版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省长治市东沟中学2023年高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在空间直角坐标系中,在x轴上的点P(m,0,0)到点P1(4,1,2)的距离为,则m的值为()A.﹣9或1 B.9或﹣1 C.5或﹣5 D.2或3参考答案:B【考点】空间两点间的距离公式.【专题】对应思想;综合法;空间向量及应用.【分析】据它与已知点之间的距离,写出两点之间的距离公式,得到关于未知数的方程,解方程即可,注意不要漏掉解,两个结果都合题意.【解答】解:(1)点P的坐标是(m,0,0),由题意|P0P|=,即=,∴(m﹣4)2=25.解得m=9或m=﹣1.故选:B.【点评】本题考查空间两点之间的距离公式,在两点的坐标,和两点之间的距离,这三个量中,可以互相求解.2.2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是()A.60 B.48 C.42 D.36参考答案:B【分析】从3名女生中任取2人“捆”在一起,剩下一名女生记作B,两名男生分别记作甲、乙,则男生甲必须在A、B之间,最后再在排好的三个元素中选出四个位置插入乙.【解答】解:从3名女生中任取2人“捆”在一起记作A,(A共有C32A22=6种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;则男生甲必须在A、B之间(若甲在A、B两端.则为使A、B不相邻,只有把男生乙排在A、B之间,此时就不能满足男生甲不在两端的要求)此时共有6×2=12种排法(A左B右和A右B左)最后再在排好的三个元素中选出四个位置插入乙,∴共有12×4=48种不同排法.故选B.3.若圆C1的方程是x2+y2﹣4x﹣4y+7=0,圆C2的方程为x2+y2﹣4x﹣10y+13=0,则两圆的公切线有(
)A.2条 B.3条 C.4条 D.1条参考答案:B【考点】圆与圆的位置关系及其判定.【专题】计算题;方程思想;综合法;直线与圆.【分析】把两圆的方程化为标准形式,分别求出圆心和半径,考查两圆的圆心距正好等于两圆的半径之和,故两圆相外切.推出公切线的条数.【解答】解:圆C1的方程即:(x+2)2+(y﹣2)2=1,圆心C1(﹣2,2),半径为1,
圆C2的方程即:(x﹣2)2+(y﹣5)2=16,圆心C2(2,5),半径为4,两圆的圆心距为=5,正好等于两圆的半径之和,故两圆相外切,故两圆的公切线有三条,故选:B.【点评】本题考查两圆的位置关系,两圆相外切的充要条件是:两圆的圆心距等于两圆的半径之和;两圆相外切时,公切线3条.考查计算能力.4.直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A. B. C. D.参考答案:C【考点】异面直线及其所成的角.【分析】画出图形,找出BM与AN所成角的平面角,利用解三角形求出BM与AN所成角的余弦值.【解答】解:直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,如图:BC
的中点为O,连结ON,,则MN0B是平行四边形,BM与AN所成角就是∠ANO,∵BC=CA=CC1,设BC=CA=CC1=2,∴CO=1,AO=,AN=,MB===,在△ANO中,由余弦定理可得:cos∠ANO===.故选:C.5.若直线l的方向向量为=(1,﹣1,2),平面α的法向量为=(﹣2,2,﹣4),则()A.l∥α B.l⊥α C.l?α D.l与α斜交参考答案:B【考点】平面的法向量.【分析】=(1,﹣1,2),=(﹣2,2,﹣4),可得,即可得出l与α的位置关系.【解答】解:∵=(1,﹣1,2),=(﹣2,2,﹣4),∴,∴l⊥α.故选:B.【点评】本题考查了共线向量、线面垂直的判定定理,属于基础题.6.从甲、乙等10个同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有(
)A.种B.种C.种D.种参考答案:C7.数学测验中,某小组14名学生分别与全班的平均分85分的差是:2,3,-3,-5,12,12,8,2,-1,4,-10,-2,5,5,这个小组的平均分是(
)A.97.2
B.87.29
C.92.32
D.82.86参考答案:B略8.某运动员投篮命中率为,他重复投篮5次,若他命中一次得10分,没命中不得分,命中次数为,得分为,则分别为(
)A.,60
B.3,12
C.3,120
D.3,参考答案:C略9.当a,b均为有理数时,称点P(a,b)为有理点,又设A(,0),B(0,),则直线AB上有理点的个数是(
)(A)0
(B)1
(C)2
(D)无穷多个参考答案:A10.函数在区间上单调递减,则实数的最小值为(
)(A)
(B)
(C)
(D)
参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.设直三棱柱ABC-A1B1C1的所有顶点都在一个球面上,且球的表面积是40π,,,则此直三棱柱的高是_______参考答案:【分析】先求出球的半径R,再求△ABC外接圆的半径r,再根据求直三棱柱的高.【详解】因为球的表面积是40π,所以设=x,则,设△ABC的外接圆的半径为r,则由题得所以此直三棱柱的高是.故答案为:.【点睛】(1)本题主要考查几何体外接球问题,意在考查学生对这些知识的掌握水平和空间想象能力.(2)解答本题的关键是根据空间图形得到.
12.定义在R上的奇函数f(x),对于?x∈R,都有,且满足f(4)>﹣2,,则实数m的取值范围是.参考答案:{m|m<﹣1或0<m<3}【考点】函数奇偶性的性质.【分析】根据,然后用代换x便可得到,再用代换x便可得出f(x+3)=f(x),从而便得到f(x)是以3为周期的周期函数,这样即可得到f(1)>﹣2,,从而解不等式便可得出实数m的取值范围.【解答】解:∵;用代换x得:;用代换x得:;即f(x)=f(x+3);∴函数f(x)是以3为周期的周期函数;∴f(4)=f(1)>﹣2,f(2)=﹣f(﹣2)=﹣f(﹣2+3)=﹣f(1)<2;∴;解得m<﹣1,或0<m<3;∴实数m的取值范围为{m|m<﹣1,或0<m<3}.故答案为:{m|m<﹣1,或0<m<3}.13.设A、B是椭圆上不同的两点,点C(-3,0),若A、B、C共线,则的取值范围是
▲
.参考答案:14.等比数列中,公比q=4,且前3项之和是21,则数列的通项公式
参考答案:15.已知F是双曲线C:x2﹣y2=2的右焦点,P是C的左支上一点,A(0,2).当△APF周长最小时,该三角形的面积为.参考答案:3【考点】双曲线的简单性质.【专题】计算题;方程思想;分析法;圆锥曲线的定义、性质与方程.【分析】利用双曲线的定义,确定△APF周长最小时,P的坐标,即可求出△APF周长最小时,该三角形的面积【解答】解:设左焦点为F1(﹣2,0),右焦点为F(2,0).△APF周长为|AF|+|AP|+|PF|=|AF|+|AP|+(|PF1|+2a)=|AF|+|AP|+|PF1|+2a≥|AF|+|AF1|+2a,当且仅当A,P,F1三点共线,即P位于P0时,三角形周长最小.此时直线AF1的方程为y=x+2,代入x2﹣y2=2中,可求得,故.故答案为:3.【点评】本题考查双曲线的定义,考查三角形面积的计算,确定P的坐标是关键.16.某公司一年购买某种货物400吨,每次都购买吨,运费为4万元/次,一年的总存储费用为万元,要使一年的总运费与总存储费用之和最小,则
吨.参考答案:2017.,经计算的,推测当时,有__________________________.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料。(Ⅰ)求三位同学都没有中奖的概率;(Ⅱ)求三位同学中至少有两位没有中奖的概率.参考答案:解:设甲、乙、丙中奖的事件分别为A、B、C,那么P(A)=P(B)=P(C)=
wP()=P()P()P()=答:三位同学都没有中奖的概率为……6分(2)1-P(·B·C+A··C+A·B·+A·B·C)
=1-3×或P(+A··+·B·+··C)=答:三位同学至少两位没有中奖的概率为.
w_w略19.给出如下一个算法:第一步:输入x;第二步:若x>0,则y=2x2﹣1,否则执行第三步;第三步:若x=0,则y=1,否则y=2|x|;第四步:输出y.(1)画出该算法的程序框图;(2)若输出y的值为1,求输入实数x的所有可能的取值.参考答案:【考点】程序框图.【专题】作图题;阅读型;分类讨论;数形结合法;算法和程序框图.【分析】(1)根据算法画出程序框图即可.(2)根据算法有:由y=2x2﹣1=1,可得x=1或﹣1(舍去).由y=2|x|=1可得x=﹣或x=(舍去),由x=0可得y=1,从而得解.【解答】解:(1)程序框图如下:…5分(2)当x>0时,由y=2x2﹣1=1,可得x=1或﹣1(舍去).当x<0时,由y=2|x|=1可得x=﹣或x=(舍去),当x=0时,由x=0可得y=1.所以输入实数x的所有可能的取值为1,﹣,0.…10分【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.20.已知抛物线与直线交于A,B两点.(1)求弦AB的长度;(2)若点P在抛物线C上,且△ABP的面积为12,求点P的坐标.参考答案:(1)设、,由得,解方程得或,∴A、B两点的坐标为(1,-2)、(4,4)∴.(2)设点,点P到AB的距离为,则,∴··=12,∴.∴,解得或∴P点坐标为(9,6)或(4,-4).
21.已知椭圆的左焦点为F1,短轴的两个端点分别为A,B,且满足:,且椭圆经过点(1)求椭圆C的标准方程;(2)设过点M的动直线(与X轴不重合)与椭圆C相交于P,Q两点,在X轴上是否存在一定点T,无论直线如何转动,点T始终在以PQ为直径的圆上?若有,求点T的坐标,若无,说明理由。参考答案:(1);(2)(2,0)【分析】(1)由可知,,根据椭圆过点,即可求出,由此得到椭圆的标准方程;(2)分别讨论直线斜率存在与不存在两种情况,当斜率不存在时,联立直线与椭圆方程,解出、两点坐标,利用向量垂直的条件可得点,当斜率存在时,设出直线的点斜式,与椭圆联立方程,得到关于的一元二次方程,写出根与系数的关系,代入中进行化简,即可得到答案。【详解】(1)由可知,,又椭圆经过点,则,由于在椭圆中,所以,解得=2,所求椭圆方程为(2)设,,则,①当直线斜率不存在时,则直线的方程为:,联立方程,解得:或,故点,;则,由于点始终在以为直径的圆上,则,解得:或,故点或;②当直线斜率存在时,设直线的方程为:,代入椭圆方程中消去得,由于点始终在以为直径的圆上,,解得:,故点为综上所述;当时满足条件。所以定点为。【点睛】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查解析几何中的定点问题,解题的关键是把点始终在以为直径的圆上转化为向量垂直,考查学生的计算能力,属于中档题。22.设a是实数,f(x)=x2+ax+a,求证:|f(1)|与|f(2)|中至少有一个不小于. 参考答案:【考点】反证法与放缩法;二次函数的性质. 【专
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度数据服务合同标的与数据服务内容
- 2024年度中餐厅食材采购合同
- 2024年度艺术品买卖合同:含古董收藏与交易市场分析
- 2024年度电子商务平台金融贷款服务合同
- 新提拔的副科级领导干部(乡镇政法委书记)表态发言稿
- 2024年培训机构疫情防控工作方案和应急预案
- 农业银行客户经理个人工作总结
- 2024年养殖基地项目建设实施方案
- 如何制定产品价格战略和方案
- 2024年度车库广告位出租合同
- 2024政府采购评审专家知识题库(含答案)
- 人力资源外包投标方案
- 清创缝合术PPT课件
- IPC4552中文.doc
- 《偷影子的人》PPT课件
- 电力系统三维可视化技术及应用
- 阳光照耀着塔什库尔干(二胡+钢琴伴奏) 钢琴伴奏谱 五线谱 伴奏谱 钢琴谱 谱 正谱
- 中粮班组建设通用管理标准细则
- 第二章制冷压缩机的选型及热力计算
- 中国美术史 第四章 三国两晋南北朝美术
- 医院施工现场应急预案救援预设方案
评论
0/150
提交评论