2021-2022学年福建省永安市三中高三下第一次测试数学试题含解析_第1页
2021-2022学年福建省永安市三中高三下第一次测试数学试题含解析_第2页
2021-2022学年福建省永安市三中高三下第一次测试数学试题含解析_第3页
2021-2022学年福建省永安市三中高三下第一次测试数学试题含解析_第4页
2021-2022学年福建省永安市三中高三下第一次测试数学试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若圆锥轴截面面积为,母线与底面所成角为60°,则体积为()A. B. C. D.2.已知函数,其中,若恒成立,则函数的单调递增区间为()A. B.C. D.3.已知是虚数单位,若,,则实数()A.或 B.-1或1 C.1 D.4.已知,满足约束条件,则的最大值为A. B. C. D.5.已知椭圆(a>b>0)与双曲线(a>0,b>0)的焦点相同,则双曲线渐近线方程为()A. B.C. D.6.函数的单调递增区间是()A. B. C. D.7.设点,P为曲线上动点,若点A,P间距离的最小值为,则实数t的值为()A. B. C. D.8.甲、乙两名学生的六次数学测验成绩(百分制)的茎叶图如图所示.①甲同学成绩的中位数大于乙同学成绩的中位数;②甲同学的平均分比乙同学的平均分高;③甲同学的平均分比乙同学的平均分低;④甲同学成绩的方差小于乙同学成绩的方差.以上说法正确的是()A.③④ B.①② C.②④ D.①③④9.已知函数是定义在上的偶函数,且在上单调递增,则()A. B.C. D.10.已知命题p:“”是“”的充要条件;,,则()A.为真命题 B.为真命题C.为真命题 D.为假命题11.已知是边长为1的等边三角形,点,分别是边,的中点,连接并延长到点,使得,则的值为()A. B. C. D.12.已知全集,集合,,则阴影部分表示的集合是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若展开式中的常数项为240,则实数的值为________.14.函数与的图象上存在关于轴的对称点,则实数的取值范围为______.15.函数过定点________.16.在四面体中,与都是边长为2的等边三角形,且平面平面,则该四面体外接球的体积为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)若函数为奇函数,且时有极小值.(1)求实数的值与实数的取值范围;(2)若恒成立,求实数的取值范围.18.(12分)如图1,在边长为4的正方形中,是的中点,是的中点,现将三角形沿翻折成如图2所示的五棱锥.(1)求证:平面;(2)若平面平面,求直线与平面所成角的正弦值.19.(12分)2019年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽奖方案.方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;(2)若某顾客获得抽奖机会.①试分别计算他选择两种抽奖方案最终获得返金券的数学期望;②为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?20.(12分)如图,在直三棱柱中,,,为的中点,点在线段上,且平面.(1)求证:;(2)求平面与平面所成二面角的正弦值.21.(12分)某商店举行促销反馈活动,顾客购物每满200元,有一次抽奖机会(即满200元可以抽奖一次,满400元可以抽奖两次,依次类推).抽奖的规则如下:在一个不透明口袋中装有编号分别为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如1,2,5),则获得一等奖,奖金40元;若摸得的小球编号一次比一次小(如5,3,1),则获得二等奖,奖金20元;其余情况获得三等奖,奖金10元.(1)某人抽奖一次,求其获奖金额X的概率分布和数学期望;(2)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.22.(10分)已知数列的前项和为,且满足().(1)求数列的通项公式;(2)设(),数列的前项和.若对恒成立,求实数,的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】

设圆锥底面圆的半径为,由轴截面面积为可得半径,再利用圆锥体积公式计算即可.【详解】设圆锥底面圆的半径为,由已知,,解得,所以圆锥的体积.故选:D【点睛】本题考查圆锥的体积的计算,涉及到圆锥的定义,是一道容易题.2.A【解析】

,从而可得,,再解不等式即可.【详解】由已知,,所以,,由,解得,.故选:A.【点睛】本题考查求正弦型函数的单调区间,涉及到恒成立问题,考查学生转化与化归的思想,是一道中档题.3.B【解析】

由题意得,,然后求解即可【详解】∵,∴.又∵,∴,∴.【点睛】本题考查复数的运算,属于基础题4.D【解析】

作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论.【详解】作出不等式组表示的平面区域如下图中阴影部分所示,等价于,作直线,向上平移,易知当直线经过点时最大,所以,故选D.【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.5.A【解析】

由题意可得,即,代入双曲线的渐近线方程可得答案.【详解】依题意椭圆与双曲线即的焦点相同,可得:,即,∴,可得,双曲线的渐近线方程为:,故选:A.【点睛】本题考查椭圆和双曲线的方程和性质,考查渐近线方程的求法,考查方程思想和运算能力,属于基础题.6.D【解析】

利用辅助角公式,化简函数的解析式,再根据正弦函数的单调性,并采用整体法,可得结果.【详解】因为,由,解得,即函数的增区间为,所以当时,增区间的一个子集为.故选D.【点睛】本题考查了辅助角公式,考查正弦型函数的单调递增区间,重点在于把握正弦函数的单调性,同时对于整体法的应用,使问题化繁为简,难度较易.7.C【解析】

设,求,作为的函数,其最小值是6,利用导数知识求的最小值.【详解】设,则,记,,易知是增函数,且的值域是,∴的唯一解,且时,,时,,即,由题意,而,,∴,解得,.∴.故选:C.【点睛】本题考查导数的应用,考查用导数求最值.解题时对和的关系的处理是解题关键.8.A【解析】

由茎叶图中数据可求得中位数和平均数,即可判断①②③,再根据数据集中程度判断④.【详解】由茎叶图可得甲同学成绩的中位数为,乙同学成绩的中位数为,故①错误;,,则,故②错误,③正确;显然甲同学的成绩更集中,即波动性更小,所以方差更小,故④正确,故选:A【点睛】本题考查由茎叶图分析数据特征,考查由茎叶图求中位数、平均数.9.C【解析】

根据题意,由函数的奇偶性可得,,又由,结合函数的单调性分析可得答案.【详解】根据题意,函数是定义在上的偶函数,则,,有,又由在上单调递增,则有,故选C.【点睛】本题主要考查函数的奇偶性与单调性的综合应用,注意函数奇偶性的应用,属于基础题.10.B【解析】

由的单调性,可判断p是真命题;分类讨论打开绝对值,可得q是假命题,依次分析即得解【详解】由函数是R上的增函数,知命题p是真命题.对于命题q,当,即时,;当,即时,,由,得,无解,因此命题q是假命题.所以为假命题,A错误;为真命题,B正确;为假命题,C错误;为真命题,D错误.故选:B【点睛】本题考查了命题的逻辑连接词,考查了学生逻辑推理,分类讨论,数学运算的能力,属于中档题.11.D【解析】

设,,作为一个基底,表示向量,,,然后再用数量积公式求解.【详解】设,,所以,,,所以.故选:D【点睛】本题主要考查平面向量的基本运算,还考查了运算求解的能力,属于基础题.12.D【解析】

先求出集合N的补集,再求出集合M与的交集,即为所求阴影部分表示的集合.【详解】由,,可得或,又所以.故选:D.【点睛】本题考查了韦恩图表示集合,集合的交集和补集的运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.-3【解析】

依题意可得二项式展开式的常数项为即可得到方程,解得即可;【详解】解:∵二项式的展开式中的常数项为,∴解得.故答案为:【点睛】本题考查二项式展开式中常数项的计算,属于基础题.14.【解析】

先求得与关于轴对称的函数,将问题转化为与的图象有交点,即方程有解.对分成三种情况进行分类讨论,由此求得实数的取值范围.【详解】因为关于轴对称的函数为,因为函数与的图象上存在关于轴的对称点,所以与的图象有交点,方程有解.时符合题意.时转化为有解,即,的图象有交点,是过定点的直线,其斜率为,若,则函数与的图象必有交点,满足题意;若,设,相切时,切点的坐标为,则,解得,切线斜率为,由图可知,当,即时,,的图象有交点,此时,与的图象有交点,函数与的图象上存在关于轴的对称点,综上可得,实数的取值范围为.故答案为:【点睛】本小题主要考查利用导数求解函数的零点以及对称性,函数与方程等基础知识,考查学生分析问题,解决问题的能力,推理与运算求解能力,转化与化归思想和应用意识.15.【解析】

令,,与参数无关,即可得到定点.【详解】由指数函数的性质,可得,函数值与参数无关,所有过定点.故答案为:【点睛】此题考查函数的定点问题,关键在于找出自变量的取值使函数值与参数无关,熟记常见函数的定点可以节省解题时间.16.【解析】

先确定球心的位置,结合勾股定理可求球的半径,进而可得球的面积.【详解】取的外心为,设为球心,连接,则平面,取的中点,连接,,过做于点,易知四边形为矩形,连接,,设,.连接,则,,三点共线,易知,所以,.在和中,,,即,,所以,,得.所以.【点睛】本题主要考查几何体的外接球问题,外接球的半径的求解一般有两个思路:一是确定球心位置,利用勾股定理求解半径;二是利用熟悉的模型求解半径,比如长方体外接球半径是其对角线的一半.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),;(2)【解析】

(1)由奇函数可知在定义域上恒成立,由此建立方程,即可求出实数的值;对函数进行求导,,通过导数求出,若,则恒成立不符合题意,当,可证明,此时时有极小值.(2)可知,进而得到,令,通过导数可知在上为单调减函数,由可得,从而可求实数的取值范围.【详解】(1)由函数为奇函数,得在定义域上恒成立,所以,化简可得,所以.则,令,则.故当时,;当时,,故在上递减,在上递增,若,则恒成立,单调递增,无极值点;所以,解得,取,则又函数的图象在区间上连续不间断,故由函数零点存在性定理知在区间上,存在为函数的零点,为极小值,所以,的取值范围是.(2)由满足,代入,消去可得.构造函数,所以,当时,,即恒成立,故在上为单调减函数,其中.则可转化为,故,由,设,可得当时,则在上递增,故.综上,的取值范围是.【点睛】本题考查了利用导数研究函数的单调性,考查了利用导数求函数的最值,考查了奇函数的定义,考查了转化的思想.对于恒成立的问题,常转化为求的最小值,使;对于恒成立的问题,常转化为求的最大值,使.18.(1)证明见解析;(2).【解析】

(1)利用线面平行的定义证明即可(2)取的中点,并分别连接,,然后,证明相应的线面垂直关系,分别以,,为轴,轴,轴建立空间直角坐标系,利用坐标运算进行求解即可【详解】证明:(1)在图1中,连接.又,分别为,中点,所以.即图2中有.又平面,平面,所以平面.解:(2)在图2中,取的中点,并分别连接,.分析知,,.又平面平面,平面平面,平面,所以平面.又,所以,,.分别以,,为轴,轴,轴建立如图所示的空间直角坐标系,则,,,,,所以,,.设平面的一个法向量,则,取,则,,所以.又,所以.分析知,直线与平面所成角的正弦值为.【点睛】本题考查线面平行的证明以及利用空间向量求解线面角问题,属于基础题19.(1)(2)①②第一种抽奖方案.【解析】

(1)方案一中每一次摸到红球的概率为,每名顾客有放回的抽3次获180元返金劵的概率为,根据相互独立事件的概率可知两顾客都获得180元返金劵的概率(2)①分别计算方案一,方案二顾客获返金卷的期望,方案一列出分布列计算即可,方案二根据二项分布计算期望即可②根据①得出结论.【详解】(1)选择方案一,则每一次摸到红球的概率为设“每位顾客获得180元返金劵”为事件A,则所以两位顾客均获得180元返金劵的概率(2)①若选择抽奖方案一,则每一次摸到红球的概率为,每一次摸到白球的概率为.设获得返金劵金额为元,则可能的取值为60,100,140,180.则;;;.所以选择抽奖方案一,该顾客获得返金劵金额的数学期望为(元)若选择抽奖方案二,设三次摸球的过程中,摸到红球的次数为,最终获得返金劵的金额为元,则,故所以选择抽奖方案二,该顾客获得返金劵金额的数学期望为(元).②即,所以该超市应选择第一种抽奖方案【点睛】本题主要考查了古典概型,相互独立事件的概率,二项分布,期望,及概率知识在实际问题中的应用,属于中档题.20.见解析【解析】

(1)如图,连接,交于点,连接,,则为的中点,因为为的中点,所以,又,所以,从而,,,四点共面.因为平面,平面,平面平面,所以.又,所以四边形为平行四边形,所以,所以(2)因为,为的中点,所以,又三棱柱是直三棱柱,,所以,,互相垂直,分别以,,的方向为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,因为,,所以,,,,所以,,.设平面的法向量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论