山西省长治市西营镇中学2022-2023学年高二数学理下学期期末试卷含解析_第1页
山西省长治市西营镇中学2022-2023学年高二数学理下学期期末试卷含解析_第2页
山西省长治市西营镇中学2022-2023学年高二数学理下学期期末试卷含解析_第3页
山西省长治市西营镇中学2022-2023学年高二数学理下学期期末试卷含解析_第4页
山西省长治市西营镇中学2022-2023学年高二数学理下学期期末试卷含解析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省长治市西营镇中学2022-2023学年高二数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在△ABC中,,则△ABC的形状为(

). A.正三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形参考答案:B解:因为,即,由余弦定理可得,

可得,所以三角形是直角三角形.故选.2.某游轮在A处看灯塔B在A的北偏东75°,距离为12海里,灯塔C在A的北偏西30°,距离为8海里,游轮由A向正北方向航行到D处时再看灯塔B在南偏东60°则C与D的距离为()A.20海里 B.8海里 C.23海里 D.24海里参考答案:B【考点】解三角形的实际应用.【分析】利用方位角求出B的大小,利用正弦定理直接求解AD的距离,直接利用余弦定理求出CD的距离即可.【解答】解:如图,在△ABD中,因为在A处看灯塔B在货轮的北偏东75°的方向上,距离为海里,货轮由A处向正北航行到D处时,再看灯塔B在南偏东60°方向上,所以B=180°﹣75°﹣60°=45°,由正弦定理,所以AD===24海里;在△ACD中,AD=24,AC=8,∠CAD=30°,由余弦定理可得:CD2=AD2+AC2﹣2?AD?ACcos30°=242+(8)2﹣2×24×8×=192,所以CD=8海里;故选:B.3.已知是的充分条件而不是必要条件,是的充分条件,是的必要条件,是的必要条件。现有下列命题:①是的充要条件;②是的必要条件而不是充分条件;③是的充分条件而不是必要条件;④是的充分条件而不是必要条件;⑤的必要条件而不是充分条件,则正确命题序号是(

)A.①③⑤

B.①④⑤

C.②③④

D.③④⑤参考答案:A4.设有一个回归方程为=3-5x,变量x增加一个单位时

()A.y平均增加3个单位

B.y平均减少5个单位C.y平均增加5个单位

D.y平均减少3个单位参考答案:B略5.若,那么的最大值是A、

B、

C、1

D、2参考答案:B6.某同学家门前有一笔直公路直通长城,星期天,他骑自行车匀速前往旅游,他先前进了,觉得有点累,就休息了一段时间,想想路途遥远,有些泄气,就沿原路返回骑了,当他记起诗句“不到长城非好汉”,便调转车头继续前进.则该同学离起点的距离s与时间t的函数关系的图象大致为(

)A. B.C. D.参考答案:C分析:本题根据运动变化的规律即可选出答案.依据该同学出门后一系列的动作,匀速前往对应的图象是上升的直线,匀速返回对应的图象是下降的直线,等等,从而选出答案.解答:解:根据他先前进了akm,得图象是一段上升的直线,由觉得有点累,就休息了一段时间,得图象是一段平行于t轴的直线,由想想路途遥远,有些泄气,就沿原路返回骑了bkm(b<a),得图象是一段下降的直线,由记起诗句“不到长城非好汉”,便调转车头继续前进,得图象是一段上升的直线,综合,得图象是C,故选C.点评:本小题主要考查函数的图象、运动变化的规律等基础知识,考查数形结合思想.属于基础题.

7.不等式的解集是(

A.(-2,5)

B.(-∞,-5)∪(2,+∞)C.(-∞,-2)

D.(-∞,-2)∪(5,+∞)参考答案:A8.有50件产品,编号从1到50,现在从中抽取5件检验,用系统抽样确定所抽取的第一个样本编号为7,则第三个样本编号是A.37

B.27 C.17 D.12参考答案:B9.下面是一个算法的程序框图,当输入的值为8时,则其输出的结果是(

)A.

B.1

C.2

D.4

参考答案:C10.函数在内有极小值,则(

).A.

B.

C.

D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.给定两个命题P:对任意实数x都有ax2+ax+1>0恒成立;Q:关于x的方程x2-x+a=0有实数根.如果P∧Q为假命题,P∨Q为真命题,求实数a的取值范围.参考答案:解:命题P:对任意实数x都有ax2+ax+1>0恒成立,则“a=0”,或“a>0且a2-4a<0”.解得0≤a<4.命题Q:关于x的方程x2-x+a=0有实数根,则Δ=1-4a≥0,得a≤.因为P∧Q为假命题,P∨Q为真命题,则P,Q有且仅有一个为真命题,故綈P∧Q为真命题,或P∧綈Q为真命题,则或解得a<0或<a<4.所以实数a的取值范围是(-∞,0)∪(,4).

略12.△ABC中,AB=,AC=1,B=30°,则△ABC的面积等于.参考答案:或【考点】解三角形.【分析】由已知,结合正弦定理可得,从而可求sinC及C,利用三角形的内角和公式计算A,利用三角形的面积公式进行计算可求【解答】解:△ABC中,c=AB=,b=AC=1.B=30°由正弦定理可得b<c∴C>B=30°∴C=60°,或C=120°当C=60°时,A=90°,当C=120°时,A=30°,故答案为:或13.已知两直线l1:ax﹣y+2=0和l2:x+y﹣a=0的交点在第一象限,则实数a的取值范围是.参考答案:a>2【考点】两条直线的交点坐标.【分析】联立方程组解出交点坐标,解不等式即可解决.【解答】解:由直线l1:ax﹣y+2=0和l2:x+y﹣a=0,得x=,y=.∵两直线l1:ax﹣y+2=0和l2:x+y﹣a=0的交点在第一象限,∴>0,.>0,解得:a>2.故答案为a>2.14.已知函数y=f(x)是偶函数,当x>0时,f(x)=x+.当x∈[-3,-1]时,记f(x)的最大值为m,最小值为n,则m-n=______________.参考答案:115.i是虚数单位,则等于.参考答案:【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:,则=.故答案为:.16.已知数列{an}满足a1=1,an+1=an+2n﹣1(n∈N*),则an=.参考答案:n2﹣2n+2【考点】数列递推式.

【专题】等差数列与等比数列.【分析】由已知利用an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1即可得出.【解答】解:∵a1=1,an+1=an+2n﹣1(n∈N*),∴an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=(2n﹣3)+(2n﹣5)+…+1+1=+1=n2﹣2n+2.故答案为:n2﹣2n+2.【点评】本题考查了“累加求和”方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.17.已知函数,若存在2个零点,则a的取值范围是____参考答案:【分析】把的零点问题归结为与函数有两个不同交点的问题,通过移动动直线得实数的取值范围.【详解】有两个不同的零点等价于有两个不同的解,即有两个不同的解,所以的图像与有两个不同的交点.画出函数的图像,当即时,两图像有两个不同的交点,故答案为.【点睛】含参数的函数的零点个数问题,可以利用函数的单调性和零点存在定理来判断,如果该函数比较复杂,那么我们可以把该零点个数问题转化为两个熟悉函数图像的交点问题,其中一个函数的图像为动直线,另一个函数不含参数,其图像是确定的.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.从6名男生和4名女生中任选4人参加比赛,设被选中女生的人数为随机变量ξ,求(Ⅰ)ξ的分布列;(Ⅱ)所选女生不少于2人的概率.参考答案:【考点】离散型随机变量及其分布列;古典概型及其概率计算公式.【分析】(Ⅰ)依题意,ξ的可能取值为0,1,2,3,4,ξ股从超几何分布P(ξ=k)=,由此能求出ξ的分布列.(Ⅱ)所选女生不少于2人的概率为P(ξ≥2)=P(ξ=2)+P(ξ=3)+P(ξ=4),由此能求出结果.【解答】解:(Ⅰ)依题意,ξ的可能取值为0,1,2,3,4,ξ股从超几何分布P(ξ=k)=,k=0,1,2,3,4,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,P(ξ=4)==,∴ξ的分布列为:ξ01234P(Ⅱ)所选女生不少于2人的概率为:P(ξ≥2)=P(ξ=2)+P(ξ=3)+P(ξ=4)==.19.已知函数f(x)=?e﹣ax(a>0).(1)当a=2时,求曲线y=f(x)在x=处的切线方程;(2)讨论方程f(x)﹣1=0根的个数.参考答案:【考点】利用导数研究曲线上某点切线方程.【分析】(1)当a=2时,求函数的导数,利用导数的几何意义进行求解即可.(2)由f(x)﹣1=0得f(x)=1,求函数的导数f′(x),判断函数的单调性,利用函数单调性和最值之间的关系进行判断即可.【解答】解:(Ⅰ)当a=2时,f(x)=?e﹣2x.f()=3e﹣1,又f′(x)=?e﹣2x,∴f′()=2e﹣1,故所求切线方程为y﹣3e﹣1=2e﹣1(x﹣),即y=x+.(Ⅱ)方程f(x)﹣1=0即f(x)=1.f(x)的定义域为(﹣∞,1)∪(1,+∞),当x<﹣1或x>1时,易知f(x)<0,故方程f(x)=1无解;故只需考虑﹣1≤x≤1的情况,f′(x)=?e﹣2x,当<a≤2时,f′(x)≥0,所以f(x)区间[﹣1,1)上是增函数,又易知f(0)=1,所以方程f(x)=1只有一个根0;当a>2时,由f′(x)=0可得x=±,且0<<1,由f′(x)>0可得﹣1≤x<﹣或<x<1,由f′(x)<0可得﹣<x<,所以f(x)单调增区间为[﹣1,﹣)和(,1)上是增函数,f(x)单调减区间为(﹣,),由上可知f()<f(0)<f(﹣),即f()<1<f(﹣),在区间(﹣,)上f(x)单调递减,且f(0)=1,所以方程f(x)=1有唯一的根x=0;在区间[﹣1,﹣)上f(x)单调递增,且f(﹣1)=0<1,f(﹣)>1,所以方程f(x)=1存在唯一的根0在区间(,1)上,由f()<1,x→1时,f(x)→+∞,所以方程f(x)=1有唯一的根;综上所述:当0<a≤2时,方程f(x)=1有1个根;当a>2时,方程f(x)=1有3个根.20.(本小题满分12分)对于函数,若存在实数对(),使得等式对定义域中的每一个都成立,则称函数是“()型函数”.(1)判断函数是否为“()型函数”,并说明理由;(2)若函数是“()型函数”,求出满足条件的一组实数对;(3)已知函数是“()型函数”,对应的实数对为.当时,,若当时,都有,试求的取值范围.参考答案:(1)不是“()型函数”,因为不存在实数对使得,即对定义域中的每一个都成立;(2)由,得,所以存在实数对,如,使得对任意的都成立;(3)由题意得,,所以当时,,其中,而时,,其对称轴方程为.

1

当,即时,在上的值域为,即,则在上的值域为,由题意得,从而;

2

当,即时,的值域为,即,则在上的值域为,则由题意,得且,解得;3

当,即时,的值域为,即,则在上的值域为,即,则,

解得

综上所述,所求的取值范围是.21.已知抛物线:,直线:,点是直线上任意一点,过点作抛物线的切线,切点分别为,直线斜率分别为,如图所示.(1)若,求证:;(2)当在直线上运动时,求证:直线

过定点,并求出该定点坐标.参考答案:解:(1)设过的切线方程为:,代入抛物线,消去得:,由,所以:,该方程的两个根为直线斜率,所以:.-----------5分(2)设,,切点对求导数,,所以:故:直线:,直线:由于,所以::

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论