内蒙古巴彦淖尔一中2022年高三冲刺模拟数学试卷含解析_第1页
内蒙古巴彦淖尔一中2022年高三冲刺模拟数学试卷含解析_第2页
内蒙古巴彦淖尔一中2022年高三冲刺模拟数学试卷含解析_第3页
内蒙古巴彦淖尔一中2022年高三冲刺模拟数学试卷含解析_第4页
内蒙古巴彦淖尔一中2022年高三冲刺模拟数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为定义在上的奇函数,若当时,(为实数),则关于的不等式的解集是()A. B. C. D.2.已知为虚数单位,若复数,,则A. B.C. D.3.某公园新购进盆锦紫苏、盆虞美人、盆郁金香,盆盆栽,现将这盆盆栽摆成一排,要求郁金香不在两边,任两盆锦紫苏不相邻的摆法共()种A. B. C. D.4.已知半径为2的球内有一个内接圆柱,若圆柱的高为2,则球的体积与圆柱的体积的比为()A. B. C. D.5.已知为正项等比数列,是它的前项和,若,且与的等差中项为,则的值是()A.29 B.30 C.31 D.326.已知函数(,)的一个零点是,函数图象的一条对称轴是直线,则当取得最小值时,函数的单调递增区间是()A.() B.()C.() D.()7.若x,y满足约束条件且的最大值为,则a的取值范围是()A. B. C. D.8.在三棱锥中,,,P在底面ABC内的射影D位于直线AC上,且,.设三棱锥的每个顶点都在球Q的球面上,则球Q的半径为()A. B. C. D.9.设实数x,y满足条件x+y-2⩽02x-y+3⩾0x-y⩽0则A.1 B.2 C.3 D.410.在四面体中,为正三角形,边长为6,,,,则四面体的体积为()A. B. C.24 D.11.为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示.劳伦茨曲线为直线时,表示收入完全平等.劳伦茨曲线为折线时,表示收入完全不平等.记区域为不平等区域,表示其面积,为的面积,将称为基尼系数.对于下列说法:①越小,则国民分配越公平;②设劳伦茨曲线对应的函数为,则对,均有;③若某国家某年的劳伦茨曲线近似为,则;④若某国家某年的劳伦茨曲线近似为,则.其中正确的是:A.①④ B.②③ C.①③④ D.①②④12.下列选项中,说法正确的是()A.“”的否定是“”B.若向量满足,则与的夹角为钝角C.若,则D.“”是“”的必要条件二、填空题:本题共4小题,每小题5分,共20分。13.某校开展“我身边的榜样”评选活动,现对3名候选人甲、乙、丙进行不记名投票,投票要求详见选票.这3名候选人的得票数(不考虑是否有效)分别为总票数的88%,75%,46%,则本次投票的有效率(有效票数与总票数的比值)最高可能为百分之________.“我身边的榜样”评选选票候选人符号注:1.同意画“○”,不同意画“×”.2.每张选票“○”的个数不超过2时才为有效票.甲乙丙14.已知实数,对任意,有,且,则______.15.展开式中项的系数是__________16.正项等比数列|满足,且成等差数列,则取得最小值时的值为_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心为(2,),半径为1的圆.(1)求曲线C1的普通方程和C2的直角坐标方程;(2)设M为曲线C1上的点,N为曲线C2上的点,求|MN|的取值范围.18.(12分)已知抛物线,直线与交于,两点,且.(1)求的值;(2)如图,过原点的直线与抛物线交于点,与直线交于点,过点作轴的垂线交抛物线于点,证明:直线过定点.19.(12分)椭圆:的左、右焦点分别是,,离心率为,左、右顶点分别为,.过且垂直于轴的直线被椭圆截得的线段长为1.(1)求椭圆的标准方程;(2)经过点的直线与椭圆相交于不同的两点、(不与点、重合),直线与直线相交于点,求证:、、三点共线.20.(12分)设实数满足.(1)若,求的取值范围;(2)若,,求证:.21.(12分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.(1)求直线的极坐标方程;(2)若直线与曲线交于,两点,求的面积.22.(10分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若点在曲线上,点在曲线上,求的最小值及此时点的坐标.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

先根据奇函数求出m的值,然后结合单调性求解不等式.【详解】据题意,得,得,所以当时,.分析知,函数在上为增函数.又,所以.又,所以,所以,故选A.【点睛】本题主要考查函数的性质应用,侧重考查数学抽象和数学运算的核心素养.2.B【解析】

由可得,所以,故选B.3.B【解析】

间接法求解,两盆锦紫苏不相邻,被另3盆隔开有,扣除郁金香在两边有,即可求出结论.【详解】使用插空法,先排盆虞美人、盆郁金香有种,然后将盆锦紫苏放入到4个位置中有种,根据分步乘法计数原理有,扣除郁金香在两边,排盆虞美人、盆郁金香有种,再将盆锦紫苏放入到3个位置中有,根据分步计数原理有,所以共有种.故选:B.【点睛】本题考查排列应用问题、分步乘法计数原理,不相邻问题插空法是解题的关键,属于中档题.4.D【解析】

分别求出球和圆柱的体积,然后可得比值.【详解】设圆柱的底面圆半径为,则,所以圆柱的体积.又球的体积,所以球的体积与圆柱的体积的比,故选D.【点睛】本题主要考查几何体的体积求解,侧重考查数学运算的核心素养.5.B【解析】

设正项等比数列的公比为q,运用等比数列的通项公式和等差数列的性质,求出公比,再由等比数列的求和公式,计算即可得到所求.【详解】设正项等比数列的公比为q,则a4=16q3,a7=16q6,a4与a7的等差中项为,即有a4+a7=,即16q3+16q6,=,解得q=(负值舍去),则有S5===1.故选C.【点睛】本题考查等比数列的通项和求和公式的运用,同时考查等差数列的性质,考查运算能力,属于中档题.6.B【解析】

根据函数的一个零点是,得出,再根据是对称轴,得出,求出的最小值与对应的,写出即可求出其单调增区间.【详解】依题意得,,即,解得或(其中,).①又,即(其中).②由①②得或,即或(其中,,),因此的最小值为.因为,所以().又,所以,所以,令(),则().因此,当取得最小值时,的单调递增区间是().故选:B【点睛】此题考查三角函数的对称轴和对称点,在对称轴处取得最值,对称点处函数值为零,属于较易题目.7.A【解析】

画出约束条件的可行域,利用目标函数的最值,判断a的范围即可.【详解】作出约束条件表示的可行域,如图所示.因为的最大值为,所以在点处取得最大值,则,即.故选:A【点睛】本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.8.A【解析】

设的中点为O先求出外接圆的半径,设,利用平面ABC,得,在及中利用勾股定理构造方程求得球的半径即可【详解】设的中点为O,因为,所以外接圆的圆心M在BO上.设此圆的半径为r.因为,所以,解得.因为,所以.设,易知平面ABC,则.因为,所以,即,解得.所以球Q的半径.故选:A【点睛】本题考查球的组合体,考查空间想象能力,考查计算求解能力,是中档题9.C【解析】

画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】如图所示:画出可行域和目标函数,z=x+y+1,即y=-x+z-1,z表示直线在y轴的截距加上1,根据图像知,当x+y=2时,且x∈-13,1时,故选:C.【点睛】本题考查了线性规划问题,画出图像是解题的关键.10.A【解析】

推导出,分别取的中点,连结,则,推导出,从而,进而四面体的体积为,由此能求出结果.【详解】解:在四面体中,为等边三角形,边长为6,,,,,,分别取的中点,连结,则,且,,,,平面,平面,,四面体的体积为:.故答案为:.【点睛】本题考查四面体体积的求法,考查空间中线线,线面,面面间的位置关系等基础知识,考查运算求解能力.11.A【解析】

对于①,根据基尼系数公式,可得基尼系数越小,不平等区域的面积越小,国民分配越公平,所以①正确.对于②,根据劳伦茨曲线为一条凹向横轴的曲线,由图得,均有,可得,所以②错误.对于③,因为,所以,所以③错误.对于④,因为,所以,所以④正确.故选A.12.D【解析】

对于A根据命题的否定可得:“∃x0∈R,x02-x0≤0”的否定是“∀x∈R,x2-x>0”,即可判断出;对于B若向量满足,则与的夹角为钝角或平角;对于C当m=0时,满足am2≤bm2,但是a≤b不一定成立;对于D根据元素与集合的关系即可做出判断.【详解】选项A根据命题的否定可得:“∃x0∈R,x02-x0≤0”的否定是“∀x∈R,x2-x>0”,因此A不正确;选项B若向量满足,则与的夹角为钝角或平角,因此不正确.选项C当m=0时,满足am2≤bm2,但是a≤b不一定成立,因此不正确;选项D若“”,则且,所以一定可以推出“”,因此“”是“”的必要条件,故正确.故选:D.【点睛】本题考查命题的真假判断与应用,涉及知识点有含有量词的命题的否定、不等式性质、向量夹角与性质、集合性质等,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13.91【解析】

设共有选票张,且票对应张数为,由此可构造不等式组化简得到,由投票有效率越高越小,可知,由此计算可得投票有效率.【详解】不妨设共有选票张,投票的有,票的有,票的有,则由题意可得:,化简得:,即,投票有效率越高,越小,则,,故本次投票的有效率(有效票数与总票数的比值)最高可能为.故答案为:.【点睛】本题考查线性规划的实际应用问题,关键是能够根据已知条件构造出变量所满足的关系式.14.-1【解析】

由二项式定理及展开式系数的求法得,又,所以,令得:,所以,得解.【详解】由,且,则,又,所以,令得:,所以,故答案为:.【点睛】本题考查了二项式定理及展开式系数的求法,意在考查学生对这些知识的理解掌握水平.15.-20【解析】

根据二项式定理的通项公式,再分情况考虑即可求解.【详解】解:展开式中项的系数:二项式由通项公式当时,项的系数是,当时,项的系数是,故的系数为;故答案为:【点睛】本题主要考查二项式定理的应用,注意分情况考虑,属于基础题.16.2【解析】

先由题意列出关于的方程,求得的通项公式,再表示出即可求解.【详解】解:设公比为,且,时,上式有最小值,故答案为:2.【点睛】本题考查等比数列、等差数列的有关性质以及等比数列求积、求最值的有关运算,中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)C1:y2=1,C2:x2+(y﹣2)2=1;(2)[0,1]【解析】

(Ⅰ)消去参数φ可得C1的直角坐标方程,易得曲线C2的圆心的直角坐标为(0,2),可得C2的直角坐标方程;(Ⅱ)设M(3cosφ,sinφ),由三角函数和二次函数可得|MC2|的取值范围,结合圆的知识可得答案.【详解】(1)消去参数φ可得C1的普通方程为y2=1,∵曲线C2是圆心为(2,),半径为1的圆,曲线C2的圆心的直角坐标为(0,2),∴C2的直角坐标方程为x2+(y﹣2)2=1;(2)设M(3cosφ,sinφ),则|MC2|,∵﹣1≤sinφ≤1,∴1≤|MC2|,由题意结合图象可得|MN|的最小值为1﹣1=0,最大值为1,∴|MN|的取值范围为[0,1].【点睛】本题考查椭圆的参数方程,涉及圆的知识和极坐标方程,属中档题.18.(1);(2)见解析【解析】

(1)联立直线和抛物线,消去可得,求出,,再代入弦长公式计算即可.(2)由(1)可得,设,计算直线的方程为,代入求出,即可求出,再代入抛物线方程,求出,最后计算直线的斜率,求出直线的方程,化简可得到恒过的定点.【详解】(1)由,消去可得,设,,则,.,解得或(舍去),.(2)证明:由(1)可得,设,所以直线的方程为,当时,,则,代入抛物线方程,可得,,所以直线的斜率,直线的方程为,整理可得,故直线过定点.【点睛】本题第一问考查直线与抛物线相交的弦长问题,需熟记弦长公式.第二问考查直线方程和直线恒过定点问题,需有较强的计算能力,属于难题.19.(1);(2)见解析【解析】

(1)根据已知可得,结合离心率和关系,即可求出椭圆的标准方程;(2)斜率不为零,设的方程为,与椭圆方程联立,消去,得到纵坐标关系,求出方程,令求出坐标,要证、、三点共线,只需证,将分子用纵坐标表示,即可证明结论.【详解】(1)由于,将代入椭圆方程,得,由题意知,即.又,所以,.所以椭圆的方程为.(2)解法一:依题意直线斜率不为0,设的方程为,联立方程,消去得,由题意,得恒成立,设,,所以,直线的方程为.令,得.又因为,,则直线,的斜率分别为,,所以.上式中的分子,.所以,,三点共线.解法二:当直线的斜率不存在时,由题意,得的方程为,代入椭圆的方程,得,,直线的方程为.则,,,所以,即,,三点共线.当直线的斜率存在时,设的方程为,,,联立方程消去,得.由题意,得恒成立,故,.直线的方程为.令,得.又因为,,则直线,的斜率分别为,,所以.上式中的分子所以.所以,,三点共线.【点睛】本题考查椭圆的标准方程、直线与椭圆的位置关系,要熟练掌握根与系数关系,设而不求方法解决相交弦问题,考查计算求解能力,属于中档题.20.(1)(2)证明见解析【解析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论