传递信号。控制电路检测电路驱动电路RL主电路V1V2保护电路电气隔离控制电路

2.1.2应用电力电子器件的系统组成

10由于主电路中往往有电压和电流的过冲,而电力电子器件一般比主电路中普通的元器件要昂贵,但承受过电压和过电流的能力却要差一些,因此,在主电路和控制电路中附加一些保护电路,以保证电力电子器件和整个电力电子系统正常可靠运行,也往往是非常必要的。控制电路检测电路驱动电路RL主电路V1V2保护电路在主电路和控制电路中附加一些电路,以保证电力电子器件和整个系统正常可靠运行控制电路

2.1.2应用电力电子器件的系统组成

112.1.3电力电子器件的分类■按照能够被控制电路信号所控制的程度◆半控型器件

☞主要是指晶闸管(Thyristor)及其大部分派生器件。☞其特征是:控制极只能控制器件导通,不能控制关断。器件的关断完全是由其在主电路中承受的电压和电流决定的。

◆全控型器件☞目前最常用的是

IGBT和PowerMOSFET。

☞通过控制信号既可以控制其导通,又可以控制其关断。

◆不可控器件

☞电力二极管(PowerDiode)☞不能用控制信号来控制其通断。132.1.3电力电子器件的分类■按照驱动信号的性质◆电流驱动型

☞通过从控制端注入或者抽出电流来实现导通或者关断的控制。

◆电压驱动型

☞仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。■按照驱动信号的波形(电力二极管除外)◆脉冲触发型

☞通过在控制端施加一个电压或电流的脉冲信号来实现器件的开通或者关断的控制。

◆电平控制型

☞必须通过持续在控制端和公共端之间施加一定电平的电压或电流信号来使器件开通并维持在导通状态或者关断并维持在阻断状态。

142.1.3电力电子器件的分类■按照载流子参与导电的情况◆单极型器件

☞由一种载流子参与导电。◆双极型器件

☞由电子和空穴两种载流子参与导电。

◆复合型器件

☞由单极型器件和双极型器件集成混合而成,也称混合型器件。

152.2不可控器件——电力二极管

2.2.1PN结与电力二极管的工作原理

2.2.2电力二极管的基本特性

2.2.3电力二极管的主要参数

2.2.4电力二极管的主要类型172.2不可控器件——电力二极管·引言■电力二极管(PowerDiode)自20世纪50年代初期就获得应用,但其结构和原理简单,工作可靠,直到现在电力二极管仍然大量应用于许多电气设备当中。■在采用全控型器件的电路中电力二极管往往是不可缺少的,特别是开通和关断速度很快的快恢复二极管和肖特基二极管,具有不可替代的地位。

整流二极管及模块18AKAKa)IKAPNJb)c)AK2.2.1PN结与电力二极管的工作原理■电力二极管是以半导体PN结为基础的,实际上是由一个面积较大的PN结和两端引线以及封装组成的。从外形上看,可以有螺栓型、平板型等多种封装。图2-2电力二极管的外形、结构和电气图形符号a)外形b)基本结构c)电气图形符号19

◆PN结具有一定的反向耐压能力,但当施加的反向电压过大,反向电流将会急剧增大,破坏PN结反向偏置为截止的工作状态,这就叫反向击穿。

☞按照机理不同有雪崩击穿和齐纳击穿两种形式。

☞反向击穿发生时,只要外电路采取了措施将反向电流限制在一定范围内,PN结仍可恢复原来的状态。☞否则PN结因过热而烧毁,这就是热击穿。

21电力二极管的结构不同于信息电子电路二极管的特征:

–垂直导电结构

–漂移区(p-i-n二极管)

–电导调制效应250μm此厚度决定击穿电压10μm-阳极阴极(漂移区)(衬底)22正向偏置时的电力二极管电导调制效应少子注入232.2.1PN结与电力二极管的工作原理■PN结的电容效应◆称为结电容CJ,又称为微分电容◆按其产生机制和作用的差别分为势垒电容CB和扩散电容CD

☞势垒电容只在外加电压变化时才起作用,外加电压频率越高,势垒电容作用越明显。在正向偏置时,当正向电压较低时,势垒电容为主。

☞扩散电容仅在正向偏置时起作用。正向电压较高时,扩散电容为结电容主要成分。◆结电容影响PN结的工作频率,特别是在高速开关的状态下,可能使其单向导电性变差,甚至不能工作。252.2.2电力二极管的基本特性■静态特性◆主要是指其伏安特性

◆正向电压大到一定值(门槛电压UTO

),正向电流才开始明显增加,处于稳定导通状态。与IF对应的电力二极管两端的电压即为其正向电压降UF。

◆承受反向电压时,只有少子引起的微小而数值恒定的反向漏电流。IOIFUTOUFU图2-5电力二极管的伏安特性26

■静态特性具有单向导电性正偏时:二极管导通,通态压降1V左右。通态损耗:(表现形式为发热)反偏时:在达到击穿电压前,仅有很小的反向漏电流流过。在达到击穿电压后,反向电流急剧增加。2.2.2电力二极管的基本特性272.2.2电力二极管的基本特性a)IFUFtFt0trrtdtft1t2tURURPIRPdiFdtdiRdtub)UFPiiFuFtfrt02V图2-6电力二极管的动态过程波形正向偏置转换为反向偏置

零偏置转换为正向偏置

■动态特性

◆由正向偏置转换为反向偏置

☞电力二极管并不能立即关断,而是须经过一段短暂的时间才能重新获得反向阻断能力,进入截止状态。

☞在关断之前有较大的反向电流出现,并伴随有明显的反向电压过冲。☞延迟时间:td=t1-t0

电流下降时间:tf=t2-t1

反向恢复时间:trr=td+tf

恢复特性的软度:tf

/td,或称恢复系数,用Sr表示。t0:正向电流降为零的时刻t1:反向电流达最大值的时刻t2:电流变化率接近于零的时刻☞关断损耗:一个开关周期内关断过程产生的损耗T为开关周期292.2.2电力二极管的基本特性UFPuiiFuFtfrt02V◆由零偏置转换为正向偏置

☞先出现一个过冲UFP,经过一段时间才趋于接近稳态压降的某个值(如2V)。

☞正向恢复时间tfr

☞出现电压过冲的原因:电导调制效应起作用所需的大量少子需要一定的时间来储存,在达到稳态导通之前管压降较大;正向电流的上升会因器件自身的电感而产生较大压降。电流上升率越大,UFP越高。

图2-6电力二极管的动态过程波形b)零偏置转换为正向偏置

30☞开通过程电压与电流的乘积形成开通损耗:其中:T为开关周期2.2.2电力二极管的基本特性312.2.3电力二极管的主要参数■正向平均电流IF(AV)◆指电力二极管长期运行时,在指定的管壳温度(简称壳温,用TC表示)和散热条件下,其允许流过的最大工频正弦半波电流的平均值。

◆IF(AV)是按照电流的发热效应来定义的,使用时应按有效值相等的原则来选取电流定额,并应留有一定的裕量。32对于正弦半波电流,假定其电流峰值为IM,则其平均值为

其正弦半波电流的有效值为定义某电流波形的有效值与平均值之比为这个电流的波形系数,用表示,即2.2.3电力二极管的主要参数33正弦半波电流的波形系数实际使用中,流过二极管的电流波形形状并不是一定的,各种周期性的电流波形都有一个电流有效值,依据有效值相等的原则,如果功率二极管所流过的最大电流有效值为I,则其二极管额定电流一般选择为

式中的系数是安全系数,系数1.57为正弦半波的波形系数。

2.2.3电力二极管的主要参数34■正向压降UF◆指电力二极管在指定温度下,流过某一指定的稳态正向电流时对应的正向压降。■反向重复峰值电压URRM

◆指对电力二极管所能重复施加的反向最高峰值电压。

◆通常是其雪崩击穿电压UB的2/3◆使用时,往往按照电路中功率二极管可能承受的反向最高峰值电压的2倍左右来选定

2.2.3电力二极管的主要参数352.2.3电力二极管的主要参数■最高工作结温TJM

◆结温是指管芯PN结的平均温度,用TJ表示。

◆最高工作结温是指在PN结不致损坏的前提下所能承受的最高平均温度。

◆TJM通常在125~175C范围之内。■反向恢复时间trr

◆反向恢复时间是指功率二极管从正向电流降至零起到恢复反向阻断能力为止的时间。■浪涌电流IFSM

◆指电力二极管所能承受最大的连续一个或几个工频周期的过电流。36

电力二极管的选择原则

在规定的室温和冷却条件下,只要所选管子的额定电流有效值大于管子在电路中实际可能通过的最大电流有效值即可。考虑元件的过载能力,实际选择时应有1.5~2倍的安全裕量。计算公式为:■选择额定正向平均电流的原则37选择功率二极管的反向重复峰值电压等级(额定电压)的原则应为管子在所工作的电路中可能承受的最大反向瞬时值电压的2~3倍,即■选择额定电压的原则

电力二极管的选择原则

38课堂思考:半波整流电路,输入正弦电压值100V,频率

10kHz,电流有效值10A,如何选择二极管?39选择要点:耐压选择:击穿电压大于280V正向开通时间、反向恢复时间:远小于100μs通态平均电流:按有效值相等原则,选择电流值并留有一定余量。402.2.4电力二极管的主要类型■按照正向压降、反向耐压、反向漏电流等性能,特别是反向恢复特性的不同,介绍几种常用的电力二极管。

◆普通二极管(GeneralPurposeDiode)

☞又称整流二极管(RectifierDiode),多用于开关频率不高(1kHz以下)的整流电路中。

☞其反向恢复时间较长,一般在5s以上。

☞其正向电流定额和反向电压定额可以达到很高,分别可达数千安和数千伏以上。

412.2.4电力二极管的主要类型◆快恢复二极管(FastRecoveryDiode——FRD)☞恢复过程很短,特别是反向恢复过程很短(一般在5s以下)。

☞快恢复外延二极管(FastRecoveryEpitaxialDiodes——FRED),采用外延型P-i-N结构,其反向恢复时间更短(可低于50ns),正向压降也很低(0.9V左右)。☞从性能上可分为快速恢复和超快速恢复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在100ns以下,甚至达到20~30ns。422.2.4电力二极管的主要类型◆肖特基二极管(SchottkyBarrierDiode——SBD)

☞优点在于:反向恢复时间很短(10~40ns),正向恢复过程中也不会有明显的电压过冲;在反向耐压较低的情况下其正向压降也很小,明显低于快恢复二极管;因此,其开关损耗和正向导通损耗都比快速二极管还要小,效率高。

☞弱点在于:当所能承受的反向耐压提高时其正向压降也会高得不能满足要求,因此多用于200V以下的低压场合;反向漏电流较大且对温度敏感,因此反向稳态损耗不能忽略,而且必须更严格地限制其工作温度。432.3半控型器件——晶闸管

2.3.1晶闸管的结构与工作原理

2.3.2晶闸管的基本特性

2.3.3晶闸管的主要参数

2.3.4晶闸管的派生器件442.3半控器件—晶闸管·引言■晶闸管(Thyristor)是晶体闸流管的简称,又称作可控硅整流器(SiliconControlledRectifier——SCR),以前被简称为可控硅。

■1956年美国贝尔实验室(BellLaboratories)发明了晶闸管,到1957年美国通用电气公司(GeneralElectric)开发出了世界上第一只晶闸管产品,并于1958年使其商业化。■由于其能承受的电压和电流容量仍然是目前电力电子器件中最高的,而且工作可靠,因此在大容量的应用场合仍然具有比较重要的地位。晶闸管及模块452.3.1晶闸管的结构与工作原理■晶闸管的结构◆从外形上来看,晶闸管也主要有螺栓型和平板型两种封装结构。◆引出阳极A、阴极K和门极(控制端)G三个联接端。◆内部是PNPN四层半导体结构。图2-7晶闸管的外形、结构和电气图形符号a)外形b)结构c)电气图形符号

46■晶闸管基本工作特性◆当SCR的阳极和阴极电压,即EA下正上负(与图示方向相反)时,无论门极G是否有电流,白炽灯不亮,说明SCR始终处于关断状态;◆当时,即EA上正下负(与图示方向相同),只有时,白炽灯才能点亮。说明SCR没有门极电流触发时,具有正向阻断能力;当满足,条件时可以导通。◆SCR一旦导通,此时去掉EG(即再令),白炽灯仍保持点亮,说明SCR仍保持导通状态。导通后SCR的管压降为1V左右,主电路中的电流IA由白炽灯内阻、RW和EA的大小决定。◆在IA逐渐降低(通过调整RW)至某一个小数值时,刚刚能够维持SCR导通;此时如果继续降低IA,则SCR会关断,该小电流称为SCR的维持电流。动画2.3.1晶闸管的结构与工作原理47■晶闸管正常工作时的特性总结如下:2.3.1晶闸管的结构与工作原理

☞当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。

☞当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。

☞晶闸管一旦导通,门极就失去控制作用,不论门极触发电流是否还存在,晶闸管都保持导通。☞若要使已导通的晶闸管关断,只能利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下。从这个角度可以看出,SCR是一种电流控制型的电力电子器件。48图2-8晶闸管的双晶体管模型及其工作原理a)双晶体管模型b)工作原理在分析SCR的工作原理时,常将其等效为两个晶体管V1和V2串级而成。其工作过程如下:

UGK>0→产生IG→V2通→产生IC2→V1通→IC1↗→IC2↗→出现强烈的正反馈,G极失去控制作用,V1和V2完全饱和,SCR饱和导通。晶闸管导通后,即使去掉门极电流,仍能维持导通。■晶闸管工作机理的等效电路说明动画2.3.1晶闸管的结构与工作原理49

晶闸管的结构与工作原理式中1和2分别是晶体管V1和V2的共基极电流增益;ICBO1和ICBO2分别是V1和V2的共基极漏电流。由以上式可得:图1-7晶闸管的双晶体管模型及其工作原理a)双晶体管模型b)工作原理按晶体管的工作原理,得:(1-2)(1-1)(1-3)(1-4)(1-5)50

晶闸管的结构与工作原理在低发射极电流下是很小的,而当发射极电流建立起来之后,迅速增大。

阻断状态:IG=0,1+2很小。流过晶闸管的漏电流稍大于两个晶体管漏电流之和。开通状态:注入触发电流使晶体管的发射极电流增大以致1+2趋近于1的话,流过晶闸管的电流IA,将趋近于无穷大,实现饱和导通。IA实际由外电路决定。512.3.1晶闸管的结构与工作原理■除门极触发外其他几种可能导通的情况◆阳极电压升高至相当高的数值造成雪崩效应

◆阳极电压上升率du/dt过高

◆结温较高◆光触发■这些情况除了光触发由于可以保证控制电路与主电路之间的良好绝缘而应用于高压电力设备中之外,其它都因不易控制而难以应用于实践。只有门极触发是最精确、迅速而可靠的控制手段。

522.3.2晶闸管的基本特性■静态特性

晶闸管的伏安特性是晶闸管阳极与阴极间电压UAK和晶闸管阳极电流IA之间的关系特性。532.3.2晶闸管的基本特性☞正向特性

√当IG=0时,如果在器件两端施加正向电压,则晶闸管处于正向阻断状态,只有很小的正向漏电流流过。

√如果正向电压超过临界极限即正向转折电压Ubo,则漏电流急剧增大,器件开通。√随着门极电流幅值的增大,正向转折电压降低,晶闸管本身的压降很小,在1V左右。

√如果门极电流为零,并且阳极电流降至接近于零的某一数值IH以下,则晶闸管又回到正向阻断状态,IH称为维持电流。

图2-9晶闸管的伏安特性IG2>IG1>IG

正向转折电压Ubo正向导通雪崩击穿O+UA-UA-IAIAIHIG2IG1IG=0UboUDSMUDRMURRMURSM+542.3.2晶闸管的基本特性☞反向特性

√其伏安特性类似二极管的反向特性。

√晶闸管处于反向阻断状态时,只有极小的反向漏电流通过。

√当反向电压超过一定限度,到反向击穿电压后,外电路如无限制措施,则反向漏电流急剧增大,导致晶闸管发热损坏。

图2-9晶闸管的伏安特性 IG2>IG1>IG正向转折电压Ubo正向导通雪崩击穿O+UA-UA-IAIAIHIG2IG1IG=0UboUDSMUDRMURRMURSM+552.3.2晶闸管的基本特性■动态特性◆开通过程

☞由于晶闸管内部的正反馈过程需要时间,再加上外电路电感的限制,晶闸管受到触发后,其阳极电流的增长不可能是瞬时的。☞延迟时间td

(0.5~1.5s)上升时间tr(0.5~3s)开通时间tgt=td+tr☞延迟时间随门极电流的增大而减小,上升时间除反映晶闸管本身特性外,还受到外电路电感的严重影响。提高阳极电压,延迟时间和上升时间都可显著缩短。

图2-10晶闸管的开通和关断过程波形阳极电流稳态值的90%100%90%10%uAKttO0tdtrtrrtgrURRMIRMiA阳极电流稳态值的10%562.3.2晶闸管的基本特性◆关断过程

☞由于外电路电感的存在,原处于导通状态的晶闸管当外加电压突然由正向变为反向时,其阳极电流在衰减时必然也是有过渡过程的。

☞反向阻断恢复时间trr正向阻断恢复时间tgr☞在正向阻断恢复时间内如果重新对晶闸管施加正向电压,晶闸管会重新正向导通,而不是受门极电流控制而导通。图2-10晶闸管的开通和关断过程波形100%反向恢复电流最大值尖峰电压90%10%uAKttO0tdtrtrrtgrURRMIRMiA57☞实际应用中,应对晶闸管施加足够长时间的反向电压,使晶闸管充分恢复其对正向电压的阻断能力,电路才能可靠工作。☞关断时间tq:trr与tgr之和,即

tq=trr+tgr

普通晶闸管的关断时间约几百微秒,这是设计反向电压设计时间的依据。2.3.2晶闸管的基本特性58◆断态重复峰值电压UDRM

——在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压,一般为正向转折电压的80%◆反向重复峰值电压URRM

——在门极断路而结温为额定值时,允许重复加在器件上的反向峰值电压,一般为反向击穿电压的80%。◆通态(峰值)电压UT

——晶闸管通以某一规定倍数的额定通态平均电流时的瞬态峰值电压(一般为2V)。通常取晶闸管的UDRM和URRM中较小的标值作为该器件的额定电压。选用时,一般取额定电压为正常工作时晶闸管所承受峰值电压2~3倍。使用注意:■电压定额(重点)2.3.3晶闸管的主要参数592.3.3晶闸管的主要参数

■电流定额(重点)

◆通态平均电流IT(AV)

☞国标规定通态平均电流为晶闸管在环境温度为40C和规定的冷却状态下,稳定结温不超过额定结温时所允许流过的最大工频正弦半波电流的平均值。

☞按照正向电流造成的器件本身的通态损耗的发热效应来定义的。☞一般取其通态平均电流为按发热效应相等(即有效值相等)的原则所得计算结果的1.5~2倍。

60对于一只额定电流IT(AV)=100A的晶闸管,允许的电流有效值应该为157A(考虑正弦半波波形系数)。对于特定电流波形,其有效值和平均值的比值为波形系数Kf=Irms/IAV,按有效值相等原则选择晶闸管时遵循:例:当三个不同的电流波形,分别流经额定电流为IT(AV)=100A的晶闸管时,其允许的电流平均值为IAV不同。2.3.3晶闸管的主要参数61(1)正弦半波整流电流波形状态2.3.3晶闸管的主要参数62实际波形的平均值:实际波形的有效值:波形系数:100A的器件允许的电流平均值:这时100A的器件只能当作70A(平均值)使用.2.3.3晶闸管的主要参数63(2)正弦全波整流电流波形状态2.3.3晶闸管的主要参数64实际波形的平均值:实际波形的有效值:实际波形的波形系数:100A的器件允许的电流平均值:

这时100A的器件可当作140A(平均值)使用2.3.3晶闸管的主要参数65(3)方波半波整流电流波形状态2.3.3晶闸管的主要参数66实际波形的平均值:实际波形的有效值:实际波形的波形系数:100A的器件允许的电流平均值:这时100A的器件只能当作90A(平均值)使用.2.3.3晶闸管的主要参数672.3.3晶闸管的主要参数◆维持电流IH

☞维持电流是指使晶闸管维持导通所必需的最小电流,一般为几十到几百毫安。☞结温越高,则IH越小。

◆擎住电流IL☞擎住电流是晶闸管刚从断态转入通态并移除触发信号后,能维持导通所需的最小电流。

☞约为IH的2~4倍

◆浪涌电流ITSM

☞指由于电路异常情况引起的并使结温超过额定结温的不重复性最大正向过载电流。682.3.3晶闸管的主要参数■动态参数

◆开通时间tgt和关断时间tq

◆断态电压临界上升率du/dt

☞在额定结温和门极开路的情况下,不导致晶闸管从断态到通态转换的外加电压最大上升率。

☞电压上升率过大,使充电电流足够大,就会使晶闸管误导通。使用中实际电压上升率必须低于此临界值。

◆通态电流临界上升率di/dt

☞在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率。

☞如果电流上升太快,则晶闸管刚一开通便会有很大的电流集中在门极附近的小区域内,可能造成局部过热而使晶闸管损坏。69开通条件与关断条件举例一70开通条件与关断条件举例二71晶闸管应用要点:1、触发导通条件:

UAK>0,UGK>0(或IGK>0),并有足够的触发功率。

一旦器件导通,门极电流就不再具有控制作用。因此,门极触发电流可用脉冲电流,无需用直流。2、晶闸管的关断方法:

自然关断:在导通期间,如果要求器件返回到正向阻断状态,必须令门极电流为零,且将阳极电流降低到一个称为维持电流的临界极限值以下,并保持一段时间。

强迫关断:通过加一反向电压UAK<0,并保持一段时间使其关断。在实际电路中是采用阳极电压反向、增大回路阻抗等方式,使阳极电流小于维持电流,使晶闸管关断。72晶闸管应用要点:3、晶闸管可靠关断的条件:关断时间tq:恢复晶闸管电压阻断能力所需的最小电路换流反压时间。可靠关断的条件:

UAK<0(或IA<IH),并保持一段时间(t>

tq)。

由于在触发导通时积累的非平衡载流子需要恢复时间,使其可靠关断,因此需要在t>

tq之后再施加正向电压而不会导通。73

普通晶闸管的选择原则

(1)选择额定电流的原则在规定的室温和冷却条件下,只要所选管子的额定电流有效值大于等于管子在电路中实际可能通过的最大电流有效值即可。考虑元件的过载能力,实际选择时应有1.5~2倍的安全裕量。计算公式为:然后取相应标准系列值。74(2)选择额定电压的原则选择普通晶闸管额定电压的原则应为管子在所工作的电路中可能承受的最大反向瞬时值电压的2~3倍,即然后取相应标准系列值。752.3.4晶闸管的派生器件■快速晶闸管(FastSwitchingThyristor——FST)

◆有快速晶闸管和高频晶闸管。

◆快速晶闸管的开关时间以及du/dt和di/dt的耐量都有了明显改善。

◆从关断时间来看,普通晶闸管一般为数百微秒,快速晶闸管为数十微秒,而高频晶闸管则为10s左右。

◆高频晶闸管的不足在于其电压和电流定额都不易做高。

◆由于工作频率较高,选择快速晶闸管和高频晶闸管的通态平均电流时不能忽略其开关损耗的发热效应。

762.3.4晶闸管的派生器件a)b)IOUIG=0GT1T2■双向晶闸管(TriodeACSwitch——TRIAC或Bidirectionaltriodethyristor)◆可以认为是一对反并联联接的普通晶闸管的集成。◆门极使器件在主电极的正反两方向均可触发导通,所以在第I和第III象限有对称的伏安特性。◆与一对

反并联晶闸管相比是经济的,且控制电路简单

◆双向晶闸管通常用在交流电路中,因此不用平均值而用有效值来表示其额定电流值。图2-11双向晶闸管的电气图形符号和伏安特性a)电气图形符号b)伏安特性

772.3.4晶闸管的派生器件a)KGAb)UOIIG=0■逆导晶闸管(ReverseConductingThyristor——RCT)

◆是将晶闸管反并联一个二极管制作在同一管芯上的功率集成器件,不具有承受反向电压的能力,一旦承受反向电压即开通。

◆具有正向压降小、关断时间短、高温特性好、额定结温高等优点,可用于不需要阻断反向电压的电路中。

◆额定电流有两个,一个是晶闸管电流,一个是与之反并联的二极管的电流图2-12逆导晶闸管的电气图形符号和伏安特性a)电气图形符号b)伏安特性

782.3.4晶闸管的派生器件AGKa)AK光强度强弱b)OUIA■光控晶闸管(LightTriggeredThyristor——LTT)

◆又称光触发晶闸管,是利用一定波长的光照信号触发导通的晶闸管。

◆由于采用光触发保证了主电路与控制电路之间的绝缘,而且可以避免电磁干扰的影响,因此光控晶闸管目前在高压大功率的场合。图2-13光控晶闸管的电气图形符 号和伏安特性a)电气图形符号b)伏安特性

792.4典型全控型器件

2.4.1门极可关断晶闸管

2.4.2电力晶体管

2.4.3电力场效应晶体管

2.4.4绝缘栅双极晶体管802.4典型全控型器件·引言■门极可关断晶闸管在晶闸管问世后不久出现。■20世纪80年代以来,电力电子技术进入了一个崭新时代。■典型代表——门极可关断晶闸管、电力晶体管、电力场效应晶体管、绝缘栅双极晶体管。电力MOSFETIGBT单管及模块812.4.1门极可关断晶闸管(Gate-Turn-OffThyristor—GTO)

■晶闸管的一种派生器件,但可以通过在门极施加负的脉冲电流使其关断,因而属于全控型器件。

■GTO的结构和工作原理

◆GTO的结构☞是PNPN四层半导体结构。☞是一种多元的功率集成器件,虽然外部同样引出3个极,但内部则包含数十个甚至数百个共阳极的小GTO元,这些GTO元的阴极和门极则在器件内部并联在一起。

图2-14GTO的内部结构和电气图形符号各单元的阴极、门极间隔排列的图形

并联单元结构断面示意图电气图形符号

82◆晶闸管的一种派生器件,当UAK>0,UGK>0(或IGK>0),可以触发导通。◆可以通过在门极施加负的脉冲电流(IGK<0)使其关断,属于全控型器件(通过控制极可以控制开通、也可以控制关断)。◆GTO的电压、电流容量较大,与普通晶闸管接近,因而在兆瓦级以上的大功率场合仍有较多的应用。2.4.1门极可关断晶闸管■门极可关断晶闸管(Gate-Turn-OffThyristor—GTO)83■结构与普通晶闸管的相同点:

PNPN四层半导体结构,外部引出阳极、阴极和门极。和普通晶闸管的不同点:GTO内部是由许多四层结构的小晶闸管并联而成,这些小晶闸管的门极和阴极并联在一起,成为GTO元,而普通晶闸管是独立元件结构。图2-14GTO的内部结构和电气图形符号KGA2.4.1门极可关断晶闸管84■工作原理与普通晶闸管一样,可以用图所示的双晶体管模型来分析。

晶闸管的双晶体管模型及其工作原理2.4.1门极可关断晶闸管85

GTO也可等效成两个晶体管P1N1P2和N1P2N2互连,GTO与晶闸管最大区别就是导通后回路增益α1+α2数值不同,其中α1和α2分别为P1N1P2和N1P2N2的共基极电流放大倍数。晶闸管的回路增益α1+α2常为1.15左右,而GTO的α1+α2非常接近1,因而GTO导通程度不深,处于临界饱和状态,这为门极负脉冲关断阳极电流提供有利条件。■工作原理◆开通过程

2.4.1门极可关断晶闸管86

当GTO已处于导通状态时,对门极加负的关断脉冲,形成-IG,相当于将IC1的电流抽出,使晶体管N1P2N2的基极电流减小,使IC2和IK随之减小,IC2减小又使IA和IC1减小,这是一个正反馈过程。当IC2和IC1的减小使α1+α2<1时,等效晶体管N1P2N2和P1N1P2退出饱和,GTO不满足维持导通条件,阳极电流下降到零而关断。由于GTO处于临界饱和状态,用抽走阳极电流的方法破坏临界饱和状态,能使器件关断。而晶闸管导通之后,处于深度饱和状态,用抽走阳极电流的方法不能使其关断。■工作原理◆关断过程

2.4.1门极可关断晶闸管872.4.1门极可关断晶闸管☞GTO的导通过程与普通晶闸管是一样的,只不过导通时饱和程度较浅。

☞而关断时,给门极加负脉冲,即从门极抽出电流,当两个晶体管发射极电流IA和IK的减小使1+2<1时,器件退出饱和而关断。

☞GTO的多元集成结构使得其比普通晶闸管开通过程更快,承受di/dt的能力增强。

882.4.1门极可关断晶闸管■GTO的动态特性

◆开通过程与普通晶闸管类似。

◆关断过程与普通晶闸管有所不同

☞储存时间ts—使等效晶体管退出饱和。下降时间tf—等效晶体管从饱和区退至放大区尾部时间tt—残存载流子复合。☞通常tf比ts小得多,而tt比ts要长。☞门极负脉冲电流幅值越大,前沿越陡,

ts就越短。图2-15GTO的开通和关断过程电流波形

Ot0tiGiAIA90%IA10%IAtttftstdtrt0t1t2t3t4t5t6抽取饱和导通时储存的大量载流子的时间等效晶体管从饱和区退至放大区,阳极电流逐渐减小时间

残存载流子复合所需时间

892.4.1门极可关断晶闸管■GTO的主要参数◆GTO的许多参数都和普通晶闸管相应的参数意义相同。

◆最大可关断阳极电流IATO☞指用门极电流可以重复关断的阳极峰值电流,也称可关断阳极峰值电流☞用来标称GTO额定电流。

◆电流关断增益off

☞最大可关断阳极电流IATO与门极负脉冲电流最大值IGM之比。

☞off一般很小,只有5左右,这是GTO的一个主要缺点。

◆开通时间ton

☞延迟时间与上升时间之和。☞延迟时间一般约1~2s,上升时间则随通态阳极电流值的增大而增大。

90

◆关断时间toff

☞一般指储存时间和下降时间之和,而不包括尾部时间。

☞储存时间随阳极电流的增大而增大,下降时间一般小于2s。■不少GTO都制造成逆导型,类似于逆导晶闸管。当需要承受反向电压时,应和电力二极管串联使用。

2.4.1门极可关断晶闸管912.4.2电力晶体管■电力晶体管(GiantTransistor——GTR)按英文直译为巨型晶体管,是一种耐高电压、大电流的双极结型晶体管(BipolarJunctionTransistor——BJT)

■GTR的结构和工作原理

◆与普通的双极结型晶体管基本原理是一样的。也有三个电极,分别为B(基极)、C(集电极)、E(发射极),有两种基本类型,NPN型和PNP型,基本结构及电气符号如下图所示。

◆最主要的特性是耐压高、电流大、开关特性好。

92GTR和GTO一样具有自关断能力,属于电流控制型自关断器件。GTR可通过基极电流信号方便地对集电极-发射极的通断进行控制,并具有饱和压降低、开关性能好、电流较大、耐压高等优点。GTR已实现了大功率、模块化、廉价化。2.4.2电力晶体管93◆

GTR的结构

☞采用至少由两个晶体管按达林顿接法组成的单元结构,并采用集成电路工艺将许多这种单元并联而成。

GTR是由三层半导体(分别引出集电极、基极和发射极)形成的两个PN结(集电结和发射结)构成,多采用NPN结构。2.4.2电力晶体管图2-16GTR的结构、电气图形符号和内部载流子的流动a)内部结构断面示意图b)电气图形符号c)内部载流子的流动+表示高掺杂浓度,-表示低掺杂浓度942.4.2电力晶体管空穴流电子流c)EbEcibic=bibie=(1+b)ib图2-16c)内部载流子的流动

☞在应用中,GTR一般采用共发射极接法。集电极电流ic与基极电流ib之比为

称为GTR的电流放大系数,它反映了基极电流对集电极电流的控制能力。当考虑到集电极和发射极间的漏电流Iceo时,ic和ib的关系为☞单管GTR的

值比处理信息用的小功率晶体管小得多,通常为10左右,采用达林顿接法可以有效地增大电流增益。(2-9)(2-10)952.4.2电力晶体管■GTR的基本特性◆静态特性

☞在共发射极接法时的典型输出特性分为截止区、放大区和饱和区三个区域。

☞在电力电子电路中,GTR工作在开关状态,即工作在截止区或饱和区。

☞在开关过程中,即在截止区和饱和区之间过渡时,一般要经过放大区。截止区放大区饱和区OIcib3ib2ib1ib1<ib2<ib3Uce图2-17共发射极接法时GTR的输出特性962.4.2电力晶体管◆动态特性☞开通过程

√需要经过延迟时间td和上升时间tr,二者之和为开通时间ton。√增大基极驱动电流ib的幅值并增大dib/dt,可以缩短延迟时间,同时也可以缩短上升时间,从而加快开通过程。

ibIb1Ib2Icsic0090%Ib110%Ib190%Ics10%Icst0t1t2t3t4t5tttofftstftontrtd图2-18GTR的开通和关断过程电流波形主要是由发射结势垒电容和集电结势垒电容充电产生的。

是用来除去饱和导通时储存在基区的载流子的,是关断时间的主要部分。

97ibIb1Ib2Icsic0090%Ib110%Ib190%Ics10%Icst0t1t2t3t4t5tttofftstftontrtd图2-18GTR的开通和关断过程电流波形主要是由发射结势垒电容和集电结势垒电容充电产生的。

是用来除去饱和导通时储存在基区的载流子的,是关断时间的主要部分。

◆动态特性

☞关断过程

√需要经过储存时间ts和下降时间tf,二者之和为关断时间toff。

√ts是用来除去饱和导通时储存在基区的载流子的,是关断时间的主要部分

√减小导通时的饱和深度以减小储存的载流子,或者增大基极抽取负电流Ib2的幅值和负偏压,可以缩短储存时间,从而加快关断速度。√减小导通时的饱和深度的负面作用是会使集电极和发射极间的饱和导通压降UCES增加,从而增大通态损耗☞GTR的开关时间在几微秒以内,比晶闸管和GTO都短很多。982.4.2电力晶体管■GTR的主要参数◆直流电流增益hFE

☞在直流工作的情况下,集电极电流与基极电流之比。一般可认为≈hFE

◆最高工作电压

☞GTR上所加的电压超过规定值时,就会发生击穿。☞击穿电压不仅和晶体管本身的特性有关,还与外电路的接法有关。

☞发射极开路时集电极和基极间的反向击穿电压BUcbo基极开路时集电极和发射极间的击穿电压BUceo发射极与基极间用电阻联接或短路联接时集电极和发射极间的击穿电压BUcer和BUces发射结反向偏置时集电极和发射极间的击穿电压BUcex

且存在以下关系:

☞实际使用GTR时,为了确保安全,最高工作电压要比BUceo低得多。992.4.2电力晶体管◆集电极最大允许电流IcM☞规定直流电流放大系数hFE下降到规定的1/2~1/3时所对应的Ic。☞实际使用时要留有较大裕量,只能用到IcM的一半或稍多一点。◆集电极最大耗散功率PcM

☞指在最高工作温度下允许的耗散功率。☞产品说明书中在给出PcM时总是同时给出壳温TC,间接表示了最高工作温度。

1002.4.2电力晶体管■GTR的二次击穿现象与安全工作区◆当GTR的集电极电压升高至击穿电压时,集电极电流迅速增大,这种首先出现的击穿是雪崩击穿,被称为一次击穿。◆发现一次击穿发生时如不有效地限制电流,Ic增大到某个临界点时会突然急剧上升,同时伴随着电压的陡然下降,这种现象称为二次击穿。

◆出现一次击穿后,GTR一般不会损坏,二次击穿常常立即导致器件的永久损坏,或者工作特性明显衰变,因而对GTR危害极大。

SOAOIcIcMPSBPcMUceUceM图2-19GTR的安全工作区二次击穿功率

◆安全工作区(SafeOperatingArea——SOA)

☞将不同基极电流下二次击穿的临界点连接起来,就构成了二次击穿临界线。☞GTR工作时不仅不能超过最高电压

UceM,集电极最大电流IcM和最大耗散功率PcM,也不能超过二次击穿临界线。101■应用20世纪80年代以来,在中、小功率范围内取代晶闸管,但目前又大多被IGBT和电力MOSFET取代。2.4.2电力晶体管

电力电子器件都有安全工作区,通常由最大工作电流、最大耗散功率、最高工作电压构成。实际应用时器件必须工作于安全工作区的范围内,以免损坏。

1022.4.3电力场效应晶体管■分为结型和绝缘栅型,但通常主要指绝缘栅型中的MOS型(MetalOxideSemiconductorFET),简称电力MOSFET(PowerMOSFET)。■电力MOSFET是用栅极电压来控制漏极电流的,它的特点有:◆驱动电路简单,需要的驱动功率小。

◆开关速度快,工作频率高。

◆热稳定性优于GTR,无二次击穿现象。

◆电流容量小,耐压低,多用于功率不超过10kW的电力电子装置。

1032.4.3电力场效应晶体管■电力MOSFET的结构和工作原理◆电力MOSFET的种类

☞按导电沟道可分为P沟道和N沟道。☞当栅极电压为零时漏源极之间就存在导电沟道的称为耗尽型。

☞对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道的称为增强型。

☞在电力MOSFET中,主要是N沟道增强型。

1042.4.3电力场效应晶体管◆电力MOSFET的结构

☞导通时只有一种载流子参与导电,是单极型晶体管。☞结构上与小功率MOS管有较大区别,小功率MOS管是横向导电器件,而目前电力MOSFET大都采用了垂直导电结构,所以又称为VMOSFET(VerticalMOSFET),这大大提高了MOSFET器件的耐压和耐电流能力。☞按垂直导电结构的差异,分为利用V型槽实现垂直导电的VVMOSFET(VerticalV-grooveMOSFET)和具有垂直导电双扩散MOS结构的DMOSFET(VerticalDouble-diffusedMOSFET)。☞电力MOSFET也是多元集成结构,不同的生产厂家采用了不同设计。图2-20电力MOSFET的结构和电气图形符号内部结构断面示意图b)电气图形符号105电力MOSFET的多元集成结构,一个器件由许多个小MOSFET元组成。每个元的形状和排列方法,不同厂家采用了不同的设计国际整流器公司(InternationalRectifier)的HEXFET采用了六边形单元西门子公司(Siemens)的SIPMOSFET采用了正方形单元摩托罗拉公司(Motorola)的TMOS采用了矩形单元按“品”字形排列不管名称怎样变,垂直导电的基本思想没有变。2.4.3电力场效应晶体管1062.4.3电力场效应晶体管◆电力MOSFET的工作原理☞截止:当漏源极间接正电压,栅极和源极间电压为零(UDS>0,UGS=0)时,漏源极之间无电流流过。

☞导通

√在栅极和源极之间加一正电压UGS

√当UGS大于某一电压值UT时,漏极和源极导电。

√UT称为开启电压(或阈值电压),UGS超过UT越多,导电能力越强,漏极电流ID越大。

107■电力MOSFET的基本特性

◆静态特性

☞转移特性√指漏极电流ID和栅源间电压UGS的关系,反映了输入电压和输出电流的关系。

√ID较大时,ID与UGS的关系近似线性,曲线的斜率被定义为MOSFET的跨导Gfs,即

2.4.3电力场效应晶体管图2-21电力MOSFET的转移特性和输出特性a)转移特性(2-11)√是电压控制型器件,其输入阻抗极高,输入电流非常小。1082.4.3电力场效应晶体管☞输出特性

√是MOSFET的漏极伏安特性。√截止区(对应于GTR的截止区)、饱和区(对应于GTR的放大区)、非饱和区(对应于GTR的饱和区)三个区域,饱和是指漏源电压增加时漏极电流不再增加,非饱和是指漏源电压增加时漏极电流相应增加。

√工作在开关状态,即在截止区和非饱和区之间来回转换。☞本身结构所致,漏极和源极之间形成了一个与MOSFET反向并联的寄生二极管。无反向阻断能力,漏源极间加反向电压时器件导通,可看作是逆导器件。☞通态电阻具有正温度系数,对器件并联时的均流有利。

图2-21电力MOSFET的转移特性和输出特性b)输出特性109◆动态特性

☞开通过程

√开通延迟时间td(on)

电流上升时间tr开通时间ton=td(on)+tr

☞关断过程

√关断延迟时间td(off)

电流下降时间tfi

关断时间toff=td(off)+tfi2.4.3电力场效应晶体管信号iDOOOuptttuGSuGSPuTtd(on)trtd(off)tfRsRGRFRLiDuGSupiD+UE图2-22电力MOSFET的开关过程a)测试电路b)开关过程波形up为矩形脉冲电压信号源,Rs为信号源内阻,RG为栅极电阻,RL为漏极负载电阻,RF用于检测漏极电流。

(a)(b)1102.4.3电力场效应晶体管☞MOSFET的开关速度和Cin电容的充放电有很大关系。使用者无法降低Cin,但可降低驱动电路内阻Rs减小时间常数,加快开关速度。☞不存在少子储存效应,因而其关断过程是非常迅速的。☞开关时间在10~100ns之间,其工作频率可100kHz以上,是主要电力电子器件中最高的。☞在开关过程中需要对输入电容充放电,仍需要一定的驱动功率,开关频率越高,所需要的驱动功率越大。

1112.4.3电力场效应晶体管■电力MOSFET的主要参数

◆漏极电压UDS

☞☞标称电力MOSFET电压定额的参数。◆漏极直流电流ID和漏极脉冲电流幅值IDM

☞标称电力MOSFET电流定额的参数。

除跨导Gfs、开启电压UT以及td(on)、tr、td(off)和tf之外还有:

在UGS=0时漏极和源极所能承受的最高电压——漏极直流电流ID是指在最大导通压降UDS(on)时,产生的功率损耗使MOS管节点温度上升到最大值150℃(外壳温度为100℃)时的漏极直流电流。——漏极脉冲电流幅值IDM是脉冲运行状态下MOS管漏极最大允许峰值电流。112■电力MOSFET的主要参数

◆栅源电压UGS

☞栅源之间的绝缘层很薄,UGS>20V将导致绝缘层击穿。

◆极间电容

☞P-MOSFET的三个极之间分别存在极间电容CGS、CGD和CDS,一般厂家提供的是漏源极短路时的输入电容Ciss、共源极输出电容Coss和反向转移电容Crss,它们之间的关系是:Ciss=CGS+CGDCrss=CGDCoss=CDS+CGD

输入电容可近似用Ciss代替,但这些电容都是非线性的。

2.4.3电力场效应晶体管113■电力MOSFET的主要参数◆漏源间的耐压、漏极最大允许电流和最大耗散功率决定了电力MOSFET的安全工作区。

2.4.3电力场效应晶体管1142.4.4绝缘栅双极晶体管■两类器件取长补短结合而成的复合器件—IGBT■绝缘栅双极晶体管(Insulated-gateBipolarTransistor——IGBT或IGT)◆GTR和MOSFET复合,结合二者的优点。◆1986年投入市场,是中小功率电力电子设备的主导器件。◆继续提高电压和电流容量,以期再取代GTO的地位。GTR的特点——双极型,电流驱动,通流能力很强,但开关速度较低,所需驱动功率大,驱动电路复杂。MOSFET的优点——单极型,电压驱动,开关速度快,输入阻抗高,热稳定性好,所需驱动功率小而且驱动电路简单。1152.4.4绝缘栅双极晶体管■IGBT的结构和工作原理

◆IGBT的结构

☞是三端器件,具有栅极G、集电极C和发射极E。☞由N沟道VDMOSFET与双极型晶体管组合而成的IGBT,比VDMOSFET多一层P+注入区,实现对漂移区电导率进行调制,使得IGBT具有很强的通流能力。☞简化等效电路表明,IGBT是用GTR与MOSFET组成的达林顿结构,相当于一个由MOSFET驱动的厚基区PNP晶体管。

图2-23IGBT的结构、简化等效电路和电气图形符号a)内部结构断面示意图b)简化等效电路c)电气图形符号RN为晶体管基区内的调制电阻。

1162.4.4绝缘栅双极晶体管◆IGBT的工作原理

☞IGBT的驱动原理与电力MOSFET基本相同,是一种场控器件。

☞其开通和关断是由栅极和发射极间的电压UGE决定的。

√当UGE为正且大于开启电压UGE(th)时,MOSFET内形成沟道,并为晶体管提供基极电流进而使IGBT导通。

√当栅极与发射极间施加反向电压或不加信号时,MOSFET内的沟道消失,晶体管的基极电流被切断,使得IGBT关断。

☞电导调制效应使得电阻RN减小,这样高耐压的IGBT也具有很小的通态压降。

1172.4.4绝缘栅双极晶体管■IGBT的基本特性

◆静态特性

☞转移特性

√描述的是集电极电流IC与栅射电压UGE之间的关系。√开启电压UGE(th)是IGBT能实现电导调制而导通的最低栅射电压,随温度升高而略有下降。

(a)图2-24IGBT的转移特性和输出特性a)转移特性

1182.4.4绝缘栅双极晶体管☞输出特性(伏安特性)

√描述的是以栅射电压为参考变量时,集电极电流IC与集射极间电压UCE之间的关系。

√分为三个区域:正向阻断区、有源区和饱和区。

√当UCE<0时,IGBT为反向阻断工作状态。

√在电力电子电路中,IGBT工作在开关状态,因而是在正向阻断区和饱和区之间来回转换。

(b)图2-24IGBT的转移特性和输出特性b)输出特性

1192.4.4绝缘栅双极晶体管◆动态特性

☞开通过程√开通延迟时间td(on)

电流上升时间tr

电压下降时间tfv开通时间ton=td(on)+tr+

tfv√tfv分为tfv1和tfv2两段。

☞关断过程

√关断延迟时间td(off)

电压上升时间trv

电流下降时间tfi

关断时间toff=td(off)+trv+tfi

√tfi分为tfi1和tfi2两段

☞引入了少子储存现象,因而IGBT的开关速度要低于电力MOSFET。

图2-25IGBT的开关过程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论