版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学物理方程的定解问题实质上都反映场与产生这个场的源之间的关系。例如,波动方程反映时变电磁场与电荷电流分布之间的关系,热传导方程反映温度场与热源之间的关系,泊松方程反映静电场与电荷分布的关系,等等。由于这些场源都可以看作点源的叠加,因此当知道一个点源的场,就可以利用叠加原理求出在同样边界条件下的任意源的场。这种处理方法的根据是,上述方程都是线性偏微分方程,它们的解遵守叠加原理。这种求解数学物理方程的方法称为格林函数法,在一定边界条件下点源的场称为格林函数。1第十二章格林函数解的积分公式
格林函数,又称点源影响函数,是数学物理中的重要概念,代表第一节泊松方程的格林函数法我们首先来介绍格林公式.设u(r)和v(r)在区域T及其边界上具有连续一阶导数,而在T中具有连续二阶导数,应用矢量分析的高斯定理将曲面积分化为体积积分点源的场,可以用叠加的方法计算任意源产生的场.一个点源在一定的边界条件和初始条件下所产生的场,而知道了2第一格林公式同理两式相减可得即其中表示沿边界的外法向求导数第二格林公式3讨论带有一定边界条件的泊松方程的求解问题,泊松方程而第一,第二,第三类边界条件可以统一表示为其中是区域边界上的给定函数,为第一类边界条件为第二类边界条件,为第三类边界条件.其中,泊松方程与第一类边界条件构成的定解问题叫第一边值问题或狄利希利问题,与第二类边界条件构成的定解解问题叫第三边值问题.问题叫第二边值问题或诺依曼问题,与第三类边界条件构成的定4为研究点源产生的场,需要找一个能表示点源密度分布的函数,乘v(r,r0),上式乘u(r),然后相减在T中求积分应用格林公式将左边的体积分化为面积分,但在点r=r0,具有的奇异性,不能用,先从区域T中挖去包含ro的小块,(半径为的小球,的边界为,对于剩下的体积,格林公式就(*)位于r0点的单位强度的正点源在r产生的场,即v(r,r0)满足方程:脉冲函数正好描述一个单位正点量的密度分布函数,以v(r,r0)表示可以应用了.5代入挖去的公式(*),且故当方程的解的点电荷的静电场中的电势,即可得上式右边而左边6则(*)成为:泊松方程的基本积分公式7上述公式将泊松方程的解u用区域T上的体积分及其边界上的面在边界上的值,但是,在第一边值问题中,知道的只是u在边界上的值,在第二边值问题中,知道的是在边界的值,在第三边值问题中知道的是u和的线性组合在边界上的值,都没有同时给出
u和在边界上的值,不能直接应用基本积分公式来解决边如果我们能对v(r,r0)提出适当的边界条件,就可以解决这个困难对于第一边值问题,u在边界上的值是已知的函数,如果要求v满足齐次的第一类边界条件值问题.积分表示出来.若要解决边值问题,需要知道u和8则基本积分公式中的一项为零,不需要知道在边界上的值,满足的解称为泊松方程第一边值问题的格林函数,用G(r,r0)表示.则基本积分公式为对第三边值问题,令v满足齐次的第三类边界条件满足以上边界条件和方程的解称为泊松方程第三边值问题的格林函数,用G(r,r0)表示.9G(r,r0),乘得U乘且以G代替v,可得(1)(2)(1)和(2)相减得代入基本积分公式得10对于第二边值问题,同样的方法无法解出,因为定解问题的解不存在!如果把这个格林函数看成温度分布,泛定方程右边的函数表明所包围区域T中有一个点热源,而边界条件表明边界是其中VT是T的体积,对于二维空间,有这个问题,引入推广的格林函数:区域T内的问题不断升高,其温度分布不可能是稳定的.为解决绝热的,这样,点热源不停释放热量,又不能散发出去,必然导致11其中AT是T的面积,这样添加的项是均匀分布的热汇密度,热汇在上述两个公式中,左边的r0表示观测点在r0,而右边积分中利用格林函数的对称性,可得r点产生的场,这里就要用到格林函数的对称性,将r和r0对调,的f(r)表示源在r,可是,格林函数g(r,r0)所代表的是r0的点源在正好吸收了点热源放出的热量,正好相等。12第一边值问题解的积分表示式第三边值问题解的积分表示式右边第一个积分表示区域T中分布的源f(r0)在点r产生的场的总和第二个积分则代表边界上的状况对r点场的影响的总和。两项积对于拉普拉斯方程,右边的只要令上述公式右边的体积分为零,就可得到拉
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024学校校园安全培训与护校合同3篇
- 2024年度教育机构担保合同投标委托服务协议3篇
- 2024年二零二四年度纸箱环保材料研发、生产与销售合同3篇
- 2024年小微企业担保人反担保合同标准范本3篇
- 2024年新材料产业有限合伙企业合伙协议范本3篇
- 2024年度纸箱销售与售后服务保障合同3篇
- 2024年员工临时资金周转及风险控制合同3篇
- 2024年度桥梁漆工施工及防腐保护合同范本3篇
- 2024年建筑项目钢筋工承包合同
- 2024年度新型地砖材料研发与应用合作协议3篇
- 2024北京西城初一(上)期末数学(教师版)
- (2024年)中国传统文化介绍课件
- 宗亲捐款倡议书
- 蛇年春联对联240副
- 广东省广州天河区2023-2024学年八年级上学期期末数学试卷含答案
- 江苏省百校2025届高三上学期12月联考语文试题(含答案)
- 四川省南充市2023-2024学年高一上学期期末考试 政治 含解析
- 寒假安全教育 1
- 江苏省扬州市梅岭中学2023-2024学年七年级上学期期末地理试题(含答案)
- 2023-2024学年广东省深圳市南山区七年级(上)期末地理试卷
- 高级技师电工培训
评论
0/150
提交评论