版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Numericalinvestigationonthermalperformanceofgroundheatexchangersusingphasechangematerials
asgroutforgroundsource
heatpumpsystem汇报人:张恒1.Introduction2.Methods3.Resultsanddiscussion4.Conclusions1.IntroductionThereisnodoubtthattheenergyshortagehasbecomeahugeproblem,bothlocallyandglobally.Groundsourceheatpumpsystemisoneofeffectiveandefficientwaytotackletheproblem.Theverticalboreholegroundheatexchanger(GHE)iswidelyutilizedinChina.GSHPsystemsneedalargeamountoflandarea,however,Chinesepracticalsituationsisalargepopulationwithrelativelylittleland.Inordertoreducethelandutilization,phasechangematerialswereproposedtouseasbackfillmaterialinsteadofcommonmaterials.ItcandecreaseboreholenumberforthefixedenergydemandUsingPCMisaneffectivemeasuretoreducethesuddenheatingorcoolingwaveuponthegroundandsmooththethermalwavegeneratedfromtheoperationofaGSHP.2.Methods2.1.Modeldomains2.MethodsAsshowninFig.2,itwasclearlyseenthatwhenthegridnumbercontinuestoincreaseabove750,000,thedeviationofresultsbetweenthelastthreemodelswerelessthan1%.ThemodelparametersarelistedinTable1indetails.2.Methods2.2.MathematicalmodelsTheliquidfraction
β,canbedefinedasleft.Liquidfractionisanotherparametertodescribephasechangerate.2.Methods2.3.ModelvalidationAsshowninFig.3,thetemperaturevariationtrendofr1,r2,r3withtimewasinagoodagreementwiththemeasuredvalues.Therefore,itcouldbedemonstratedthatthepresentsimulationmodelwassufficientlyaccuratetoanalyzethermalperformanceofgroundheatexchangersusingphasechangematerialsasgrout2.Methods2.4.Evaluationmethodologies2.4.1.Effectiveness2.4.2.Thermaleffectsradius3.ResultsanddiscussionThosePCMbackfillmaterialwereusedindiscontinuousairconditioningsystem,whichwasrunfor10handstopfor14h.TheGSHPoperationhoursareselectedtorepresenttypicalworkingconditionsattheofficebuilding:8am–18pmfromMondaytoFriday.
Thefollowingworkisappliedtothecoolingmode,whichthefluidiswarmerthanthesoilunderthesummercondition.BothofthemarefilledwiththesameflowrateintheU-tube.3.Resultsanddiscussion3.1.EffectsofbackfillmaterialsonthermalperformanceofGSHEFourdifferentmaterialswerechosenasthebackfillmaterialforGHEs.Soilisthecommonbackfillmaterial,andanotherthreematerialsarePCMs,suchasParaffinRT27,Acid
andEnhancedacid.3.ResultsanddiscussionTheheattransferratedropswiththeincreaseoftime.Itisunderstandablebecausethermalfluidinthetubereleasesheattothesoil.Thenthetemperatureofsoilincreasedwiththetime,whilethetemperaturedifferencebetweenthermalfluidandgroutdecreased
withtime.Theeffectivenessdroppedmonotonouslywithtimeinallcasedconsidered.ComparedtheeffectivenessofacidtothatofRT27,thehigherphasechangetemperaturebroughtthehighereffectiveness.3.ResultsanddiscussionLiquidfractionisanotherparametertodescribephasechangerate.OnecanseefromFig.4(c)thattheliquidfractiongrewmonotonouslywithtimeinallcasesconsideredIfcomparedtheliquidfractionofacidwiththatofRT27,thehigher
phasechangetemperaturebroughtthelower
liquidfraction.Moreover,comparedtheliquidfractionofacidwiththatofenhancedacid,thehigherthermalconductiveresultedinthehigherliquidfraction3.Resultsanddiscussion3.ResultsanddiscussionThethermaleffectsradiusofgroundsourceexchangersat1.5mdeepafterrunning10hwaspresentedinTable3.Inspiteoflowthermalconductivities,therearemanyadvantagesofPCM.Obviously,thePCMtemperaturekeepsconsistentinsolidificationandmeltingprocess,whichisbeneficialforstableoperationoftheGSHPsystem.Moreover,temperaturechangeofsurroundingsoilcanbereducedwithPCMsasbackfill.Thus,thespacingofboreholecanbelessened,andlanddemandcanbereducedeffectivelyaswell.Therefore,PCM,tosomeextent,wassuitableforuseasbackfillmaterialintheGSHPsystem.However,heattransferenhancementsmustbeadopted.(λ:0.2-0.5)3.Resultsanddiscussion3.2.EffectsofinitialgroundtemperatureonthermalperformanceofGSHEFig.6illustratestheeffectivenessofPCMsystemsandheattransferrateunderdifferentinitialgroundtemperatureconditions.Moreover,theeffectivenessofPCMsystemsincreasedasinitialgroundtemperaturedecreased,whichisconsistentwiththeheattransferrateinthisprocess.3.ResultsanddiscussionItmeansthattheproportionofliquidincreasedastheinitialtemperatureclosedtothephasechangetemperature.Specifically,theLiquidfractionincrementinthethreeinitialgroundtemperatureincreased
significantlyasinitialgroundtemperaturegrew,andthisincrementgrewovertime.3.ResultsanddiscussionTable4presentsthatthethermaleffectsradiusofgroundsourceexchangersat1.5
mdeepafterrunning10hunderthreeinitialgroundtemperatureconditions.Admittedly,lowerinitialgroundtemperaturecontributedtolargerheattransferrateandhighereffectiveness.Incontrast,theliquidfractionofPCMandthethermaleffectsradiussawanoppositetrend.Thatistosay,theheattransferrateandthethermaleffectsradiusvarytotheoppositedirectionwiththeinitialgroundtemperature.(undetermined)3.Resultsanddiscussion3.3.EffectsofpipespacingonthermalperformanceofGSHEAsFig.8(a)and(b)show,theheattransferrateandtheeffectivenesshavethesimilartrendsduringthese10h.Fig.9(a)and(b)presentthattheheattransferrateandtheeffectivenessincreasedaspipespacingrose.Especially,heattransferrateofthe60mmpipespacingcasedroppedquickerthanthatoftheothertwocases,whichmeansthattheheattransferconditiondeterioratedseriouslyunderthe60mmpipespacingcondition.3.ResultsanddiscussionFromFig.8(c),liquidfractionofPCMwith80mmpipespacingandthatwith60mmpipespacinghavethesimilartrendduringthe10h.However,liquidfractionofPCMwith100mmpipespacingwaslowerthanthosetwo.Thethermaleffectsradiusofgroundsourceexchangersat1.5mdeepafterrunning10hwerepresentedinTable5.Table5showsthatthethermaleffectsradiuswith100mmpipespacingislargestamongthethreecases.3.ResultsanddiscussionFromFig.9(a),thetemperatureofr0isconstant
inthefirstthreehours,andexperiencedadramaticgrowthinthenextsixhours.After10h,itdecreasedduetothestopofthesystem.Itisunderstandablethatthelatentheatplayedadominaterolewhentheacidwasmeltinginthefirstthreehours,andthenthesensibleheatplayedadominaterolewhenthematerialhadmelted.ThisphenomenoncanbeprovedbyFig.9(d)with60mmpipespacingU-tube.Therewasasharpincreaseintemperatureofr=0with80mmpipespacingU-tubeafter8h,asFig,9(b)shows.Itdelayed5hthanthatwith60mmpipespacingUtube,whichisbecausethemeltingtimeofthematerialbetweentwopipesislonger(Fig.9(d)).Incontrast,thetemperatureofr=0with100mmpipespacingU-tubekeptconstant
afterreachingthemelttemperature(seeFig.9(c)).Thematerialbetweenthetwopipesdidnotfullymelt,andtherewassomesolidacidbetweenthem,asshowninFig.9(d)100mm.Consequently,larger
pipespacingledtolargerheattransferrateandhighereffectiveness.Meanwhile,liquidfractionofPCMwith100
mmpipespacingU-tubewaslowerthantheothertwocases.In
contrast,thethermaleffectsradiusislargestamongthethreecases.Thatistosay,theheattransferrateandthethermaleffectsradiuschangeintheoppositedirection3.Resultsanddiscussion3.4.Combinedeffectsofpipespacingandinitialgroundtemperature4.ConclusionsInthepresentstudy,theprocessofmeltingofaPCMgroutinGSHPhasbeenexplorednumerically.TransientnumericalsimulationswereperformedusingANSYSFLUENT15.0software.Tobeginwith,thethermalperformancesoffourbackfillmaterialswereinvestigated.Furthermore,theinitialgroundtemperaturefactorandpipespacingfactorwerestudied,respectively.Finally,thecombinedeffectsofpipespacingfactorandinitialgroundtemperaturefactoronthethermalperformanceofGSHPwereanalyzed.4.ConclusionsThemainconclusionsaresummarizedasfollows:(1)Duetoitssmallthermaleffec
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度绿色环保型托管班教师聘用合同协议书3篇
- 人教版七年级数学上册《整式的加减整 理与复习》示范公开课教学课件
- 2024年新款圆管涵订购合同3篇
- 主题班会课:疫情期间致努力的自己x课件
- 2024年商业综合体停车场服务外包及收益分成合同3篇
- 2025透水砖植草砖购销合同
- 2024年度冬季公共交通枢纽积雪清除与乘客服务合同下载3篇
- 2025物业管理委托合同范本
- 2024年智能家居系统技术开发合同
- 金融合同执行风险控制
- 经口鼻吸痰技术(课堂PPT)
- 毕业设计(论文)-助力式下肢外骨骼机器人的结构设计
- CA6140法兰盘工序卡片
- 监控系统维保方案
- 注塑机作业指导书
- 建筑结构(第四版)
- 光伏并网调试方案
- 《铁路建设项目施工图审核管理办法》铁总建设[2014]299号
- 液态粉煤灰台背回填施工工艺
- 授权委托书电子版
- 100题分数加减法(有答案)
评论
0/150
提交评论