版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省东莞市新建中学2022-2023学年高一数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若不等式≤在内恒成立,则的取值范围是 A.≤
B.
C.≤
D.参考答案:A略2.(5分)已知函数f(x)是偶函数,而且在上是减函数,且有最小值为2,那么在上说法正确的是() A. 增函数且有最小值为2 B. 增函数且有最大值为2 C. 减函数且有最小值为2 D. 减函数且有最大值为2参考答案:A考点: 奇偶性与单调性的综合.专题: 函数的性质及应用.分析: 由偶函数在关于y轴对称的区间上单调性相反及偶函数定义可选出正确答案.解答: ∵偶函数f(x)在区间上是减函数,∴根据偶函数的性质知f(x)在区间上是增函数,又偶函数f(x)在区间上有最小值,即f(x)min=f(6)=2,则f(x)在区间上的最小值f(x)min=f(﹣6)=﹣f(6)=﹣2,故选:A.点评: 本题考查函数的奇偶性与单调性间的关系,注意偶函数在关于y轴对称的区间上单调性相反,奇函数在关于y轴对称的区间上单调性一致.3.(5分)正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为() A. 75° B. 60° C. 45° D. 30°参考答案:C考点: 棱锥的结构特征;与二面角有关的立体几何综合题.专题: 数形结合.分析: 先做出要求的线面角,把它放到一个直角三角形中,利用直角三角形中的边角关系求出此角.解答: 解析:如图,四棱锥P﹣ABCD中,过P作PO⊥平面ABCD于O,连接AO则AO是AP在底面ABCD上的射影.∴∠PAO即为所求线面角,∵AO=,PA=1,∴cos∠PAO==.∴∠PAO=45°,即所求线面角为45°.故选C.点评: 本题考查棱锥的结构特征,以及求直线和平面成的角的方法,体现了数形结合的数学思想.4.(3分)已知cosα=,cos(α+β)=,且α,β为锐角,那么sinβ的值是() A. B. C. D. ﹣参考答案:A考点: 两角和与差的正弦函数.专题: 三角函数的求值.分析: 由同角三角函数的基本关系可得sinα和sin(α+β)的值,代入sinβ=sin=sin(α+β)cosα﹣cos(α+β)sinα计算可得.解答: ∵α,β为锐角,cosα=,∴sinα==,又cos(α+β)=,∴sin(α+β)=,∴sinβ=sin=sin(α+β)cosα﹣cos(α+β)sinα==故选:A点评: 本题考查两角和与差的三角函数公式,涉及同角三角函数的基本关系,属基础题.5.已知直线与平面α成30°角,则在α内
(
)
A.没有直线与垂直
B.至少有一条直线与平行
C.一定有无数条直线与异面
D.有且只有一条直线与共面参考答案:C略6.如图,U是全集,M、P、S是U的3个子集,则阴影部分所表示的集合是
(
)A、
B、C、
D、参考答案:C7.集合,,给出下列四个图形,其中能表示以M为定义域,N为值域的函数关系的是(
)
参考答案:B略8.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积弦×矢+矢2),弧田(如图)由圆弧和其所对弦围城,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角,半径为6米的弧田,按照上述经验公式计算所得弧田面积约是A.16平方米 B.18平方米 C.20平方米 D.25平方米参考答案:C【分析】根据圆心角和半径分别计算出弦和矢,在根据题中所给的公式弧田面积=12×(=12×(弦××矢++矢2)即可计算出弧田的面积.【详解】如图,由题意可得:,,在中,可得,,,可得:矢,由,可得弦
,所以弧田面积弦矢矢2)平方米,故选C.
【点睛】该题属于新定义运算范畴的问题,在解题的时候一定要认真读题,将题中要交代的公式一定要明白对应的量是谁,从而结合图中的中,根据题意所得的,即可求得的值,根据题意可求矢和弦的值,即可利用公式计算求值得解.
9.用斜二测画法画一个水平放置的平面图形的直观图是如图所示的一个正方形,则原来的图形是(
).A. B.C. D.参考答案:A试题分析:由斜二测画法的规则知与x'轴平行或重合的线段与x’轴平行或重合,其长度不变,与y轴平行或重合的线段与x’轴平行或重合,其长度变成原来的一半,正方形的对角线在y'轴上,可求得其长度为,故在平面图中其在y轴上,且其长度变为原来的2倍,长度为2,观察四个选项,A选项符合题意.故应选A.考点:斜二测画法。点评:注意斜二测画法中线段长度的变化。10.某几何体三视图及相关数据如右图所示,则该几何体的体积为(
)
A.16
B.16C.64+16
D.16+参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.已知直线,则当此直线在两坐标轴上的截距和最小时,的值是
▲
.参考答案:1略12.(5分)已知向量=(cosx,cosx),=(cosx,sinx),若函数f(x)=?,其中x∈[0,],则f(x)的最大值为
.参考答案:考点: 平面向量数量积的运算.专题: 平面向量及应用.分析: 由已知将两个向量进行数量积的运算,然后利用倍角公式等化简三角函数式微一个角的一个三角函数的形式,然后由角度的范围求最大值.解答: 由已知,f(x)=?=cos2x+cosxsinx==sin(2x+)+,因为x∈[0,],所以(2x+)∈[],所以f(x)的最大值为1+=;故答案为:.点评: 本题考查了向量的数量积公式,倍角公式以及三角函数的化简求最值;属于经常考查题型.13.(5分)设函数f(x)=ex+x﹣2,g(x)=lnx+x2﹣3,若实数a,b满足f(a)=0,g(b)=0,请将0,f(b),g(a)按从小到大的顺序排列
(用“<”连接).参考答案:g(a)<0<f(b)考点: 函数的零点;不等关系与不等式.专题: 函数的性质及应用.分析: 先判断函数f(x)和g(x)在R上的单调性,再利用f(a)=0,g(b)=0判断a,b的取值范围即可.解答: 由于y=ex及y=x﹣2关于x是单调递增函数,∴函数f(x)=ex+x﹣2在R上单调递增.分别作出y=ex,y=2﹣x的图象,∵f(0)=1+0﹣2<0,f(1)=e﹣1>0,f(a)=0,∴0<a<1.同理g(x)=lnx+x2﹣3在R+上单调递增,g(1)=ln1+1﹣3=﹣2<0,由于g()=ln+﹣3=ln3>0,故由g(b)=0,可得1<b<.∴g(a)=lna+a2﹣3<g(1)=ln1+1﹣3=﹣2<0,f(b)=eb+b﹣2>f(1)=e+1﹣2=e﹣1>0.∴g(a)<0<f(b).故答案为:g(a)<0<f(b).点评: 本题主要考查函数的单调性、不等式与不等关系,熟练掌握函数的单调性、函数零点的判定定理是解题的关键,体现了数形结合的数学思想,属于中档题.14.设f(x-1)=3x-1,则f(x)=__
_______.参考答案:3x+215.已知集合A={﹣1,0,1,2},B={﹣2,1,2},则A∩B=.参考答案:{1,2}【考点】交集及其运算.【分析】利用交集的定义找出A,B的所有的公共元素组成的集合即为A∩B.【解答】解:∵集合A={﹣1,0,1,2},B={﹣2,1,2},∴A∩B={1,2},故答案为:{1,2}.16.已知则=
.参考答案:0【考点】分段函数的解析式求法及其图象的作法;函数的值.【分析】因为,所以可以直接求出:,对于,用表达式的定义得,从而得出要求的答案.【解答】解:∵∴而=∴故答案为:017.用符号“∈”或“”填空.若A={x|x2=x},则-1________A.参考答案:答案:解析:要判断一个元素是否属于集合,就是要看这个元素是否符合这个集合中元素的条件.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知,,,,求的值.
参考答案:略19.某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.(1)求n的值;(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率.(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.参考答案:【考点】程序框图;古典概型及其概率计算公式;几何概型.【分析】(1)根据分层抽样可得,故可求n的值;(2)求出高二代表队6人,从中抽取2人上台抽奖的基本事件,确定a和b至少有一人上台抽奖的基本事件,根据古典概型的概率公式,可得a和b至少有一人上台抽奖的概率;(3)确定满足0≤x≤1,0≤y≤1点的区域,由条件得到的区域为图中的阴影部分,计算面积,可求该代表中奖的概率.【解答】解:(1)由题意可得,∴n=160;(2)高二代表队6人,从中抽取2人上台抽奖的基本事件有(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b.f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)共15种,其中a和b至少有一人上台抽奖的基本事件有9种,∴a和b至少有一人上台抽奖的概率为=;(3)由已知0≤x≤1,0≤y≤1,点(x,y)在如图所示的正方形OABC内,由条件得到的区域为图中的阴影部分由2x﹣y﹣1=0,令y=0可得x=,令y=1可得x=1∴在x,y∈[0,1]时满足2x﹣y﹣1≤0的区域的面积为=∴该代表中奖的概率为=.20.(本小题满分12分)设函数其中.(Ⅰ)证明:是上的减函数;(Ⅱ)若,求的取值范围.参考答案:21.(本小题满分12分)
已知.
(Ⅰ)求的值;(Ⅱ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度店铺合租终止与解除合同协议3篇
- 二零二四年度广告发布合同标的及广告内容变更协议3篇
- 诊所合伙协议完整版
- 2024年度儿童乐园消防设施改造合同2篇
- 《NP完整性理论》课件
- 年度办公设备租赁与维护合同
- 眼部疾病概述课件
- 七年级上册道德与法治 11.1《探问人生目标》作业
- 2024版房屋买卖合同范本过户流程详解3篇
- 仁爱版英语(初二)八年级上册全册教案
- 南京宁之鑫再生资源利用有限公司医用塑料加工新建项目环境影响报告表
- 七年级数学上册期中考试重难点题型(举一反三)(浙教版)
- 教你如何做好竞品分析
- 信息系统运维保密协议
- 道德与法治《少让父母为我操心》-优质课件(部编版)
- 医院医学装备管理委员会人员组成和工作职责制度及办公室职责
- 和大人一起读三只白鹤
- 【拓展阅读】整本书阅读系列《林海雪原》
- 新能源(判断题301道)附有答案附有答案
- 南京林业大学考研811植物生理学历年真题及答案
- 2023年辽宁高中学业水平合格性考试数学模拟试卷试题(含答案详解)
评论
0/150
提交评论