下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省东莞市可园中学高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若存在直线l与曲线C1和曲线C2都相切,则称曲线C1和曲线C2为“相关曲线”,有下列四个命题:①有且只有两条直线l使得曲线和曲线为“相关曲线”;②曲线和曲线是“相关曲线”;③当时,曲线和曲线一定不是“相关曲线”;④必存在正数a使得曲线和曲线为“相关曲线”.其中正确命题的个数为(
)A.1 B.2 C.3 D.4参考答案:B【分析】①判断两圆相交即可;②判断两双曲线是共轭双曲线即可;③判断两曲线可能相切即可;;④假设直线与曲线和曲线都相切,切点分别为,根据公切线重合,判断方程有实数解即可.【详解】①圆心,半径,圆心,半径,,因为,所以曲线与曲线有两条公切线,所以①正确;②曲线和曲线是“相关曲线”是共轭双曲线(一部分),没有公切线,②错误;③由,消去,得:,即,令得:,当时,曲线与曲线相切,所以存在直线与曲线与曲线都相切,所以③错误;④假设直线与曲线和曲线都相切,切点分别为和,,,所以分别以和为切点的切线方程为,,由得:,令,则,令,得:(舍去)或,当时,,当时,,所以,所以方程有实数解,所以存在直线与曲线和曲线都相切,所以④正确.所以正确命题的个数是,故选B.【点睛】新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.2.过两点和的直线在轴上的截距为
A.
B.
3
C.
D.参考答案:D3.已知集合,,则中元素的个数是(
)A、1
B、2
C、3
D、4参考答案:C略4.函数的图象大致为(
)A. B.C. D.参考答案:C由函数的解析式,当时,是函数的一个零点,属于排除A,B,当x∈(0,1)时,cosx>0,,函数f(x)<0,函数的图象在x轴下方,排除D.本题选择C选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.5.从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:身高x(cm)160165170175180体重y(kg)6366707274根据上表可得回归直线方程=0.56x+,据此模型预报身高为172cm的高三男生的体重为()A.70.09kg B.70.12kg C.70.55kg D.71.05kg参考答案:B【考点】回归分析的初步应用.【分析】根据所给的表格做出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法做出的值,现在方程是一个确定的方程,根据所给的x的值,代入线性回归方程,预报身高为172cm的高三男生的体重【解答】解:由表中数据可得==170,==69∵(,)一定在回归直线方程=0.56x+上故69=0.56×170+解得=﹣26.2故=0.56x﹣26.2当x=172时,=0.56×172﹣26.2=70.12故选B.6.如果复数在复平面内的对应点在第二象限,则
参考答案:D略7.已知中,,,,那么角等于(
)A.
B.
C.
D.参考答案:C8.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是()A. B. C. D.参考答案:B【考点】椭圆的应用;数列的应用.【专题】圆锥曲线的定义、性质与方程.【分析】先设长轴为2a,短轴为2b,焦距为2c,由题意可知:a+c=2b,由此可以导出该椭圆的离心率.【解答】解:设长轴为2a,短轴为2b,焦距为2c,则2a+2c=2×2b,即a+c=2b?(a+c)2=4b2=4(a2﹣c2),所以3a2﹣5c2=2ac,同除a2,整理得5e2+2e﹣3=0,∴或e=﹣1(舍去),故选B.【点评】本题考查等差数列和椭圆的离心率,难度不大,只需细心运算就行.9.从正方体六个面的对角线中任取两条作为一对,其中所成的角为的共有(
)A.60对
B.48对
C.30对
D.24对
参考答案:B10.已知:a>b>c,且a+b+c=0,则(
)A.ab>bc
B.ac>bc
C.ab>ac
D.a│b│>c│b│参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(“倍加增”指灯的数量从塔的顶层到底层按公比为2的等比数列递增).根据此诗,可以得出塔的顶层和底层共有
盏灯.参考答案:195【考点】等比数列的前n项和.【分析】由题意可知灯的盏灯的数量从塔的顶层到底层构成等比数列,且公比为2,然后由等比数列的前7项和等于381列式计算即可.【解答】解:由题意可知灯的盏灯的数量从塔的顶层到底层构成等比数列,且公比为2,设塔的顶层灯的盏灯为x,则x+2x+4x+8x+16x+32x+64x=381,解得x=3,可以得出塔的顶层和底层共有x+64x=195盏灯.故答案为:195.12.=
;参考答案:13.如图所示,输出的值为
.参考答案:14.现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于18的概率是___________参考答案:略15.下列说法:①函数f(x)=lnx+3x﹣6的零点只有1个且属于区间(1,2);②若关于x的不等式ax2+2ax+1>0恒成立,则a∈(0,1);③函数y=x的图象与函数y=sinx的图象有3个不同的交点;④已知函数f(x)=log2为奇函数,则实数a的值为1.正确的有
.(请将你认为正确的说法的序号都写上).参考答案:①④【考点】命题的真假判断与应用.【专题】函数的性质及应用;简易逻辑.【分析】对于①:结合函数的单调性,利用零点存在性定理判断;对于②:分a=0和a≠0进行讨论,a≠0时结合二次函数的图象求解;对于③:结合图象及导数进行判断;对于④:利用奇函数定义式,f(﹣x)+f(x)=0恒成立求a,注意定义域.【解答】解:对于①:函数f(x)=lnx+3x﹣6[m,n]在(0,+∞)上是增函数,且f(1)=ln1+3×1﹣6=﹣3<0,f(2)=ln2+3×2﹣6=ln2>0.所以①正确;对于②:当a=0时原不等式变形为1>0,恒成立;当a≠0时,要使关于x的不等式ax2+2ax+1>0恒成立,则a>0且△=(2a)2﹣4a×1<0?0<a<1,综上可得a的范围是[0,1),故②不正确;对于③:令函数y=x﹣sinx,则y′=1﹣cosx,所以该函数在[0,+∞)上是增函数,且x=0时最小,且该函数是奇函数,所以函数y=x﹣sinx只有x=0一个零点,即函数y=x的图象与函数y=sinx的图象只有一个交点,故③不正确;④由奇函数得:,,a2=1,因为a≠﹣1,所以a=1.故④正确.故答案为:①④.【点评】该题目考查了函数的奇偶性的定义、零点定理、等基础知识,在应用过程中要注意准确把握定理应用的要素与条件,切不可想当然.16.一段细绳长10cm,把它拉直后随机剪成两段,则两段长度都超过4的概率为
.参考答案:
17.已知是双曲线()的左焦点,以坐标原点为圆心,为半径的圆与曲线在第一、三象限的交点分别为,,且的斜率为,则的离心率为
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.以直角坐标系的原点O为极点,x轴的正半轴为极轴,建立坐标系,两个坐标系取相同的单位长度.已知直线l的参数方程为,曲线C的极坐标方程为(1)求曲线C的直角坐标方程(2)设直线l与曲线C相交于A,B两点,时,求的值.参考答案:(1)y2=4x;(2)45°或135°.【分析】(1)由曲线C的极坐标方程为ρsin2θ=4cosθ,两边同乘ρ结合,即可;(2)由直线的参数方程观察得直线过定点(1,0),用点斜式设直线方程联立曲线C方程,用弦长公式求出弦长,列方程求出直线斜率,然后解出.【详解】(1)∵曲线C的极坐标方程为ρsin2θ=4cosθ,∴ρ2sin2θ=4ρcosθ,∵ρsinθ=y,ρcosθ=x,∴曲线C的直角坐标方程为y2=4x.(2)∵直线l的参数方程为参数,0<a<π),∴tanα=,直线过(1,0),设l的方程为y=k(x﹣1),代入曲线C:y2=4x,消去y,得k2x2﹣(2k2+4)x+k2=0,设A(x1,y1),B(x2,y2),则,x1x2=1,∵|AB|=8.∴=8,解得k=±1,当k=1时,α=45°;当k=﹣1时,α=135°.∴α的值为45°或135°.【点睛】本题考查了抛物线的极坐标方程,直线的参数方程,直线与抛物线的位置关系,对于极坐标系和参数方程不是很熟悉的同学建议都将其转化为平面直角坐标系中的普通方程进行解决.19.(本小题满分12分)已知实数满足,求证:参考答案:证法一:消b,化为a的二次函数,由,得代入左边得:
……2分左边
……5分
……8分
……12分其它证法酌情给分,证法参考两例:证法二:(放缩法)∵,∴左边==右边证法三:(均值换元法)∵,所以可设,,∴左边==右边,当且仅当t=0时,等号成立.略20.在程序语言中,下列符号分别表示什么运算
*;\;∧;SQR();ABS()?参考答案:乘、除、乘方、求平方根、绝对值21.(本小题满分13分)如图,已知四棱锥P-ABCD的底面是矩形,侧面PAB是正三角形,且平面PAB平面ABCD,E是PA的中点,AC与BD的交点为M.(1)求证:PC//平面EBD;(2)求证:平面BED平面AED;参考答案:(1)证明:连结,-----------------------2分∵四边形ABCD是矩形,∴为的中点.----------------------------3分∵E是的中点,∴是三角形的中位线,-----------------4分∴∥.------------------------------------------------------------------5分22.已知{an}是各项均为正数的等差数列,公差为d,对任意的n∈N+,bn是an和an+1的等比中项.(1)设cn=bn+12﹣bn2,n∈N+,求证:数列{cn}是等差数列;(2)设a1=d,Tn=(﹣1)kbk2,n∈N*,求证:<.参考答案:【考点】数列与不等式的综合;等差关系的确定.【分析】(1)根据等差数列和等比数列的性质,建立方程关系,根据条件求出数列{cn}的通项公式,结合等差数列的定义进行证明即可.(2)求出Tn=(﹣1)kbk2的表达式,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校园急救知识培训课件
- 2024年度安检设备租赁与服务合同
- 2024年度茶叶品牌竞争情报研究合同
- 销售技巧及话术课件
- 2024年度大理石石材买卖合同的合同标的验收合同
- 七年级数学上册 4 几何图形初步教案 (新版)新人教版
- 2024年度厂房环境污染治理合同
- 2024年度商业物业租赁合同(含装修、改造及运营管理细节)2篇
- 2024年度服装品牌授权经营与采购合同
- 2024年度节能门窗生产线升级改造合同
- 蒸汽管道吹扫方案
- 职业危害防治计划和实施方案
- 班前安全讲话基本内容
- 六年级趣味数学活动课堂(课堂PPT)
- 土壤中除草剂残留对烟叶生产的影响与应对措施
- 消控室值班记录表
- AQL2.5抽检标准
- 液压破碎锤液压系统的设计与研究
- 百灵达X1622USB - X2222USB - X2442USB - 中文说明书 - 图文-
- 变频电机参数规格-YP2
- 科技创新政策解读PPT课件
评论
0/150
提交评论