版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版数学八年级下册第二十章《数学的分析》周测试题第二十章数据的分析周周测1一选择题1.2012年5月某日我国部分城市的最高气温统计如下表所示:城市武汉成都北京上海海南南京拉萨深圳气温(℃)2727242528282326请问这组数据的平均数是()A.24B.25C.26D.272.地球的水资源越来越枯竭,全世界都提倡节约用水,小明把自己家1月至6月份的用水量绘制成折线图,那么小明家这6个月的月平均用水量是().A.10吨B.9吨C.8吨D.7吨3.我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是()A.71.8B.77C.82D.95.74.某棵果树前x年的总产量y与x之间的关系如图所示,从目前记录的结果看,前x年的年平均产量最高,则x的值为()A.3B.5C.7D.95.某住宅小区六月份1日至5日每天用水量变化情况如图所示.那么这5天平均每天的用水量是()A.30吨B.31吨C.32吨D.33吨6.对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是()A.2.25B.2.5C.2.95D.37.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)5678人数1015205则这50名学生这一周在校的平均体育锻炼时间是()A.6.2小时B.6.4小时C.6.5小时D.7小时8.在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:金额/元56710人数2321这8名同学捐款的平均金额为()A.3.5元B.6元C.6.5元D.7元9.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(满分100分)如表,从中去掉一个最高分和一个最低分,则余下的分数的平均分是()分数(分)8992959697评委(位)12211A.92分B.93分C.94分D.95分10.某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选取20名同学统计了各自家庭一个月约节水情况.见表:节水量/m30.20.250.30.40.5家庭数/个24671请你估计这400名同学的家庭一个月节约用水的总量大约是()A.130m3B.135m3C.6.5m3D.260m311.某同学使用计算器求15个数据的平均数时,错将一个数据15输成105,那么由此求出的平均数与实际平均数的差是()A.6.5B.6C.0.5D.-612.某同学用计算器计算30个数据时,错将其中一个数据105输入15,那么由此求出的平均数与实际平均数的差是()A.3.5B.3C.-3D.0.513.用计算器求一组数据21,22,25,23,27,19,24,20,25,24,18,27的平均数是(保留一位小数)()A.22.7B.22.8C.22.9D.23.014.用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17的平均数约为()A.14.15B.14.16C.14.17D.14.20二填空题15.若数2,3,x,5,6五个数的平均数为4,则x的值为.16.在演唱比赛中,5位评委给一位歌手的打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均得分是分.17.若数据2,3,-1,7,x的平均数为2,则x=.18.某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如表:时间(单位:小时)43210人数24211则这10名学生周末利用网络进行学习的平均时间是小时.19.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是分.20.某校九年级420名学生参加植树活动,随机调查了50名学生植树的数量,并根据数据绘制了如下条形统计图,请估计该校九年级学生此次植树活动约植树棵.21.某同学使用计算器求30个数据的平均数时,错将其中的一个数据105输入为150,那么由此求出的平均数比实际平均数多.三解答题22.保障房建设是民心工程,某市从2008年开始加快保障房建设进程,现统计了该市2008年到2012年这5年新建保障房情况,绘制成如图所示的折线统计图和不完整的条形统计图.(1)小丽看了统计图后说:“该市2011年新建保障房的套数比2010年少了.”你认为小丽说法正确吗?请说明理由;(2)求补全条形统计图;(3)求这5年平均每年新建保障房的套数.23.已知A、B两地的路程为240千米.某经销商每天都要用汽车或火车将x吨保鲜品一次性由A地运往B地.受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.现有货运收费项目及收费标准表、行驶路程s(千米)与行驶时间t(时)的函数图象(如图1)、上周货运量折线统计图(如图2)等信息如下:货运收费项目及收费标准表运输工具运输费单价元/(吨•千米)冷藏费单价元/(吨•时)固定费用元/次汽车25200火车1.652280(1)汽车的速度为千米/时,火车的速度为千米/时:(2)设每天用汽车和火车运输的总费用分别为y汽(元)和y火(元),分别求y汽、y火与x的函数关系式(不必写出x的取值范围),及x为何值时y汽>y火(总费用=运输费+冷藏费+固定费用)(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?24.某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图,趣题巧解,数学应用,魔方复原,每个项目得分都按一定百分比折算后记入总分,下表为甲,乙,丙三位同学得分情况(单位:分)七巧板拼图趣题巧解数学应用魔方复原甲66898668乙66608068丙66809068(1)比赛后,甲猜测七巧板拼图,趣题巧解,数学应用,魔方复原这四个项目得分分别按10%,40%,20%,30%折算△记入总分,根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包含80分)的学生获一等奖,现获悉乙,丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问甲能否获得这次比赛的一等奖?25.某校为了招聘一名优秀教师,对入选的三名候选人进行教学技能与专业知识两种考核,现将甲、乙、丙三人的考核成绩统计如下:候选人百分制教学技能考核成绩专业知识考核成绩甲8592乙9185丙8090(1)如果校方认为教师的教学技能水平与专业知识水平同等重要,则候选人将被录取.(2)如果校方认为教师的教学技能水平比专业知识水平重要,因此分别赋予它们6和4的权.计算他们赋权后各自的平均成绩,并说明谁将被录取.第二十章数据的分析周周测1试题答案C2.A3.C4.C5.C6.C7.B8.C9.C10.A11.B12.C13.C14.B416.817.-118.2.519.8820.168021.1.522.解:(1)该市2011年新建保障房的增长率比2010年的增长率减少了,但是保障房的总数在增加,故小丽的说法错误;(2)2011年保障房的套数为:750×(1+20%)=900(套),2008年保障房的套数为:x(1+20%)=600,则x=500,补图略.(3)这5年平均每年新建保障房的套数为:(500+600+750+900+1170)÷5=784(套),答:这5年平均每年新建保障房的套数为784套.23.(1)根据图表上点的坐标为:(2,120),(2,200),∴汽车的速度为60千米/时,火车的速度为100千米/时,故答案为:60,100;(2)依据题意得出:y汽=240·2x+·5x+200=500x+200;y火=240×1.6x+·5x+2280=396x+2280.若y汽>y火,得出500x+200>396x+2280.∴x>20;(3)上周货运量=(17+20+19+22+22+23+24)÷7=21>20,从平均数分析,建议预定火车费用较省.从折线图走势分析,上周货运量周四(含周四)后大于20且呈上升趋势,建议预订火车费用较省.24.(1)甲的总分为:66×10%+89×40%+86×20%+68×30%=79.8(2)由图表可知甲,乙,丙的七巧板拼图,魔方复原分数均相同,设趣题巧解以及数学应用比重为x,y解得∴甲的得分为20+89×0.3+86×0.4=81.1>80∴甲能获得一等奖25.(1)甲。(2)根据题意得:甲的平均成绩为:(85×6+92×4)÷10=87.8(分),乙的平均成绩为:(91×6+85×4)÷10=88.6(分),丙的平均成绩为:(80×6+90×4)÷10=84(分),∵乙的平均分数最高,∴乙将被录取。第二十章数据的分析周周测2一选择题1.2,3,14,16,7,8,10,11,13的中位数是()A.3B.7C.10D.132.下列数据85,88,73,88,79,85的众数是()A.88B.73C.88D.853.一组数据7,9,6,8,10,12中,下面说法正确的是()A.中位数等于平均数B.中位数大于平均数C.中位数小于平均数D.中位数是84.在下面各组数据中,众数是3.5的是()A.4,3,4,3B.1.5,2,2.5,3.5C.3.5,4.5,3.5D.6,4,3,25.一组由小到大排列的数据为﹣1,0,4,x,6,15,这组数据的中位数为5,那么数据的众数为()A.5B.6C.4D.156.在描述一组数据的集中趋势时,应用最广泛的是()A.众数B.中位数C.平均数D.全体数据7.十名工人某天生产同一零件,生产的件数是:15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有()A.a>b>cB.c>b>aC.c>a>bD.b>c>a8.制鞋厂准备生产一批男皮鞋,经抽样120名中年男子,得知所需鞋号和人数如下:鞋号/cm20222324252627人数815202530202并求出鞋号的中位数是24,众数是25,平均数是24,下列说法正确的是()A.所需27cm鞋的人数太少,27cm鞋可以不生产B.因为平均数24,所以这批男鞋可以一律按24cm的鞋生产C.因为中位数是24,故24cm的鞋的生产量应占首位D.因为众数是25,故25cm的鞋的生产量要占首位9.某超市购进了一批不同价格的皮鞋,下表是该超市在近几年统计的平均数据,要使该超市销售皮鞋收入最大,该超市应多购哪种价位的皮鞋()皮鞋价(元)160140120100销售百分率60%75%83%95%A.160元B.140元C.120元D.100元10.小芸所在学习小组的同学们,响应“为祖国争光,为奥运添彩”的号召,主动到附近的7个社区帮助爷爷、奶奶们学习英语日常用语.他们记录的各社区参加其中一次活动的人数如下:33,32,32,31,28,26,32,那么这组数据的众数和中位数分别是()A.32,31B.32,32C.3,31D.3,3211.某地连续九天的最高气温统计如下表:最高气温(℃)22232425天数1224则这组数据的中位数与众数分别是()A.24,25B.24.5,25C.25,24D.23.5,2412.甲、乙、丙、丁四人的数学测验成绩分别为90分、90分、x分、80分,若这组数据的众数与平均数恰好相等,则这组数据的中位数是()A.100分B.95分C.90分D.85分13.一组数据按从小到大的顺序排列为:1,2,3,x,6,9,这组数据的中位数是4.5,那么这组数据的众数为()A.4B.5C.5.5D.614.六个学生进行投篮比赛,投进的个数分别为2,3,3,5,10,13,这六个数的中位数为()A.3B.4C.5D.615.当5个整数从小到大排列时,其中位数为4,如果这个数据组的唯一众数是6,则这5个整数可能的最大的和是()A.21B.22C.23D.24二填空题16.3,5,8,9,7,6,2的中位数是.17.十名工人某天生产同一种零件,生产的件数分别是:15,17,14,10,15,19,17,16,14,12,则这一天10名工人生产零件件数的中位数是件.18.下表是某校随机抽查的20名八年级男生的身高统计表:身高(cm)150155160163165168人数(人)134453这组数据的众数是cm,中位数是cm.19.数学老师布置了10道选择题,小颖将全班同学的解答情况绘成了下面的条形统计图,根据图表回答:平均每个学生做对了道题,做对题目的众数是,中位数是.20.从甲、乙、丙三个厂家生产的同一种产品中,各抽出8种产品,对其使用寿命进行跟踪调查,结果如下(单位:年):甲:3,4,5,6,8,8,8,10乙:4,6,6,6,8,9,12,13丙:3,3,4,7,9,10,11,12三个厂家在广告中都称该产品使用寿命为8年,根据调查结果判断厂家在广告中分别运用了平均数、众数、中位数中哪一个集中趋势的特征数甲:,乙:,丙:.三解答题21.某学校积极响应上级的号召,举行了“决不让一个学生因贫困而失学”的捐资助学活动,其中6个班同学的捐款平均数如下表:班级一班二班三班四班五班六班捐款平均数(元)64.64.13.84.85.2则这组数据的中位数是多少元?22.有100名学生参加两次科技知识测试,条形图显示两次测试的分数分布情况.请你根据条形图提供的信息,回答下列问题(把答案填在题中横线上):(1)两次测试最低分在第次测试中;(2)第次测试成绩较好;(3)第一次测试中,中位数在分数段,第二次测试中,中位数在分数段.23.一家鞋店在一段时间里销售了某种女鞋20双,其中各种尺码的鞋销售最如下表所示:鞋的尺码/cm302820232125销售量/cm512354请指出这组数据的众数、中位数分别为、;.24.据报道,某公司的33名职工的月工资如下(单位:元):职务董事长副董事长总经理董事经理管理员职员人数11215320工资5500500035003230273022001500(1)该公司职工的月工资的平均数=元、中位数=元、众数=元.(2)假设副董事长的工资从5000元涨到15000元,董事长的工资从5500元涨到28500元,那么新的平均工资=元、中位数=元、众数=元.(精确到1元)(3)你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平?第二十章数据的分析周周测2试题答案C2.A3.C4.C5.B6.A7.B8.D9.B10.B11.A12.C13.D14.B15.A617.1518.16516319.8.6259920.众数平均数中位数21.这组数据由小到大排列为:3.84.14.64.85.26则中位数为=4.7(元)(1)第一次(2)第二次(3)第一次分数的中位数在20~39分数段,第二次分数的中位数在40~59分数段30cm、21cm,24cm解:(1)平均数=≈2151(元);中位数是1500元;众数是1500元。(2)平均数=≈3151(元);中位数是1500元;众数是1500元.(3)在这个问题中,中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别极大,这样导致平均工资与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平。第二十章数据的分析周周测3一选择题1.一组数据-1.2.3.4的极差是()A.5 B.4 C.3 D.22.若一组数据-1,0,2,4,x的极差为7,则x的值是()A.-3 B.6 C.7 D.6或-33.某班数学学习小组某次测验成绩分别是63,72,70,49,66,81,53,92,69,则这组数据的极差是()A.47 B.43 C.34 D.294.已知数据4,x,-1,3的极差为6,那么x为()A.5 B.-2 C.5或-1 D.5或-25.已知一组数据:14,7,11,7,16,下列说法不正确的是()A.平均数是11 B.中位数是11 C.众数是7 D.极差是76.某村引进甲乙两种水稻良种,各选6块条件相同的实验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为550kg/亩,方差分别为=141.7,=433.3,则产量稳定,适合推广的品种为()A.甲、乙均可 B.甲 C.乙 D.无法确定7.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是()A.10 B. C.D.28.现有甲、乙两个合唱队队员的平均身高为170cm,方程分别是、,且>,则两个队的队员的身高较整齐的是()A.甲队 B.乙队C.两队一样整齐 D.不能确定9.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如表则这四人中发挥最稳定的是()A.甲 B.乙 C.丙 D.丁10.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为=0.51,=0.41,=0.62,2=0.45,则四人中成绩最稳定的是()A.甲 B.乙 C.丙 D.丁11.一组数据2,0,1,x,3的平均数是2,则这组数据的方差是()A.2 B.4 C.1 D.312.甲乙两人在相同的条件下各射靶10次,射击成绩的平均数都是8环,甲射击成绩的方差是1.2,乙射击成绩的方差是1.8.下列说法中不一定正确的是()A.甲、乙射击成绩的众数相同B.甲射击成绩比乙稳定C.乙射击成绩的波动比甲较大D.甲、乙射中的总环数相同13.体育老师对甲、乙两名同学分别进行了8次跳高测试,经计算这两名同学成绩的平均数相同,甲同学的方差是=6.4,乙同学的方差是=8.2,那么这两名同学跳高成绩比较稳定的是()A.甲 B.乙 C.甲乙一样 D.无法确定14.已知一组数据的方差是3,则这组数据的标准差是()A.9 B.3 C.D.15.茶叶厂用甲.乙两台包装机分装质量为400克的茶叶,从它们各自分装的茶叶中分别随机抽取10盒,测得它们实际质量的平均数和标准差分别如表所示,则包装茶叶质量较稳定的包装机为()A.甲 B.乙 C.甲和乙 D.无法确定二填空题16.某地某日最高气温为12℃,最低气温为-7℃,该日气温的极差是℃.17.某同学近5个月的手机数据流量如下:60,68,70,66,80(单位:MB),这组数据的极差是MB.18.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差(填“变小”、“不变”或“变大”).19.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为(填>或<).20.中国跳水队的奥运选拔赛中,甲、乙、丙、丁四名运动员的平均成绩与标准差S如下表,因为中国跳水队的整体水平高,所以要从中选一名参赛,应选择.三解答题21.在学校组织的社会实践活动中,甲、乙两人参加了射击比赛,每人射击七次,命中的环数如表:根据以上信息,解决以下问题:(1)写出甲、乙两人命中环数的众数;(2)已知通过计算器求得=8,≈1.43,试比较甲、乙两人谁的成绩更稳定?22.要从甲.乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲,乙这10次射击成绩的方差,哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选参赛更合适.23.甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,8,8,9乙:5,9,7,10,9(1)填写下表(2)教练根据5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差(填“变大”“变小”或“不变”)24.八年2班组织了一次经典诵读比赛,甲乙两组各10人的比赛成绩如下表(10
分制):(I)甲组数据的中位数是,乙组数据的众数是;(Ⅱ)计算乙组数据的平均数和方差;(Ⅲ)已知甲组数据的方差是1.4分2,则成绩较为整齐的是.25.某篮球队对运动员进行3分球投篮成绩测试,每人每天投3分球10次,对甲、乙两名队员在五天中进球的个数统计结果如下:经过计算,甲进球的平均数为8,方差为3.2.(1)求乙进球的平均数和方差;(2)现在需要根据以上结果,从甲、乙两名队员中选出一人去参加3分球投篮大赛,你认为应该选哪名队员去?为什么?第二十章数据的分析周周测3试题答案A2.D3.B4.D5.D6.B7.D8.B9.B10.B11.A12.A13.A14.D15.B1917.1018.变大19.>20.乙21.解:(1)由题意可知:甲的众数为8,乙的众数为10; 乙的平均数==8乙的方差为:S2乙=[(5﹣8)2+(10﹣8)2+…+(10﹣8)2]≈3.71.因为甲乙平均数相同,S2甲<S2乙,所以甲的成绩更稳定22.(1)8;(2)>;(3)乙,甲.23.(1)甲的众数为8,乙的平均数=(5+9+7+10+9)=8,乙的中位数为9;(2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛;(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.24.(1)9.5,10;(2)平均成绩为9分,方差为1分;(3)乙25.(1)乙=(7+9+7+8+9)÷5=8,S2乙=[(7-8)2+(9-8)2+…+(9-8)2]÷5=0.8,(2)∵.x甲>.x乙,∴选甲合适;∵s2甲>s2乙,∴乙成绩稳,选乙合适.第二十章数据的分析周周测4一选择题1.为了了解参加某运动会的200名运动员的年龄情况,从中抽查了20名运动员的年龄,就这个问题来说,下面说法正确的是()A.200名运动员是总体B.每个运动员是总体C.20名运动员是所抽取的一个样本D.样本容量是202.一城市准备选购一千株高度大约为2m的某种风景树来进行街道绿化,有四个苗圃生产基地投标(单株树的价格都一样).采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:树苗平均高度(单位:m)标准差甲苗圃1.80.2乙苗圃1.80.6丙苗圃2.00.6丁苗圃2.00.2请你帮采购小组出谋划策,应选购()A.甲苗圃的树苗B.乙苗圃的树苗;C.丙苗圃的树苗D.丁苗圃的树苗3.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,则原来那组数据的平均数是()A.50B.52C.48D.24.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A.8,9B.8,8C.8.5,8D.8.5,95.为鼓励市民珍惜每一滴水,某居委会表扬了100个节约用水模范户,8月份节约用水的情况如下表:每户节水量(单位:吨)11.21.5节水户数523018那么,8月份这100户平均节约用水的吨数为(精确到0.01t)()A.1.5tB.1.20tC.1.15tD.1t6.已知一组数据-2,-2,3,-2,-x,-1的平均数是-0.5,那么这组数据的众数与中位数分别是()A.-2和3B.-2和0.5C.-2和-1D.-2和-1.57.方差为2的是()A.1,2,3,4,5B.0,1,2,3,5C.2,2,2,2,2D.2,2,2,3,38.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如下表:班级参加人数中位数方差平均数甲55149191135乙55151110135某同学根据上表分析得出如下结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀)(3)甲班成绩的波动情况比乙班成绩的波动小上述结论中正确的是()A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)9.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是()纸笔测试实践能力成长记录甲908395乙989095丙808890A.甲B.乙丙C.甲乙D.甲丙10.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有()A.1个B.2个C.3个D.4个二填空题11.(2005,深圳)下图是根据某地近两年6月上旬日平均气温情况绘制的折线统计图,通过观察图形,可以判断这两年6月上旬气温比较稳定的年份是_____年.12.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为_________.13.在演唱比赛中,8位评委给一名歌手的演唱打分如下:9.3,9.5,9.9,9.4,9.3,8.9,9.2,9.6,若去掉一个最高分和一个最低分后的平均分为得分,则这名歌手最后得分约为________.14.一个样本,各个数据的和为515,如果这个样本的平均数为5,那么这个样本的容量是_________.15.为了估计湖里有多少鱼,我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,则估计湖里约有鱼_______条.16.一名学生军训时连续射靶10次,命中的环数分别为4,7,8,6,8,5,9,10,6,7.则这名学生射击环数的方差是_________.17.某人开车旅行100km,在前60km内,时速为90km,在后40km内,时速为120km,则此人的平均速度为_________.18.小明家去年的旅游、教育、饮食支出分别出3600元,1200元,7200元,今年这三项支出依次比去年增长10%,20%,30%,则小时家今年的总支出比去年增长的百分数是_________.19.将5个整数从大到小排列,中位数是4;如果这个样本中的惟一众数是6,则这5个整数可能的最大的和是_____.20.某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并按测试得分1:4:3的比例确定测试总分,已知三项得分分别为88,72,50,则这位候选人的招聘得分为________.三解答题21.某校规定学生期末数学总评成绩由三部分构成:卷面成绩、课外论文成绩、平日表现成绩(三部分所占比例如图),若方方的三部分得分依次是92、80、84,则她这学期期末数学总评成绩是多少?22.为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下:月用水量(吨)1013141718户数22321(1)计算这10户家庭的平均月用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少吨?23.下表是某校八年级(1)班20名学生某次数学测验的成绩统计表成绩(分)60708090100人数(人)15xy2(1)若这20名学生成绩的平均分数为82分,求x和y的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数为a,中位数为b,求a,b的值.24.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:每人加工件数540450300240210120人数112632(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?25.题中给出的条形图是截止到2002年44位费尔兹奖得主获奖时的年龄统计图.经计算费尔兹奖得主获奖时的平均年龄是35岁.根据条形图回答问题:(1)费尔兹奖得主获奖时的年龄超过中位数的有多少人?(2)费尔兹奖得主获奖时年龄的众数是多少?(3)费尔兹奖得主获奖时的年龄高于平均年龄的人数占获奖人数的百分比是多少?26.某学校对初中毕业班经过初步比较后,决定从九年级(1)、(4)、(8)班这三个班中推荐一个班为市级先进班集体的候选班,现对这三个班进行综合素质考评,下表是它们五项素质考评的得分表:(以分为单位,每项满分为10分)班级行为规范学习成绩校运动会艺术获奖劳动卫生九年级(1)班10106107九年级(4)班108898九年级(8)班910969(1)请问各班五项考评分的平均数、中位数和众数中哪个统计量不能反映三个班的考评结果的差异?并从中选择一个能反映差异的统计量将他们的得分进行排序.(2)根据你对表中五个项目的重要程度的认识,设定一个各项考评内容的占分比例(比例的各项须满足:①均为整数;②总和为10;③不全相同),按这个比例对各班的得分重新计算,比较出大小关系,并从中推荐一个得分最高的班作为市级先进班集体的候选班.27.在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图.请你用所学过的有关统计的知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表示每一级台阶的高度(单位:cm).并且数据15,16,16,14,14,15的方差S甲2=,数据11,15,18,17,10,19的方差S乙2=).第二十章数据的分析周周测4试题答案1.D2.D3.B4.B5.C6.D7.A8.B9.C10.A11.200512.-2℃13.9.4分14.10315.150016.317.100km/h18.23%19.2120.65.75分21.解:=88.8(分)22.(1)1=14(吨);(2)50014=7000吨.23.(1)x=5,y=7;(2)a=90,b=80.24.(1)平均数:260(件)中位数:240(件)众数:240(件);(2)不合理,因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,尽管260是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.25.解:(1)中位数为35.5岁,年龄超过中位数的有22人.(2)众数是38岁.(3)高于平均年龄的人数为22人,22÷44=50%.26.(1)平均数不能反映三个班的考评结果的差异,用中位数或众数可以反映.(2)行为规范:学习成绩:校运动会:艺术获奖:劳动卫生=3:3:2:1:1.1=8.9,4=8.7,8=9∴8>1>4,所以推荐九年级(8)班作为市场先进班集体的候选班级合适.27.(1)相同点:两段台阶路台阶高度的平均数相同.不同点:两段台阶路台阶高度的中位数、方差和极差均不相同.(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.(3)每个台阶高度均为15cm(原平均数)使得方差为0.第二十章数据的分析周周测5一选择题1.在某次知识竞赛中,10名学生的成绩统计如下表:则这10名学生成绩的平均数为()A.80分B.81分C.82分D.83分2.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,则原来那组数据的平均数是()A.50B.52C.48D.23.11名同学参加数学竞赛初赛,他们的分数互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数B.中位数C.众数D.方差4.一城市准备选购一千株高度大约为2m的某种风景树来进行街道绿化,有四个苗圃生产基地投标(单株树苗的价格都一样).采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:请你帮采购小组出谋划策,应选购()A.甲苗圃的树苗B.乙苗圃的树苗C.丙苗圃的树苗D.丁苗圃的树苗5.已知一组数据-2,-2,3,-2,-x,-1的平均数是-0.5,那么这组数据的众数与中位数分别是()A.-2和3B.-2和0.5C.-2和-1D.-2和-1.56.某校把学生的纸笔测试、实践能力、成长记录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是()A.甲B.乙、丙C.甲、乙D.甲、丙7.对于一组数据3,3,2,3,6,3,10,3,6,3,2:①众数是3;②众数与中位数的数值不等;③中位数与平均数的数值相等;④平均数与众数的数值相等,其中正确的结论有()A.1个B.2个C.3个D.4个8.下面为某班某次数学测试成绩的分布表.已知全班共有38人,且众数为50分,中位数为60分,则x2-2y的值为()A.33B.50C.69D.60二填空题9.甲、乙、丙三人分别投资50万元、30万元、20万元成立一个股份公司,一年后亏损了12万,甲提出每人承担4万元的损失,你认为这个提议(填“合理”或“不合理”).10.已知一组数据-3,x,-2,3,1,6的中位数是1,则其众数为.11.下图是根据某地近两年6月上旬日平均气温情况绘制的折线统计
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 共有个人担保合作保证金协议
- 环保项目合作框架
- 授权经销合同的签订流程
- 无担保贷款担保合同
- 劳务分包班组的合同
- 购销合同的履行与监管要点
- 中医医院药材采购合同
- 房屋买卖合同格式市场趋势
- 生产车间承包技术成果成果保护
- 钢筋模板安装分包协议
- 中药指纹图谱和特征图谱研究及其标准建立
- 建设项目管理费用(财建2016504号)
- 小学数学一年级上册《可爱的小猫》课件
- 大学生朋辈心理辅导智慧树知到课后章节答案2023年下浙江大学
- 瑞幸咖啡案例分析
- 陶瓷托辊企业标准
- 幼儿园故事课件:《精忠报国》
- GB/T 7744-2023工业氢氟酸
- 艺术系列各专业职称资格名称一览表
- 参会嘉宾签到表【范本模板】
- 2023年中老年保健食品洞察报告-魔镜市场情报-202308
评论
0/150
提交评论