2023届南通市启秀中学中考联考数学试题含解析_第1页
2023届南通市启秀中学中考联考数学试题含解析_第2页
2023届南通市启秀中学中考联考数学试题含解析_第3页
2023届南通市启秀中学中考联考数学试题含解析_第4页
2023届南通市启秀中学中考联考数学试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的个数有()A.1 B.2 C.3 D.42.如图是一个空心圆柱体,其俯视图是()A.B.C.D.3.如图是由四个相同的小正方体堆成的物体,它的正视图是()A. B. C. D.4.在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:选手12345678910时间(min)129136140145146148154158165175由此所得的以下推断不正确的是()A.这组样本数据的平均数超过130B.这组样本数据的中位数是147C.在这次比赛中,估计成绩为130min的选手的成绩会比平均成绩差D.在这次比赛中,估计成绩为142min的选手,会比一半以上的选手成绩要好5.如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A11B11C11D11E11F11的边长为()A. B. C. D.6.如图所示,△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG边长也为2,且AC与DE在同一直线上,△ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A. B.C. D.7.已知a﹣b=1,则a3﹣a2b+b2﹣2ab的值为()A.﹣2 B.﹣1 C.1 D.28.下列计算正确的是()A.a²+a²=a4 B.(-a2)3=a6C.(a+1)2=a2+1 D.8ab2÷(-2ab)=-4b9.在平面直角坐标系中,把直线y=x向左平移一个单位长度后,所得直线的解析式为()A.y=x+1B.y=x-1C.y=xD.y=x-210.设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22=()A.6B.8C.10D.12二、填空题(共7小题,每小题3分,满分21分)11.如图,若正五边形和正六边形有一边重合,则∠BAC=_____.12.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为________.(填“>”或“<”)13.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所能取到的整数值为________.14.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为________.15.有下列各式:①;②;③;④.其中,计算结果为分式的是_____.(填序号)16.不等式组的解是____.17.一个圆锥的三视图如图,则此圆锥的表面积为______.三、解答题(共7小题,满分69分)18.(10分)计算:+()-2-8sin60°19.(5分)AB为⊙O直径,C为⊙O上的一点,过点C的切线与AB的延长线相交于点D,CA=CD.(1)连接BC,求证:BC=OB;(2)E是中点,连接CE,BE,若BE=2,求CE的长.20.(8分)如图,在每个小正方形的边长为1的网格中,点A,B,M,N均在格点上,P为线段MN上的一个动点(1)MN的长等于_______,(2)当点P在线段MN上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的,(不要求证明)21.(10分)某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?22.(10分)在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.23.(12分)如图,矩形ABCD中,点E为BC上一点,DF⊥AE于点F,求证:∠AEB=∠CDF.24.(14分)计算:(﹣2018)0﹣4sin45°+﹣2﹣1.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】

①图中有3个等腰直角三角形,故结论错误;②根据ASA证明即可,结论正确;③利用面积法证明即可,结论正确;④利用三角形的中线的性质即可证明,结论正确.【详解】∵CE⊥AB,∠ACE=45°,∴△ACE是等腰直角三角形,∵AF=CF,∴EF=AF=CF,∴△AEF,△EFC都是等腰直角三角形,∴图中共有3个等腰直角三角形,故①错误,∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,∴∠EAH=∠BCE,∵AE=EC,∠AEH=∠CEB=90°,∴△AHE≌△CBE,故②正确,∵S△ABC=BC•AD=AB•CE,AB=AC=AE,AE=CE,∴BC•AD=CE2,故③正确,∵AB=AC,AD⊥BC,∴BD=DC,∴S△ABC=2S△ADC,∵AF=FC,∴S△ADC=2S△ADF,∴S△ABC=4S△ADF.故选C.【点睛】本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.2、D【解析】

根据从上边看得到的图形是俯视图,可得答案.【详解】该空心圆柱体的俯视图是圆环,如图所示:故选D.【点睛】本题考查了三视图,明确俯视图是从物体上方看得到的图形是解题的关键.3、A【解析】【分析】根据正视图是从物体的正面看得到的图形即可得.【详解】从正面看可得从左往右2列正方形的个数依次为2,1,如图所示:故选A.【点睛】本题考查了三视图的知识,正视图是从物体的正面看得到的视图.4、C【解析】分析:要求平均数只要求出数据之和再除以总个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可求解.详解:平均数=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故这组样本数据的平均数超过130,A正确,C错误;因为表中是按从小到大的顺序排列的,一共10名选手,中位数为第五位和第六位的平均数,故中位数是(146+148)÷2=147(min),故B正确,D正确.故选C.点睛:本题考查的是平均数和中位数的定义.要注意,当所给数据有单位时,所求得的平均数和中位数与原数据的单位相同,不要漏单位.5、A【解析】分析:连接OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=×2,同理可得正六边形A3B3C3D3E3F3的边长=()2×2,依此规律可得正六边形A11B11C11D11E11F11的边长=()10×2,然后化简即可.详解:连接OE1,OD1,OD2,如图,∵六边形A1B1C1D1E1F1为正六边形,∴∠E1OD1=60°,∴△E1OD1为等边三角形,∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六边形A2B2C2D2E2F2的边长=×2,同理可得正六边形A3B3C3D3E3F3的边长=()2×2,则正六边形A11B11C11D11E11F11的边长=()10×2=.故选A.点睛:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.6、A【解析】

此题可分为两段求解,即C从D点运动到E点和A从D点运动到E点,列出面积随动点变化的函数关系式即可.【详解】解:设CD的长为与正方形DEFG重合部分图中阴影部分的面积为当C从D点运动到E点时,即时,.当A从D点运动到E点时,即时,,与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应.故选A.【点睛】本题考查的动点变化过程中面积的变化关系,重点是列出函数关系式,但需注意自变量的取值范围.7、C【解析】

先将前两项提公因式,然后把a﹣b=1代入,化简后再与后两项结合进行分解因式,最后再代入计算.【详解】a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.故选C.【点睛】本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.8、D【解析】

各项计算得到结果,即可作出判断.【详解】A、原式=2a2,不符合题意;B、原式=-a6,不符合题意;C、原式=a2+2ab+b2,不符合题意;D、原式=-4b,符合题意,故选:D.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.9、A【解析】向左平移一个单位长度后解析式为:y=x+1.故选A.点睛:掌握一次函数的平移.10、C【解析】试题分析:根据根与系数的关系得到x1+x2=2,x1•x2=﹣3,再变形x12+x22得到(x1+x2)2﹣2x1•x2,然后利用代入计算即可.解:∵一元二次方程x2﹣2x﹣3=0的两根是x1、x2,∴x1+x2=2,x1•x2=﹣3,∴x12+x22=(x1+x2)2﹣2x1•x2=22﹣2×(﹣3)=1.故选C.二、填空题(共7小题,每小题3分,满分21分)11、132°【解析】解:∵正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,∴∠BAC=360°-108°-120°=132°.故答案为132°.12、>【解析】

观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;波动越小越稳定.【详解】解:观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;则乙地的日平均气温的方差小,故S2甲>S2乙.故答案为:>.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13、-2【解析】试题分析:根据题意可得2k+3>2,k<2,解得﹣<k<2.因k为整数,所以k=﹣2.考点:一次函数图象与系数的关系.14、【解析】试题分析:因为OC=OA,所以∠ACO=,所以∠AOC=45°,又直径垂直于弦,,所以CE=,所以CD=2CE=.考点:1.解直角三角形、2.垂径定理.15、②④【解析】

根据分式的定义,将每个式子计算后,即可求解.【详解】=1不是分式,=,=3不是分式,=故选②④.【点睛】本题考查分式的判断,解题的关键是清楚分式的定义.16、【解析】

分别求出各不等式的解集,再求出其公共解集即可.【详解】解不等式①,得x>1,

解不等式②,得x≤1,

所以不等式组的解集是1<x≤1,

故答案是:1<x≤1.【点睛】考查了一元一次不等式解集的求法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).17、55πcm2【解析】

由正视图和左视图判断出圆锥的半径和母线长,然后根据圆锥的表面积公式求解即可.【详解】由三视图可知,半径为5cm,圆锥母线长为6cm,

∴表面积=π×5×6+π×52=55πcm2,故答案为:55πcm2.【点睛】本题考查了圆锥的计算,由该三视图中的数据确定圆锥的底面直径和母线长是解本题的关键,本题体现了数形结合的数学思想.如果圆锥的底面半径为r,母线长为l,那么圆锥的表面积=πrl+πr2.三、解答题(共7小题,满分69分)18、4-2【解析】试题分析:原式第一项利用二次根式的化简公式进行化简,第二项利用负指数公式化简,第三项利用特殊角的三角函数值化简,合并即可得到结果试题解析:原式=2+4-8×=2+4-4=4-219、(2)见解析;(2)2+.【解析】

(2)连接OC,根据圆周角定理、切线的性质得到∠ACO=∠DCB,根据CA=CD得到∠CAD=∠D,证明∠COB=∠CBO,根据等角对等边证明;

(2)连接AE,过点B作BF⊥CE于点F,根据勾股定理计算即可.【详解】(2)证明:连接OC,∵AB为⊙O直径,∴∠ACB=90°,∵CD为⊙O切线∴∠OCD=90°,∴∠ACO=∠DCB=90°﹣∠OCB,∵CA=CD,∴∠CAD=∠D.∴∠COB=∠CBO.∴OC=BC.∴OB=BC;(2)连接AE,过点B作BF⊥CE于点F,∵E是AB中点,∴,∴AE=BE=2.∵AB为⊙O直径,∴∠AEB=90°.∴∠ECB=∠BAE=45°,,∴.∴CF=BF=2.∴.∴.【点睛】本题考查的是切线的性质、圆周角定理、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.20、(1);(2)见解析.【解析】

(1)根据勾股定理即可得到结论;

(2)取格点S,T,得点R;取格点E,F,得点G;连接GR交MN于点P即可得到结果.【详解】(1);(2)取格点S,T,得点R;取格点E,F,得点G;连接GR交MN于点P【点睛】本题考查了作图-应用与设计作图,轴对称-最短距离问题,正确的作出图形是解题的关键.21、(1)一个足球需要50元,一个篮球需要80元;(2)1个.【解析】

(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,根据购买2个足球和3个篮球共需340元,4个排球和5个篮球共需600元,可得出方程组,解出即可;【详解】(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,由题意得:2x+3y=解得:x=50y=80答:购买一个足球需要50元,购买一个篮球需要80元;(2)设该中学购买篮球m个,由题意得:80m+50(100﹣m)≤6000,解得:m≤113∵m是整数,∴m最大可取1.答:这所中学最多可以购买篮球1个.【点睛】本题考查了一元一次不等式及二元一次方程组的知识,解答本题的关键是仔细审题,得到等量关系及不等关系,难度一般.22、(1)3+【解析】

(1)如图1中,在AB上取一点M,使得BM=ME,连接ME.,设AE=x,则ME=BM=2x,AM=3x,根据AB2+AE2=BE2,可得方程(2x+3x)2+x2=22,解方程即可解决问题.

(2)如图2中,作CQ⊥AC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题.【详解】解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=3x,∵A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论