下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省长治市学院附属太行中学2023年高一数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知为锐角,,则=A.B.
C.7
D.-7参考答案:D2.若集合A={-1,1},B={0,2},则集合C={z︱z=x+y,x∈A,y∈B}的真子集的个数为(
)
A.6
B.8
C.3
D.7参考答案:D略3.方程的解集为,方程的解集为,且,则等于A.21
B.8
C.6
D.7参考答案:A4.(5分)已知集合M={(x,y)|x+y=2},N={(x,y)|x﹣y=4},那么M∩N为() A. x=3,y=﹣1 B. (3,﹣1) C. {3,﹣1} D. {(3,﹣1)}参考答案:D考点: 交集及其运算.专题: 计算题.分析: 将集合M与集合N中的方程联立组成方程组,求出方程组的解即可确定出两集合的交集.解答: 将集合M和集合N中的方程联立得:,①+②得:2x=6,解得:x=3,①﹣②得:2y=﹣2,解得:y=﹣1,∴方程组的解为:,则M∩N={(3,﹣1)}.故选D点评: 此题考查了交集及其运算,以及二元一次方程组的解法,是一道基本题型,学生易弄错集合中元素的性质.5.下列集合到集合的对应是映射的是(
)A.:中的数平方;B.:中的数开方;C.:中的数取倒数;
D.:中的数取绝对值;参考答案:A6.已知集合,则等于(
)A.
B.
C.
D.参考答案:C7.知向量=,=10,,则=(
)A. B. C.5 D.25参考答案:C8.设函数f(x)定义在R上,它的图象关于直线x=1对称,且当x≥1时,f(x)=3x﹣1,则有()A. B.C. D.参考答案:B【考点】指数函数单调性的应用;函数单调性的性质.【分析】先利用函数的对称性,得函数的单调性,再利用函数的对称性,将自变量的值化到同一单调区间上,利用单调性比较大小即可【解答】解:∵函数f(x)定义在R上,它的图象关于直线x=1对称,且x≥1时函数f(x)=3x﹣1为单调递增函数,∴x<1时函数f(x)为单调递减函数,且f()=f()∵<<<1∴,即故选B【点评】本题考查了函数的对称性及其应用,利用函数的单调性比较大小的方法9.函数的定义域为,若满足①在内是单调函数,②存在,使在上的值域为,那么叫做闭函数,现有是闭函数,那么的取值范围是
A.
B.
C.
D.参考答案:D10.在等比数列中,若则为
(
)A.
B.
C.100
D.50参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.lg+lg的值是.参考答案:1【考点】对数的运算性质.【分析】直接利用对数的运算性质求解即可.【解答】解:==1.故答案为:1.【点评】本题考查对数的运算性质,基本知识的考查.12.(5分)已知向量和向量的夹角为135°,=2,=3,则=
.参考答案:﹣3考点: 平面向量数量积的运算.专题: 平面向量及应用.分析: 利用数量积的定义即可得出.解答: ∵向量和向量的夹角为135°,=2,=3,则=cos135°==﹣3.故答案为:﹣3.点评: 本题考查了数量积对于及其运算性质,考查了计算能力,属于基础题.13.已知钝角△ABC的三边a=k,b=k+2,c=k+4,求k的取值范围
.参考答案:(2,6)【考点】HR:余弦定理.【分析】根据余弦定理以及C为钝角,建立关于k的不等式,解之可得﹣2<k<6,再根据n为整数和构成三角形的条件,不难得出本题答案.【解答】解:由题意,得c是最大边,即C是钝角∴由余弦定理,得(k+4)2=(k+2)2+k2﹣2k(k+2)?cosC>=(k+2)2+k2即(k+2)2+k2<(k+4)2,解之得﹣2<k<6,∵a+b>c,∴k+(k+2)>k+4,解之得k>2综上所述,得k的取值范围是(2,6)故答案为:(2,6)【点评】本题给出钝角三角形的三边满足的条件,求参数k的取值范围,着重考查了利用余弦定理解三角形和不等式的解法等知识,属于基础题.14.数列{an}中,若,则该数列的通项an=
.参考答案:
15.函数y=-8cosx的单调递减区间为.
参考答案:略16.若,是第四象限角,则=________参考答案:略17.函数f(x)=的定义域为______.参考答案:[2,+∞)【分析】根据二次根式的性质得到关于x的不等式,解出即可.【详解】解:由题意得:2x﹣4≥0,解得:x≥2,故函数的定义域是[2,+∞),故答案为:[2,+∞).【点睛】本题考查了函数的定义域问题,考查二次根式的性质,是一道基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)某车间为了规定工时定额,需要确定加个某零件所花费的时间,为此作了四次实验,得到的数据如下:零件的个数x(个)2345加工的时间y(小时)2.5344.5(1)求出y关于x的线性回归方程;(2)试预测加工10个零件需要多少时间?.参考答案:考点: 线性回归方程;回归分析的初步应用.专题: 计算题.分析: (1)根据表中所给的数据,做出横标和纵标的平均数,得到样本中心点,求出对应的横标和纵标的积的和,求出横标的平方和,做出系数和a的值,写出线性回归方程.(2)将x=10代入回归直线方程,得y=0.7×10+1.05=8.05.试预测加工10个零件需要8.05个小时,这是一个预报值.解答: (1)由表中数据得:.∴故a=3.5﹣0.7×3.5=1.05,∴y=0.7x+1.05.(2)将x=10代入回归直线方程,得y=0.7×10+1.05=8.05(小时).∴试预测加工10个零件需要8.05个小时.点评: 本题考查线性回归方程的求法和应用,本题是一个基础题,解题的关键是看清正确运算,本题运算比较繁琐.19.已知函数的部分图象如图所示.(1)求函数的解析式;(2)把函数图象上点的横坐标扩大到原来的倍(纵坐标不变),再向左平移个单位,得到函数的图象,求关于的方程在时所有的实数根之和.参考答案:解:(1)由图象知,函数的周期,故.点在函数图象上,∴,∴,解得:,,即,,又,从而.点在函数图象上,可得:,∴.故函数的解析式为:.(2)依题意,得.∵的周期,∴在内有个周期.令,,解得,,即函数的对称轴为,.又,则,所以在内有个实根,不妨从小到大依次设为.则,,故在时所有的实数根之和为:.
20.命题方程有两个不等的正实数根,命题方程无实数根。若“或”为真命题,求的取值范围。参考答案:解析:“或”为真命题,则为真命题,或为真命题,或和都是真命题当为真命题时,则,得;当为真命题时,则当和都是真命题时,得21.(本小题满分14分)如图,在三棱锥中,,平面,,分别为,的中点.(1)求证:平面;(2)求证:平面平面.参考答案:(1)在中,分别为的中点………………3分又平面,平面平面…………………7分(2)由条件,平面,平面,即,………………10分由,,又,都在平面内
平面又平面平面平面………………14分22.已知全集U={x|x≤4},集合A={x|﹣2<x<3},集合B={x|﹣3≤x≤2},求A∩B,?U(A∪B),(?UA)∪B,A∩(?UB),(?UA)∪(?UB).参考答案:【考点】交、并、补集的混合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版环保物流绿色包装运输合同规范3篇
- 二零二五版个人房产抵押贷款债权转让合同3篇
- 二零二五版财务会计岗位聘用合同9篇
- 二零二五版智能家居股份制合作合同范本3篇
- 二零二五年度钢结构工程钢筋加工与配送合同范本3篇
- 二零二五版工业4.0工厂生产承包服务合同模板3篇
- 二零二五年房产共有权份额转让产权买卖合同范本含份额调整方案3篇
- 二零二五版个人承包公司物流运输合作合同书6篇
- 二零二五版安徽省劳动合同解除争议调解服务合同2篇
- 二零二五年度能源股权转让居间服务合同范本2篇
- 大型活动联合承办协议
- 工程项目采购与供应链管理研究
- 2024年吉林高考语文试题及答案 (2) - 副本
- 拆除电缆线施工方案
- 搭竹架合同范本
- Neo4j介绍及实现原理
- 焊接材料-DIN-8555-标准
- 工程索赔真实案例范本
- 重症医学科运用PDCA循环降低ICU失禁性皮炎发生率品管圈QCC持续质量改进成果汇报
- 个人股权证明书
- 医院运送工作介绍
评论
0/150
提交评论