山西省运城市裴社中学2021-2022学年高一数学理期末试题含解析_第1页
山西省运城市裴社中学2021-2022学年高一数学理期末试题含解析_第2页
山西省运城市裴社中学2021-2022学年高一数学理期末试题含解析_第3页
山西省运城市裴社中学2021-2022学年高一数学理期末试题含解析_第4页
山西省运城市裴社中学2021-2022学年高一数学理期末试题含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省运城市裴社中学2021-2022学年高一数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.对于非零向量,下列命题正确的是(

)A.若,则

B.若,则在上的投影为

C.若,则

D.若,则参考答案:C2.若方程的根在区间上,则的值为(

)A.

B.1

C.或2

D.或1参考答案:D略3.若,则与夹角的余弦值为()A. B. C. D.1参考答案:A【分析】根据向量的夹角公式,准确运算,即可求解,得到答案.【详解】由向量,则与夹角的余弦值为,故选A.【点睛】本题主要考查了向量的夹角公式的应用,其中解答中熟记向量的夹角公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.4.现有A1,A2,....A5,这5个球队进行单循环比赛(全部比赛过程中任何一队都要分别与其他各队比赛一场且只比赛一场).当比赛进行到一定阶段时,统计A1,A2,A3,A4这4个球队已经赛过的场数分别为:A1队4场,A2队3场,A3队2场,A4队1场,则A5队比赛过的场数为(

)A.1 B.2 C.3 D.4参考答案:B【分析】根据题意,分析可得A1队必须和A2,A3,A4,A5这四个球队各赛一场,进而可得A2队只能和A3,A4,A5中的两个队比赛,又由A4队只赛过一场,分析可得A2队必须和A3、A5各赛1场,据此分析可得答案.【详解】根据题意,A1,A2,A3,A4,A5五支球队进行单循环比赛,已知A1队赛过4场,所以A1队必须和A2,A3,A4,A5这四个球队各赛一场,已知A2队赛过3场,A2队已和A1队赛过1场,那么A2队只能和A3,A4,A5中的两个队比赛,又知A4队只赛过一场(也就是和A1队赛过的一场),所以A2队必须和A3、A5各赛1场,这样满足A3队赛过2场,从而推断A5队赛过2场.故选:B.5.(4分)如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是() A. B. C. D. 参考答案:D考点: 由三视图求面积、体积.专题: 计算题.分析: 由三视图知几何体的直观图是半个圆锥,再根据其中正视图是腰长为2的等腰三角形,我们易得圆锥的底面直径为2,母线为为2,故圆锥的底面半径为1,高为,代入圆锥体积公式即可得到答案.解答: 由三视图知几何体的直观图是半个圆锥,又∵正视图是腰长为2的等腰三角形∴r=1,h=∴故选:D.点评: 本题考查的知识点是由三视图求体积,其中根据三视图判断出几何的形状及相关几何量(底面半径,高等)的大小是解答的关键.6.函数,则(

)A.-1 B.1 C. D.参考答案:A【分析】先计算出,再计算得值,由此得出正确选项.【详解】依题意得,故选:A【点睛】本小题主要考查分段函数求值,考查对数运算,考查运算求解能力,属于基础题.

7.(5分)M={x|0≤x≤2},N={y|0≤y≤3},给出下列四个图形,其中能表示从集合M到集合N的函数关系的有() A. 0个 B. 1个 C. 2个 D. 3个参考答案:C考点: 函数的概念及其构成要素.专题: 函数的性质及应用.分析: 函数的定义强调:①M中元素x全部对应出去,即每一个x须在N中有元素y与之对应;②x对应y的时候是一对一或多对一,而不能不出现一个x对应多个y.据此逐项进行判断.解答: 因为一个x只能对应一个y,所以排除④;A项中的x只有[0,1]间的元素有y对应,故不满足M中元素全部对应出去,故排除①;其中C,D都满足函数对应定义中的两条,故③④都是函数.故选C.点评: 注意,从集合M到集合N的函数,N中元素不一定在M中都有元素与之对应,即函数的值域是N的子集.因此②是函数.8.已知幂函数f(x)的图象过点(2,),则f(4)的值是(

)A.64 B.4 C. D.参考答案:D【考点】幂函数的概念、解析式、定义域、值域.【专题】计算题;函数思想;分析法;函数的性质及应用.【分析】由已知条件推导出f(x)=,由此能求出f(4).【解答】解:∵幂函数f(x)=xa的图象过点(2,),∴2a=,解得a=﹣1,∴f(x)=,∴f(4)=,故选:D.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.9.已知集合,则A∩B=(

).A.(2,3) B.[2,3) C.[-4,2] D.(-4,3)参考答案:B【分析】求解一元二次不等式的解集,化简集合的表示,最后运用集合交集的定义,结合数轴求出.【详解】因,所以,故本题选B.【点睛】本题考查了一元二次不等式的解法,考查了集合交集的运算,正确求解一元二次不等式的解集、运用数轴是解题的关键.10.下列各组函数中,两个函数相等的是(

)A.与

B.与C.与

D.与参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.已知点P在角θ的终边上,且θ∈[0,2π),则θ的值为________.参考答案:

12.如图,矩形中,点E为边CD的中点,若在矩形ABCD内随机取一个点Q,则点Q取自内部的概率等于

.参考答案:试题分析:由题意得,根据几何概型及其概率的计算方法,可以得出所求事件的概率为.考点:几何概型.13.的值是

.参考答案:1【考点】两角和与差的正切函数.【分析】把45°拆成60°﹣15°,然后利用两角差的正切求得答案.【解答】解:∵tan45°=tan(60°﹣15°)=.∴=.故答案为:1.14.设等差数列的公差,,若是与的等比中项,则k的值为

.参考答案:315.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是(cm).参考答案:考点:由三视图求面积、体积.

专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是底面为矩形的直四棱锥;结合图中数据即可求出它的体积.解答:解:根据几何体的三视图,得:该几何体是底面为矩形,高为=的直四棱锥;且底面矩形的长为4,宽为2,所以,该四棱锥的体积为V=×4×2×=.故答案为:.点评:本题考查了利用三视图求空间几何体的体积的应用问题,是基础题目.16.若││,││,与的夹角为,则?的值是

参考答案:略17.设为实数,集合,则____________________.参考答案:.

提示:由

可得三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)集合,

(1)若,求集合;(2)若,求实数的取值范围.参考答案:(1),,

(2),(ⅰ)时,;(ⅱ)当时,,所以

综上:实数的取值范围为19.如图所示,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,BC=CC1,M、N分别为BB1、A1C1的中点.(Ⅰ)求证:CB1⊥平面ABC1;(Ⅱ)求证:MN∥平面ABC1.参考答案:【考点】直线与平面垂直的判定;直线与平面平行的判定.【分析】(I)根据直三棱柱的性质,利用面面垂直性质定理证出AB⊥平面BB1C1,得出AB⊥CB1.正方形BCC1B1中,对角线CB1⊥BC1,由线面垂直的判定定理可证出CB1⊥平面ABC1;(II)取AC1的中点F,连BF、NF,利用三角形中位线定理和平行四边形的性质,证出EF∥BM且EF=BM,从而得到BMNF是平行四边形,可得MN∥BF,结合线面平行判定定理即可证出MN∥面ABC1.【解答】解:(Ⅰ)在直三棱柱ABC﹣A1B1C1中,侧面BB1C1C⊥底面ABC,且侧面BB1C1C∩底面ABC=BC,∵∠ABC=90°,即AB⊥BC,∴AB⊥平面BB1C1

…(2分)∵CB1?平面BB1C1C,∴AB⊥CB1.…∵BC=CC1,CC1⊥BC,∴BCC1B1是正方形,∴CB1⊥BC1,∵AB∩BC1=B,∴CB1⊥平面ABC1.(Ⅱ)取AC1的中点F,连BF、NF.…(7分)在△AA1C1中,N、F是中点,∴NFAA1,又∵正方形BCC1B1中BMAA1,∴NF∥BM,且NF=BM…(8分)故四边形BMNF是平行四边形,可得MN∥BF,…(10分)∵BF?面ABC1,MN?平面ABC1,∴MN∥面ABC1…(12分)【点评】本题给出底面为直角三角形的直三棱柱,在已知侧棱与底面直角边长相等的情况下证明线面垂直.着重考查了空间直线与平面平行、垂直的判定与性质等知识,属于中档题.20.已知角的终边经过点P(-4,3)(1)求、、;

(2)求参考答案:略21.设函数y=f(x)的定义域为D,值域为A,如果存在函数x=g(t),使得函数y=f[g(t)]的值域仍是A,那么称x=g(t)是函数y=f(x)的一个等值域变换.(1)判断下列函数x=g(t)是不是函数y=f(x)的一个等值域变换?说明你的理由;①f(x)=log2x,x>0,x=g(t)=t+,t>0;②f(x)=x2﹣x+1,x∈R,x=g(t)=2t,t∈R.(2)设f(x)=log2x的定义域为x∈[2,8],已知x=g(t)=是y=f(x)的一个等值域变换,且函数y=f[g(t)]的定义域为R,求实数m、n的值.参考答案:【考点】函数与方程的综合运用.【分析】(1)在①中,函数y=f(x)的值域为R,函数y=f[g(t)]的值域是(0,+∞);在②中,f(x)的值域为,y=f[g(t)]的值域仍为.(2)由已知得的值域为[2,8],,由此能求出实数m、n的值.【解答】解:(1)在①中,∵,∴函数y=f(x)的值域为R,函数y=f[g(t)]的值域是(0,+∞),故①不是等值域变换,在②中,,即f(x)的值域为,当t∈R时,,即y=f[g(t)]的值域仍为,∴x=g(t)是f(x)的一个等值域变换,故②是等值域变换.(2)f(x)=log2x定义域为[2,8],因为x=g(t)是f(x)的一个等值域变换,且函数y=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论