山西省朔州市志英中学2023年高一数学理下学期期末试卷含解析_第1页
山西省朔州市志英中学2023年高一数学理下学期期末试卷含解析_第2页
山西省朔州市志英中学2023年高一数学理下学期期末试卷含解析_第3页
山西省朔州市志英中学2023年高一数学理下学期期末试卷含解析_第4页
山西省朔州市志英中学2023年高一数学理下学期期末试卷含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省朔州市志英中学2023年高一数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.根据表格中的数据,可以判定方程ex﹣x﹣2=0的一个根所在的区间为()x﹣10123ex0.3712.727.3920.09x+212345A.(﹣1,0) B.(0,1) C.(1,2) D.(2,3)参考答案:C【考点】函数零点的判定定理;函数的零点与方程根的关系.【分析】令f(x)=ex﹣x﹣2,方程ex﹣x﹣2=0的根即函数f(x)=ex﹣x﹣2的零点,由f(1)<0,f(2)>0知,方程ex﹣x﹣2=0的一个根所在的区间为(1,2).【解答】解:令f(x)=ex﹣x﹣2,由图表知,f(1)=2.72﹣3=﹣0.28<0,f(2)=7.39﹣4=3.39>0,方程ex﹣x﹣2=0的一个根所在的区间为

(1,2),故选C.2.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,则集合中的元素共有(

)A.3个

B.4个

C.5个

D.6个参考答案:A3.圆A:x2+y2+4x+2y+1=0与圆B:x2+y2﹣2x﹣6y+1=0的位置关系是()A.相交 B.相离 C.相切 D.内含参考答案:C【考点】圆与圆的位置关系及其判定.【分析】把两圆的方程化为标准方程,分别找出圆心坐标和半径,利用两点间的距离公式,求出两圆心的距离d,然后求出R﹣r和R+r的值,判断d与R﹣r及R+r的大小关系即可得到两圆的位置关系.【解答】解:把圆x2+y2+4x+2y+1=0和x2+y2﹣2x﹣6y+1=0分别化为标准方程得:(x+2)2+(y+1)2=4,(x﹣1)2+(y﹣3)2=9,故圆心坐标分别为(﹣2,﹣1)和(1,3),半径分别为R=2和r=3,∵圆心之间的距离d==5,R+r=5,则两圆的位置关系是相外切.故选:C..4.已知函数f(x)=若关于x的方程f(x)=k有两个不等的实根,则实数k的取值范围是()A.(0,+∞) B.(﹣∞,1) C.(0,1] D.(1,+∞)参考答案:C【考点】根的存在性及根的个数判断.【分析】由题意画出图形,数形结合得答案.【解答】解:由题意画出函数图象如图,由图可知,要使方程f(x)=k有两个不等的实根,则实数k的取值范围是(0,1].故选:C.5.函数是偶函数,则函数的单调递增区间为(

)A.

B.

C.

D.参考答案:B略6.三个数a=0.62,b=log20.6,c=20.6之间的大小关系是()A.a<c<b B.a<b<c C.b<a<c D.b<c<a参考答案:C【考点】对数值大小的比较.【分析】分别根据指数幂和对数的性质分别判断a,b,c的大小即可.【解答】解:∵0<0.62<1,log20.6<0,20.6>1,∴0<a<1,b<0,c>1,∴b<a<c,故选:C.7.满足P∪Q={p,q}的集P与Q共有

)组。A.4

B。6

C。9

D。

11参考答案:C8.不等式2x2﹣x﹣1>0的解集是(

)A.()

B.(1,+∞)C.(﹣∞,1)∪(2,+∞)

D.()∪(1,+∞)参考答案:D9.已知角,则角是(

)A.第一象限角

B.第二象限角

C.第三象限角

D.第四象限角参考答案:A10.将“x2+y2≥2xy”改写成全称命题,下列说法正确的是(

)A.,都有

B.,都有C.,都有

D.,都有参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点E,F分别是棱BC,CC1的中点,P是侧面BCC1B1内一点,若A1P∥平面AEF,则线段A1P长度的取值范围是.参考答案:[].【考点】直线与平面平行的性质.【分析】分别取棱BB1、B1C1的中点M、N,连接MN,易证平面A1MN∥平面AEF,由题意知点P必在线段MN上,由此可判断P在M或N处时A1P最长,位于线段MN中点处时最短,通过解直角三角形即可求得.【解答】解:如下图所示:分别取棱BB1、B1C1的中点M、N,连接MN,连接BC1,∵M、N、E、F为所在棱的中点,∴MN∥BC1,EF∥BC1,∴MN∥EF,又MN?平面AEF,EF?平面AEF,∴MN∥平面AEF;∵AA1∥NE,AA1=NE,∴四边形AENA1为平行四边形,∴A1N∥AE,又A1N?平面AEF,AE?平面AEF,∴A1N∥平面AEF,又A1N∩MN=N,∴平面A1MN∥平面AEF,∵P是侧面BCC1B1内一点,且A1P∥平面AEF,则P必在线段MN上,在Rt△A1B1M中,A1M===,同理,在Rt△A1B1N中,求得A1N=,∴△A1MN为等腰三角形,当P在MN中点O时A1P⊥MN,此时A1P最短,P位于M、N处时A1P最长,A1O===,A1M=A1N=,所以线段A1P长度的取值范围是[].故答案为:[].12.(4分)若sinα+2cosα=0,则sin2α﹣sinαcosα=

.参考答案:考点: 同角三角函数基本关系的运用.专题: 计算题;三角函数的求值.分析: 由已知可解得tanα=﹣2,由万能公式可得:sin2α,cos2α的值,由倍角公式化简所求代入即可求值.解答: ∵sinα+2cosα=0,∴移项后两边同除以cosα可得:tanα=﹣2,∴由万能公式可得:sin2α===﹣,cos2α===﹣,∴sin2α﹣sinαcosα==﹣=.故答案为:.点评: 本题主要考察了同角三角函数基本关系的运用,万能公式,倍角公式的应用,属于基础题.13.给出两条平行直线,则这两条直线间的距离是

参考答案:14.在xOy平面上,将两个半圆弧和、两条直线和围成的封闭图形记为D,如图中阴影部分.记D绕y轴旋转一周而成的几何体为,过作的水平截面,所得截面面积为,试利用祖暅原理(祖暅原理:“幂势既同,则积不容异”,意思是:两等高的几何体在同高处被截得的两个截面面积均相等,那么这两个几何体的体积相等)、一个平放的圆柱和一个长方体,得出的体积值为__________.参考答案:【分析】由题目给出的的水平截面的面积,可猜想水平放置的圆柱和长方体的量,然后直接求出圆柱的体积与长方体的体积作和即可.【详解】因为几何体的水平截面的截面面积为,该截面的截面面积由两部分组成,一部分为定值,看作是截一个底面积为,高为2的长方体得到的,对于,看作是把一个半径为1,高为的圆柱得到的,如图所示:这两个几何体和放在一起,根据祖暅原理,每个平行水平面的截面面积相等,故它们体积相等,即的体积为.故填.【点睛】本题主要考查了简单的合情推理,解答的关键是由几何体的水平截面面积想到水平放置的圆柱和长方体的有关量,是中档题.15.计算

.参考答案:略16.设全集,集合,集合,则

参考答案:略17.若是一次函数,且,则=_________________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.画出函数的草图,观察图象指出函数的单调性(无须证明),请根据函数单调性解不等式

参考答案:19.如图,在直角梯形中,,,当分别在线段上,,,现将梯形沿折叠,使平面与平面垂直。(1)判断直线与是否共面,并证明你的结论;(2)当直线与平面所成角正切值为多少时,二面角的大小是?参考答案:(1)略

(2)正切值:20.设a为实数,函数f(x)=x2+|x﹣a|+1,x∈R.(1)讨论f(x)的奇偶性;(2)若x≥a,求f(x)的最小值.参考答案:【考点】二次函数的性质;函数的最值及其几何意义.【分析】(1)讨论a=0,a≠0时,运用奇偶性定义,即可判断;(2)运用配方法,对a讨论,若a≤﹣,a>﹣,根据单调性,即可求得最小值.【解答】解:(1)当a=0时,函数f(﹣x)=(﹣x)2+|﹣x|+1=f(x),此时f(x)为偶函数.当a≠0时,f(a)=a2+1,f(﹣a)=a2+2|a|+1,f(﹣a)≠f(a).且f(﹣x)=x2+|﹣x﹣a|+1≠±f(x),此时函数f(x)为非奇非偶函数.(2)当x≥a时,函数.若a≤﹣,则函数f(x)在[a,+∞)上的最小值为.若a>﹣,则函数f(x)在[a,+∞)上单调递增,从而,函数f(x)在[a,+∞)上的最小值为f(a)=a2+1.综上,当a≤﹣时,函数f(x)的最小值是﹣a.当a>﹣时,函数f(x)的最小值是a2+1.21.已知,(1)求的值;(2)若且,求实数的值;(12分)参考答案:(1)由题意得,

(2)当时,由,得,

当时,由得或(舍去),故或22.(13分)已知指数函数y=g(x)满足:g(2)=4,定义域为R的函数f(x)=是奇函数.(1)确定y=g(x)的解析式;(2)求m,n的值;(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求实数k的取值范围.参考答案:考点: 函数解析式的求解及常用方法;奇偶性与单调性的综合.专题: 计算题;综合题;转化思想.分析: (1)根据指数函数y=g(x)满足:g(2)=4,即可求出y=g(x)的解析式;(2)由题意知f(0)=0,f(1)=﹣f(﹣1),解方程组即可求出m,n的值;(3)由已知易知函数f(x)在定义域f(x)在(﹣∞,+∞)上为减函数.我们可将f(t2﹣2t)+f(2t2﹣k)<0转化为一个关于实数t的不等式组,解不等式组,即可得到实数t的取值范围.解答: (1)∵指数函数y=g(x)满足:g(2)=4,∴g(x)=2x;(2)由(1)知:f(x)=是奇函数.因为f(x)是奇函数,所以f(0)=0,即,∴n=1;∴f(x)=,又由f(1)=﹣f(﹣1)知,∴m=2;(3)由(2)知f(x)=,易知f(x)在(﹣∞,+∞)上为减函数.又因f(x)是奇函数,从而不等式:f(t2﹣2t)+f(2t2﹣k)<0等价于f(t2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论