版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年云南司法警官职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知F1(-8,3),F2(2,3),动点P满足PF1-PF2=10,则点P的轨迹是______.答案:由于两点间的距离|F1F2|=10,所以满足条件|PF1|-|PF2|=10的点P的轨迹应是一条射线.故为一条射线.2.设一次试验成功的概率为p,进行100次独立重复试验,当p=______时,成功次数的标准差的值最大,其最大值为______.答案:由独立重复试验的方差公式可以得到Dξ=npq≤n(p+q2)2=n4,等号在p=q=12时成立,∴Dξ=100×12×12=25,σξ=25=5.故为:12;53.在极坐标系中,过点(22,π4)作圆ρ=4sinθ的切线,则切线的极坐标方程是______.答案:(22,π4)的直角坐标为:(2,2),圆ρ=4sinθ的直角坐标方程为:x2+y2-4y=0;显然,圆心坐标(0,2),半径为:2;所以过(2,2)与圆相切的直线方程为:x=2,所以切线的极坐标方程是:ρcosθ=2故为:ρcosθ=24.圆x2+y2=1上的点到直线x=2的距离的最大值是
______.答案:根据题意,圆上点到直线距离最大值为:半径+圆心到直线的距离.而根据圆x2+y2=1圆心为(0,0),半径为1∴dmax=1+2=3故为:35.一个凸多面体的各个面都是四边形,它的顶点数是16,则它的面数为()
A.14
B.7
C.15
D.不能确定答案:A6.过点(-3,-1),且与直线x-2y=0平行的直线方程为______.答案:直线l经过点(-3,-1),且与直线x-2y=0平行,直线的斜率为12所以直线l的方程为:y+1=12(x+3)即x-2y+1=0.故为:x-2y+1=0.7.若曲线x24+k+y21-k=1表示双曲线,则k的取值范围是
______.答案:要使方程为双曲线方程需(4+k)(1-k)<0,即(k-1)(k+4)>0,解得k>1或k<-4故为(-∞,-4)∪(1,+∞)8.已知向量a=(2,4),b=(1,1),若向量b⊥(a+λb),则实数λ的值是
______.答案:a+λb=(2,4)+λ(1,1)=(2+λ,4+λ).∵b⊥(a+λb),∴b•(a+λb)=0,即(1,1)•(2+λ,4+λ)=2+λ+4+λ=6+2λ=0,∴λ=-3.故:-39.直线y=3x+3的倾斜角的大小为______.答案:∵直线y=3x+3的斜率等于3,设倾斜角等于α,则0°≤α<180°,且tanα=3,∴α=60°,故为60°.10.如图所示,设P为△ABC所在平面内的一点,并且AP=15AB+25AC,则△ABP与△ABC的面积之比等于()A.15B.12C.25D.23答案:连接CP并延长交AB于D,∵P、C、D三点共线,∴AP=λAD+μAC且λ+μ=1设AB=kAD,结合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面积与△ABC有相同的底边AB高的比等于|PD|与|CD|之比∴△ABP的面积与△ABC面积之比为25故选:C11.下列四个命题中,正确的有
个
①;
②;
③,使;
④,使为29的约数.答案:两解析::①∵(-3)2-4×2×40,∴①正确;②∵2×(-1)+1=-1x,∴③不正确;④x=1是29的约数,∴④正确;∴正确的有两个点评:本题考查全称命题、特称命题,容易题12.已知复数w满足w-4=(3-2w)i(i为虚数单位),z=5w+|w-2|,求一个以z为根的实系数一元二次方程.答案:[解法一]∵复数w满足w-4=(3-2w)i,∴w(1+2i)=4+3i,∴w(1+2i)(1-2i)=(4+3i)(1-2i),∴5w=10-5i,∴w=2-i.∴z=52-i+|2-i-2|=5(2+i)(2-i)(2+i)+1=2+i+1=3+i.若实系数一元二次方程有虚根z=3+i,则必有共轭虚根.z=3-i.∵z+.z=6,z•.z=10,∴所求的一个一元二次方程可以是x2-6x+10=0.[解法二]设w=a+b,(a,b∈Z),∴a+bi-4=3i-2ai+2b,得a-4=2bb=3-2a解得a=2b=-1,∴w=2-i,以下解法同[解法一].13.对某种电子元件进行寿命跟踪调查,所得样本频率分布直方图如图,由图可知:一批电子元件中,寿命在100~300小时的电子元件的数量与寿命在300~600小时的电子元件的数量的比大约是()A.12B.13C.14D.16答案:由于已知的频率分布直方图中组距为100,寿命在100~300小时的电子元件对应的矩形的高分别为:12000,32000则寿命在100~300小时的电子元件的频率为:100?(12000+32000)=0.2寿命在300~600小时的电子元件对应的矩形的高分别为:1400,1250,32000则寿命在300~600小时子元件的频率为:100?(1400+1250+32000)=0.8则寿命在100~300小时的电子元件的数量与寿命在300~600小时的电子元件的数量的比大约是0.2:0.8=14故选C14.设函数g(x)=ex
x≤0lnx,x>0,则g(g(12))=______.答案:g(g(12))
=g(ln12)
=eln12=12故为:12.15.若由一个2*2列联表中的数据计算得k2=4.013,那么有()把握认为两个变量有关系.
A.95%
B.97.5%
C.99%
D.99.9%答案:A16.例3.设a>0,b>0,解关于x的不等式:|ax-2|≥bx.答案:原不等式|ax-2|≥bx可化为ax-2≥bx或ax-2≤-bx,(1)对于不等式ax-2≤-bx,即(a+b)x≤2
因为a>0,b>0即:x≤2a+b.(2)对于不等式ax-2≥bx,即(a-b)x≥2①当a>b>0时,由①得x≥2a-b,∴此时,原不等式解为:x≥2a-b或x≤2a+b;当a=b>0时,由①得x∈ϕ,∴此时,原不等式解为:x≤2a+b;当0<a<b时,由①得x≤2a-b,∴此时,原不等式解为:x≤2a+b.综上可得,当a>b>0时,原不等式解集为(-∞,2a+b]∪[2a-b,+∞),当0<a≤b时,原不等式解集为(-∞,2a+b].17.在空间直角坐标系O-xyz中,已知=(1,2,3),=(2,1,2),=(1,1,2),点Q在直线OP上运动,则当取得最小值时,点Q的坐标为()
A.(,,)
B.(,,)
C.(,,)
D.(,,)答案:C18.一个十二面体共有8个顶点,其中2个顶点处各有6条棱,其它顶点处都有相同的棱,则其它顶点处的棱数为______.答案:此十二面体如右图,数形结合可得则其它顶点处的棱数为4故为419.极点到直线ρ(cosθ+sinθ)=3的距离是
______.答案:将原极坐标方程ρ(cosθ+sinθ)=3化为:直角坐标方程为:x+y=3,原点到该直线的距离是:d=|3|2=62.∴所求的距离是:62.故填:62.20.写出求1+2+3+4+5+6+…+100的一个算法.可运用公式1+2+3+…+n=n(n+1)2直接计算.
第一步______;
第二步______;
第三步
输出计算的结果.答案:由条件知构成等差数列,从而前n项和公式求得其值,求1+2+3+4+5+6+…+100,故先取n=100,再代入计算S=n(n+1)2.故为:取n=100;计算S=n(n+1)2.21.己知△ABC的外心、重心、垂心分别为O,G,H,若,则λ=()
A.3
B.2
C.
D.答案:A22.已知⊙C1:x2+y2+2x+8y-8=0,⊙C2:x2+y2-4x-4y-2=0,则的位置关系为()
A.相切
B.相离
C.相交
D.内含答案:C23.有一个容量为80的样本,数据的最大值是140,最小值是51,组距为10,则可以分为(
)
A.10组
B.9组
C.8组
D.7组答案:B24.若复数z=(m2-1)+(m+1)i为纯虚数,则实数m的值等于______.答案:复数z=(m2-1)+(m+1)i当z是纯虚数时,必有:m2-1=0且m+1≠0解得,m=1.故为1.25.已知点P是长方体ABCD-A1B1C1D1底面ABCD内一动点,其中AA1=AB=1,AD=2,若A1P与A1C所成的角为30°,那么点P在底面的轨迹为()A.圆弧B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案:如图,∵A1P与A1C所成的角为30°,∴P点在以A1C为轴,母线与轴的夹角为30度的圆锥面上,在直角三角形A1CC1中,A1C1=3,CC1=1,∴∠C1AC1=30°当截面ABCD与圆锥的母线A1C1平行时,截得的图形是抛物线,故点P在底面的轨迹为抛物线的一部分.故选D.26.已知直线3x+4y-3=0与直线6x+my+14=0平行,则它们之间的距离是______.答案:直线3x+4y-3=0即6x+8y-6=0,它直线6x+my+14=0平行,∴m=8,则它们之间的距离是d=|c1-c2|a2+b2=|-6-14|62+82=2,故为:2.27.比较大小:a=0.20.5,b=0.50.2,则()
A.0<a<b<1
B.0<b<a<1
C.1<a<b
D.1<b<a答案:A28.如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是()
A.
B.
C.
D.2答案:C29.函数f(x)=2x2+1,&x∈[0,2],则函数f(x)的值域为()A.[1,32]B.[4,32]C.[2,32]D.[2,4]答案:∵f(x)=2x2+1,x∈[0,2],∴设y=2t,t=x2+1∈[1,5],∵y=2t是增函数,∴t=1时,ymin=2;t=5时,ymax=25=32.∴函数f(x)的值域为[2,32].故为:C.30.某种细菌在培养过程中,每15分钟分裂一次(由一个分裂成两个),这种细菌由1个繁殖成4096个需经过()A.12小时B.4小时C.3小时D.2小时答案:设共分裂了x次,则有2x=4
096,∴2x=212,又∵每次为15分钟,∴共15×12=180(分钟),即3个小时.故为C31.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1B.3C.4D.8答案:A={1,2},A∪B={1,2,3},则集合B中必含有元素3,即此题可转化为求集合A={1,2}的子集个数问题,所以满足题目条件的集合B共有22=4个.故选择C.32.已知函数f(x)=2x+a的图象不过第三象限,则常数a的取值范围是
______.答案:函数f(x)=2x+a的图象可根据指数函数f(x)=2x的图象向上(a>0)或者向下(a<0)平移|a|个单位得到,若函数f(x)=2x+a的图象不过第三象限,则只能向上平移或者不平移,因此,a的取值范围是a≥0.故为:a≥0.33.设a∈(0,1)∪(1,+∞),对任意的x∈(0,12],总有4x≤logax恒成立,则实数a的取值范围是______.答案:∵a∈(0,1)∪(1,+∞),当0<x≤12时,函数y=4x的图象如下图所示:∵对任意的x∈(0,12],总有4x≤logax恒成立,若不等式4x<logax恒成立,则y=logax的图象恒在y=4x的图象的上方(如图中虚线所示)∵y=logax的图象与y=4x的图象交于(12,2)点时,a=22,故虚线所示的y=logax的图象对应的底数a应满足22<a<1.故为:(22,1).34.袋中有4个形状大小一样的球,编号分别为1,2,3,4,从中任取2个球,则这2个球的编号之和为偶数的概率为()A.16B.23C.12D.13答案:根据题意,从4个球中取出2个,其编号的情况有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种;其中编号之和为偶数的有(1,3),(2,4),共2种;则2个球的编号之和为偶数的概率P=26=13;故选D.35.函数f(x)=x2+2的单调递增区间为
______.答案:如图所示:函数的递增区间是:[0,+∞)故为:[0,+∞)36.设a=log32,b=log23,c=,则()
A.c<b<a
B.a<c<b
C.c<a<b
D.b<c<a答案:C37.若向量且与的夹角余弦为则λ等于()
A.4
B.-4
C.
D.答案:C38.(参数方程与极坐标)已知F是曲线x=2cosθy=1+cos2θ(θ∈R)的焦点,M(12,0),则|MF|的值是
______.答案:y=1+cos2θ=2cos2θ=2•(x2)2化简得x2=2y∴F(0,12)而M(12,0),∴|MF|=22故为:2239.下列几何体各自的三视图中,有且仅有两个视图相同的是()
A.①②B.①③C.①④D.②④答案:正方体的三视图都相同,而三棱台的三视图各不相同,圆锥和正四棱锥的,正视图和侧视图相同,所以,正确为D.故选D40.某学院有四个饲养房,分别养有18,54,24,48只白鼠供实验用,某项实验需要抽取24只白鼠,你认为最合适的抽样方法是()A.在每个饲养房各抽取6只B.把所以白鼠都编上号,用随机抽样法确定24只C.在四个饲养房应分别抽取3,9,4,8只D.先确定这四个饲养房应分别抽取3,9,4,8只样品,再由各饲养房将白鼠编号,用简单随机抽样确定各自要抽取的对象答案:A中对四个饲养房平均摊派,但由于各饲养房所养数量不一,反而造成了各个个体入选概率的不均衡,是错误的方法.B中保证了各个个体入选概率的相等,但由于没有注意到处在四个不同环境中会产生差异,不如采用分层抽样可靠性高,且统一编号统一选择加大了工作量.C中总体采用了分层抽样,但在每个层次中没有考虑到个体的差层(如健壮程度,灵活程度),貌似随机,实则各个个体概率不等.故选D.41.如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线答案:本题其实就是一个平面斜截一个圆柱表面的问题,因为三角形面积为定值,以AB为底,则底边长一定,从而可得P到直线AB的距离为定值,分析可得,点P的轨迹为一以AB为轴线的圆柱面,与平面α的交线,且α与圆柱的轴线斜交,由平面与圆柱面的截面的性质判断,可得P的轨迹为椭圆.42.是x1,x2,…,x100的平均数,a是x1,x2,…,x40的平均数,b是x41,x42,…,x100的平均数,则下列各式正确的是()
A.=
B=
C.=a+b
D.答案:A43.已知{x1,x2,x3,…,xn}的平均数是2,则3x1+2,3x2+2,…,3xn+2的平均数=_______.答案:∵x1,x2,x3,…,xn的平均数是2即(x1+x2+x3+…+xn)÷n=2∴3x1+2,3x2+2,…,3xn+2的平均数为(3x1+2+3x2+2+…+3xn+2)÷n=[3(x1+x2+x3+…+xn)+2n]÷n=3×2+2=8故为:844.已知大于1的正数x,y,z满足x+y+z=33.
(1)求证:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32.
(2)求1log3x+log3y+1log3y+log3z+1log3z+log3x的最小值.答案:(1)由柯西不等式得,(x2x+2y+3z+y2y+2z+3z+z2z+2x+3y)[(x+2y+3z)+(y+2z+3x)+(z+2x+3y)]≥(x+y+z)2=27得:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32;(2)∵1log3x+log3y+1log3y+log3z+1log3z+log3x=1log3(xy)+1log3(yz)+1log3(zx),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx)),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx))≥9所以,(1log3(xy)+1log3(yz)+1log3(zx))≥9(log3(xy)+log3(yz)+log3(zx))=92log3(xyz),又∵33=x+y+z≥33xyz.∴xyz≤33.∴log3xyz≤32.得92log3xyz≥92×23=3所以,1log3x+log3y+1log3y+log3z+1log3z+log3x≥3当且仅当x=y=z=3时,等号成立.故所求的最小值是3.45.若方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)答案:∵方程x2+ky2=2,即x22+y22k=1表示焦点在y轴上的椭圆∴2k>2故0<k<1故选D.46.对任意实数x,y,定义运算x*y=ax+by+cxy,其中a,b,c是常数,等式右边的运算是通常的加法和乘法运算。已知1*2=3,2*3=4,并且有一个非零常数m,使得对任意实数x,都有x*m=x,则m的值是[
]
A.4
B.-4
C.-5
D.6答案:A47.已知直线l经过点P(3,1),且被两平行直线l1;x+y+1=0和l2:x+y+6=0截得的线段之长为5,求直线l的方程.答案:解法一:若直线l的斜率不存在,则直线l的方程为x=3,此时与l1、l2的交点分别为A′(3,-4)或B′(3,-9),截得的线段AB的长|AB|=|-4+9|=5,符合题意.若直线l的斜率存在,则设直线l的方程为y=k(x-3)+1.解方程组y=k(x-3)+1x+y+1=0得A(3k-2k+1,-4k-1k+1).解方程组y=k(x-3)+1x+y+6=0得B(3k-7k+1,-9k-1k+1).由|AB|=5.得(3k-2k+1-3k-7k+1)2+(-4k-1k+1+9k-1k+1)2=52.解之,得k=0,直线方程为y=1.综上可知,所求l的方程为x=3或y=1.解法二:由题意,直线l1、l2之间的距离为d=|1-6|2=522,且直线L被平行直线l1、l2所截得的线段AB的长为5,设直线l与直线l1的夹角为θ,则sinθ=5225=22,故θ=45°.由直线l1:x+y+1=0的倾斜角为135°,知直线l的倾斜角为0°或90°,又由直线l过点P(3,1),故直线l的方程为:x=3或y=1.解法三:设直线l与l1、l2分别相交A(x1,y1)、B(x2,y2),则x1+y1+1=0,x2+y2+6=0.两式相减,得(x1-x2)+(y1-y2)=5.①又(x1-x2)2+(y1-y2)2=25.②联立①、②可得x1-x2=5y1-y2=0或x1-x2=0y1-y2=5由上可知,直线l的倾斜角分别为0°或90°.故所求的直线方程为x=3或y=1.48.如果如图所示的程序中运行后输出的结果为132,那么在程序While后面的“条件”应为______.答案:第一次循环之后s=12,i=11;第二次循环之后结果是s=132,i=10,已满足题意跳出循环.由于此循环体是当型循环i=12、11都满足条件,i=10不满足条件.故为:i≥1149.不等式log2(x+1)<1的解集为()
A.{x|0<x<1}
B.{x|-1<x≤0}
C.{x|-1<x<1}
D.{x|x>-1}答案:C50.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法求得回归直线方程y=0.68x+54.6
表中有一个数据模糊不清,请你推断出该数据的值为()A.68B.68.2C.69D.75答案:设表中有一个模糊看不清数据为m.由表中数据得:.x=30,.y=m+3075,由于由最小二乘法求得回归方程y=0.68x+54.6.将x=30,y=m+3075代入回归直线方程,得m=68.故选A.第2卷一.综合题(共50题)1.函数y=ax2+1的图象与直线y=x相切,则a=______.答案:设切点为(x0,y0),∵y′=2ax,∴k=2ax0=1,①又∵点(x0,y0)在曲线与直线上,即y0=ax20+1y0=x0,②由①②得a=14.故为14.2.如果e1,e2是平面a内所有向量的一组基底,那么()A.若实数λ1,λ2使λ1e1+λ2e2=0,则λ1=λ2=0B.空间任一向量可以表示为a=λ1e1+λ2e2,这里λ1,λ2∈RC.对实数λ1,λ2,λ1e1+λ2e2不一定在平面a内D.对平面a中的任一向量a,使a=λ1e1+λ2e2的实数λ1,λ2有无数对答案:∵由基底的定义可知,e1和e2是平面上不共线的两个向量,∴实数λ1,λ2使λ1e1+λ2e2=0,则λ1=λ2=0,不是空间任一向量都可以表示为a=λ1e1+λ2e2,而是平面a中的任一向量a,可以表示为a=λ1e1+λ2e2的形式,此时实数λ1,λ2有且只有一对,而对实数λ1,λ2,λ1e1+λ2e2一定在平面a内,故选A.3.如图,已知双曲线以长方形ABCD的顶点A,B为左、右焦点,且过C,D两顶点.若AB=4,BC=3,则此双曲线的标准方程为______.答案:由题意可得点OA=OB=2,AC=5设双曲线的标准方程是x2a2-y2b2=1.则2a=AC-BC=5-3=2,所以a=1.所以b2=c2-a2=4-1=3.所以双曲线的标准方程是x2-y23=1.故为:x2-y23=14.下列语句不属于基本算法语句的是()
A.赋值语句
B.运算语句
C.条件语句
D.循环语句答案:B5.已知向量a、b的夹角为60°,且|a|=2,|b|=1,则|a+2b|=______;向量a与向量a+2b的夹角的大小为______.答案:∵a?b=|a|?|b|cos60°=1,∴|a+2b|=(a+2b)2=4+4+4a?b=23,设向量a与向量a+2b的夹角的大小为θ,∵a?(a+2b)=2×23cosθ=43cosθ,a?(a+2b)=a2+2a?b=4+2=6,∴43cosθ=6,cosθ=32,∴θ=30°,故为23,30°.6.若圆台的上下底面半径分别是1和3,它的侧面积是两底面面积和的2倍,则圆台的母线长是()A.2B.2.5C.5D.10答案:设母线长为l,则S侧=π(1+3)l=4πl.S上底+S下底=π?12+π?32=10π.据题意4πl=20π即l=5,故选C.7.指数函数y=ax的图象经过点(2,16)则a的值是()A.14B.12C.2D.4答案:设指数函数为y=ax(a>0且a≠1)将(2,16)代入得16=a2解得a=4所以y=4x故选D.8.已知适合不等式|x2-4x+p|+|x-3|≤5的x的最大值为3,求p的值.答案:因为x的最大值为3,故x-3<0,原不等式等价于|x2-4x+p|-x+3≤5,(3分)即-x-2≤x2-4x+p≤x+2,则x2-5x+p-2≤0x2-3x+p+2≥0
解的最大值为3,(6分)设x2-5x+p-2=0
的根分别为x1和x2,x1<x2,x2-3x+p+2=0的根分别为x3和
x4,x3<x4.则x2=3,或x4=3.若x2=3,则9-15+p-2=0,p=8,若x4=3,则9-9+p+2=0,p=-2.当p=-2时,原不等式无解,检验得:p=8
符合题意,故p=8.(12分)9.过点(-3,-1),且与直线x-2y=0平行的直线方程为______.答案:直线l经过点(-3,-1),且与直线x-2y=0平行,直线的斜率为12所以直线l的方程为:y+1=12(x+3)即x-2y+1=0.故为:x-2y+1=0.10.已知双曲线x2-y22=1,经过点M(1,1)能否作一条直线l,使直线l与双曲线交于A、B,且M是线段AB的中点,若存在这样的直线l,求出它的方程;若不存在,说明理由.答案:设过点M(1,1)的直线方程为y=k(x-1)+1或x=1(1)当k存在时有y=k(x-1)+1x2
-y22=1得(2-k2)x2+(2k2-2k)x-k2+2k-3=0
(1)当直线与双曲线相交于两个不同点,则必有△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,k<32
又方程(1)的两个不同的根是两交点A、B的横坐标∴x1+x2=2(k-k2)2-k2
又M(1,1)为线段AB的中点∴x1+x22=1
即k-k22-k2=1
k=2
∴k=2,使2-k2≠0但使△<0因此当k=2时,方程(1)无实数解故过点m(1,1)与双曲线交于两点A、B且M为线段AB中点的直线不存在.(2)当x=1时,直线经过点M但不满足条件,综上,符合条件的直线l不存在11.若直线l与直线2x+5y-1=0垂直,则直线l的方向向量为______.答案:直线l与直线2x+5y-1=0垂直,所以直线l:5x-2y+k=0,所以直线l的方向向量为:(2,5).故为:(2,5)12.函数f(x)=x2+(a+1)x+2是定义在[a,b]上的偶函数,则a+b=______.答案:∵函数f(x)=x2+(a+1)x+2是定义在[a,b]上的偶函数,∴其定义域关于原点对称,既[a,b]关于原点对称.所以a与b互为相反数即a+b=0.故为:0.13.某校在检查学生作业时,抽出每班学号尾数为4的学生作业进行检查,这里主要运用的抽样方法是()
A.分层抽样
B.抽签抽样
C.随机抽样
D.系统抽样答案:D14.某校高三有1000个学生,高二有1200个学生,高一有1500个学生.现按年级分层抽样,调查学生的视力情况,若高一抽取了75人,则全校共抽取了
______人.答案:∵高三有1000个学生,高二有1200个学生,高一有1500个学生.∴本校共有学生1000+1200+1500=3700,∵按年级分层抽,高一抽取了75人,∴每个个体被抽到的概率是751500=120,∴全校要抽取120×3700=185,故为:185.15.定义xn+1yn+1=1011xnyn,n∈N*为向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一个矩阵变换,其中O是坐标原点.已知OP1=(1,0),则OP2010的坐标为______.答案:由题意,xn+1=xnyn+1=xn+yn∴向量的横坐标不变,纵坐标构成以0为首项,1为公差的等差数列∴OP2010的坐标为(1,2009)故为(1,2009)16.口袋中装有三个编号分别为1,2,3的小球,现从袋中随机取球,每次取一个球,确定编号后放回,连续取球两次.则“两次取球中有3号球”的概率为()A.59B.49C.25D.12答案:每次取球时,出现3号球的概率为13,则两次取得球都是3号求得概率为C22?(13)2=19,两次取得球只有一次取得3号求得概率为C12?13?23=49,故“两次取球中有3号球”的概率为19+49=59,故选A.17.某公司招聘员工,经过笔试确定面试对象人数,面试对象人数按拟录用人数分段计算,计算公式为y=4x1≤x≤102x+1010<x≤1001.5xx>100其中x代表拟录用人数,y代表面试对象人数.若应聘的面试对象人数为60人,则该公司拟录用人数为()A.15B.40C.25D.130答案:由题意知:当10<x≤100时,y=2x+10∈(30,210],又因为60∈(30,210],∴2x+10=60,∴x=25.故:该公司拟录用人数为25人.故选C.18.设向量a,b的夹角为60°的单位向量,则向量2a+b的模为()A.3B.7C.5D.3答案:|2a+b|=(2a+b)2=4a2+4a?b+b2=4+4×1×1×12+1=7故向量2a+b的模为7故选B19.已知a=(2,-1,1),b=(-1,4,-2),c=(λ,5,1),若向量a,b,c共面,则λ=______.答案:∵a、b、c三向量共面,∴c=xa+yb,x,y∈R,∴(λ,5,1)=(2x,-x,x)+(-y,4y,-2y)=(2x-y,-x+4y,x-2y),∴2x-y=λ,-x+4y=5,x-2y=1,解得x=7,y=3,λ=11;故为;
11.20.如果消息M发生的概率为P(M),那么消息M所含的信息量为I(M)=log2[P(M)+],若小明在一个有4排8列座位的小型报告厅里听报告,则发布的以下4条消费中,信息量最大的是()
A.小明在第4排
B.小明在第5列
C.小明在第4排第5列
D.小明在某一排答案:C21.在平面直角坐标系xOy中,双曲线x24-y212=1上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是______答案:MFd=e=2,d为点M到右准线x=1的距离,则d=2,∴MF=4.故为422.已知非零向量,若与互相垂直,则=(
)
A.
B.4
C.
D.2答案:D23.已知点A(1,0,0),B(0,2,0),C(0,0,3)则平面ABC与平面xOy所成锐二面角的余弦值为______.答案:AB=(-1,2,0),AC=(-1,0,3).设平面ABC的法向量为n=(x,y,z),则n•AB=-x+2y=0n•AC=-x+3z=0,令x=2,则y=1,z=23.∴n=(2,1,23).取平面xoy的法向量m=(0,0,1).则cos<m,n>=m•n|m|
|n|=231×22+1+(23)2=27.故为27.24.O、B、C为空间四个点,又、、为空间的一个基底,则()
A.O、A、B、C四点不共线
B.O、A、B、C四点共面,但不共线
C.O、A、B、C四点中任意三点不共线
D.O、A、B、C四点不共面答案:D25.设a,b,λ都为正数,且a≠b,对于函数y=x2(x>0)图象上两点A(a,a2),B(b,b2).
(1)若AC=λCB,则点C的坐标是______;
(2)过点C作x轴的垂线,交函数y=x2(x>0)的图象于D点,由点C在点D的上方可得不等式:______.答案:(1)设点C(x,y),因为点A(a,a2),B(b,b2),AC=λCB,则(x-a,y-a2)=λ(b-x,b2-y),所以:x=a+λb1+λ,y=a2+λb21+λ(2)因为点C在点D的上方,则y>yD,所以a2+λb21+λ>(a+λb1+λ)226.已知|a|=1,|b|=2,向量a与b的夹角为60°,则|a+b|=______.答案:∵已知|a|=1,|b|=2,向量a与b的夹角为60°,∴a2=1,b2=4,a?b=1×2×cos60°=1,.∴|.a+b|2=a2+b2+2a?b=1+4+2=7,∴|.a+b|
=7,故为7.27.(坐标系与参数方程选做题)点P(-3,0)到曲线x=t2y=2t(其中参数t∈R)上的点的最短距离为______.答案:设点Q(t2,2t)为曲线上的任意一点,则|PQ|=(t2+3)2+(2t)2=(t2+5)2-16≥52-16=3,当且仅当t=0取等号,此时Q(0,0).故点P(-3,0)到曲线x=t2y=2t(其中参数t∈R)上的点的最短距离为3.故为3.28.(本小题满分10分)如图,D、E分别是AB、AC边上的点,且不与顶点重合,已知为方程的两根
(1)证明四点共圆
(2)若求四点所在圆的半径答案:(1)见解析;(2)解析:解:(Ⅰ)如图,连接DE,依题意在中,,由因为所以,∽,四点C、B、D、E共圆。(Ⅱ)当时,方程的根因而,取CE中点G,BD中点F,分别过G,F做AC,AB的垂线,两垂线交于点H,连接DH,因为四点C、B、D、E共圆,所以,H为圆心,半径为DH.,,所以,,点评:此题考查平面几何中的圆与相似三角形及方程等概念和性质。注意把握判定与性质的作用。29.某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为()A.12B.16C.24D.32答案:将空位插到三个人中间,三个人有两个中间位置和两个两边位置就是将空位分为四部分,五个空位四分只有1,1,1,2空位五差别,只需要空位2分别占在四个位置就可以有四种方法,另外三个人排列A33=6根据分步计数可得共有4×6=24故选C.30.9、从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型与乙型电视机各1台,则不同的取法共有()
A.140种
B.84种
C.70种
D.35种答案:C31.命题“若b≠3,则b2≠9”的逆命题是______.答案:根据“若p则q”的逆命题是“若q则p”,可得命题“若b≠3,则b2≠9”的逆命题是若b2≠9,则b≠3.故为:若b2≠9,则b≠3.32.某种细菌在培养过程中,每15分钟分裂一次(由一个分裂成两个),这种细菌由1个繁殖成4096个需经过()A.12小时B.4小时C.3小时D.2小时答案:设共分裂了x次,则有2x=4
096,∴2x=212,又∵每次为15分钟,∴共15×12=180(分钟),即3个小时.故为C33.在甲、乙两个盒子里分别装有标号为1、2、3、4的四个小球,现从甲、乙两个盒子里各取出1个小球,每个小球被取出的可能性相等.
(1)求取出的两个小球上标号为相邻整数的概率;
(2)求取出的两个小球上标号之和能被3整除的概率;
(3)求取出的两个小球上标号之和大于5整除的概率.答案:甲、乙两个盒子里各取出1个小球计为(X,Y)则基本事件共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)总数为16种.(1)其中取出的两个小球上标号为相邻整数的基本事件有:(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6种故取出的两个小球上标号为相邻整数的概率P=38;(2)其中取出的两个小球上标号之和能被3整除的基本事件有:(1,2),(2,1),(2,4),(3,3),(4,2)共5种故取出的两个小球上标号之和能被3整除的概率为516;(3)其中取出的两个小球上标号之和大于5的基本事件有:(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6种故取出的两个小球上标号之和大于5的概率P=3834.已知a、b是不共线的向量,AB=λa+b,AC=a+μb(λ,μ∈R),则A、B、C三点共线的充要条件是______.答案:由于AB,AC有公共点A,∴若A、B、C三点共线则AB与AC共线即存在一个实数t,使AB=tAC即λ=at1=μt消去参数t得:λμ=1反之,当λμ=1时AB=1μa+b此时存在实数1μ使AB=1μAC故AB与AC共线又由AB,AC有公共点A,∴A、B、C三点共线故A、B、C三点共线的充要条件是λμ=135.直线x+1=0的倾斜角是______.答案:直线x+1=0与x轴垂直,所以直线的倾斜角为90°.故为:90°.36.如图,空间四边形ABCD中,M、G分别是BC、CD的中点,则AB+12BC+12BD等()A.ADB.GAC.AGD.MG答案:∵M、G分别是BC、CD的中点,∴12BC=BM,12BD=MC∴AB+12BC+12BD=AB+BM+MC=AM+MC=AC故选C37.设a=log32,b=log23,c=,则()
A.c<b<a
B.a<c<b
C.c<a<b
D.b<c<a答案:C38.设k>1,则关于x,y的方程(1-k)x2+y2=k2-1所表示的曲线是()
A.长轴在x轴上的椭圆
B.长轴在y轴上的椭圆
C.实轴在x轴上的双曲线
D.实轴在y轴上的双曲线答案:D39.已知A(0,1),B(3,7),C(x,15)三点共线,则x的值是()
A.5
B.6
C.7
D.8答案:C40.若点P(a,b)在圆C:x2+y2=1的外部,则直线ax+by+1=0与圆C的位置关系是()
A.相切
B.相离
C.相交
D.相交或相切答案:C41.把下列命题写成“若p,则q”的形式,并指出条件与结论.
(1)相似三角形的对应角相等;
(2)当a>1时,函数y=ax是增函数.答案:(1)若两个三角形相似,则它们的对应角相等.条件p:三角形相似,结论q:对应角相等.(2)若a>1,则函数y=ax是增函数.条件p:a>1,结论q:函数y=ax是增函数.42.气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22
(℃)”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):
①甲地:5个数据的中位数为24,众数为22;
②乙地:5个数据的中位数为27,总体均值为24;
③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8;
则肯定进入夏季的地区有()A.0个B.1个C.2个D.3个答案:①甲地:5个数据的中位数为24,众数为22,根据数据得出:甲地连续5天的日平均温度的记录数据可能为:22,22,24,25,26.其连续5天的日平均温度均不低于22.
②乙地:5个数据的中位数为27,总体均值为24.根据其总体均值为24可知其连续5天的日平均温度均不低于22.③丙地:5个数据中有一个数据是32,总体均值为26,根据其总体均值为24可知其连续5天的日平均温度均不低于22.则肯定进入夏季的地区有甲、乙、丙三地.故选D.43.为了调查高中生的性别与是否喜欢足球之间有无关系,一般需要收集以下数据______.答案:为了调查高中生的性别与是否喜欢足球之间有无关系,一般需要收集男女生中喜欢或不喜欢足球的人数,再得出2×2列联表,最后代入随机变量的观测值公式,得出结果.故为:男女生中喜欢或不喜欢足球的人数.44.经过两点A(-3,5),B(1,1
)的直线倾斜角为______.答案:因为两点A(-3,5),B(1,1
)的直线的斜率为k=1-51-(-3)=-1所以直线的倾斜角为:135°.故为:135°.45.在我市新一轮农村电网改造升级过程中,需要选一个电阻调试某村某设备的线路,但调试者手中必有阻值分别为0.5KΩ,1KΩ,1.3KΩ,2KΩ,3KΩ,5KΩ,5.5KΩ等七种阻值不等的定值电阻,他用分数法进行优选试验时,依次将电阻从小到大安排序号,如果第1个试点与第2个试点比较,第1个试点是一个好点,则第3个试点值的阻值为[
]A、1KΩ
B、1.3KΩ
C、5KΩ
D、1KΩ或5KΩ答案:C46.参数方程,(θ为参数)表示的曲线是()
A.直线
B.圆
C.椭圆
D.抛物线答案:C47.抛物线C:y=x2上两点M、N满足MN=12MP,若OP=(0,-2),则|MN|=______.答案:设M(x1,x12),N(x2,x22),则MN=(x2-x1,x22-x12)MP=(-x1,-2-x12).因为MN=12MP,所以(x2-x1,x22-x12)=12(-x1,-2-x12),即x2-x1=-12x1,x22-x12=12(-2-x12),所以x1=2x2,2x22=-2+x12,联立解得:x2=1,x1=2或x2=-1,x1=-2即M(1,1),N(2,4)或M(-1,1),N(-2,4)所以|MN|=10故为10.48.已知a、b、c为某一直角三角形的三条边长,c为斜边.若点(m,n)在直线ax+by+2c=0上,则m2+n2的最小值是______.答案:根据题意可知:当(m,n)运动到原点与已知直线作垂线的垂足位置时,m2+n2的值最小,由三角形为直角三角形,且c为斜边,根据勾股定理得:c2=a2+b2,所以原点(0,0)到直线ax+by+2c=0的距离d=|0+0+2c|a2+b2=2,则m2+n2的最小值为4.故为:4.49.将6位志愿者分成4组,每组至少1人,分赴世博会的四个不同场馆服务,不同的分配方案有______种(用数字作答).答案:由题意,六个人分为四组,若有三个人一组,则四组人数为3,1,1,1,则不同的分法为C63=20种,若存在两人一组,则分法为2,2,1,1,不同的分法有C26×C24A22=45分赴世博会的四个不同场馆服务,不同的分配方案有(20+45)×A44=1560种故为:1560.50.曲线的参数方程为(t是参数),则曲线是(
)
A.线段
B.双曲线的一支
C.圆
D.射线答案:D第3卷一.综合题(共50题)1.若a,b∈R,求证:≤+.答案:证明略解析:证明
当|a+b|=0时,不等式显然成立.当|a+b|≠0时,由0<|a+b|≤|a|+|b|≥,所以=≤=≤+.2.求证:答案:证明见解析解析:证明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。3.要使直线y=kx+1(k∈R)与焦点在x轴上的椭圆x27+y2a=1总有公共点,实数a的取值范围是______.答案:要使方程x27+y2a=1表示焦点在x轴上的椭圆,需a<7,由直线y=kx+1(k∈R)恒过定点(0,1),所以要使直线y=kx+1(k∈R)与椭圆x27+y2a=1总有公共点,则(0,1)应在椭圆上或其内部,即a>1,所以实数a的取值范围是[1,7).故为[1,7).4.在数学归纳法证明多边形内角和定理时,第一步应验证()
A.n=1成立
B.n=2成立
C.n=3成立
D.n=4成立答案:C5.用反证法证明“a+b=1”时的反设为()
A.a+b>1且a+b<1
B.a+b>1
C.a+b>1或a+b<1
D.a+b<1答案:C6.设椭圆=1和x轴正方向的交点为A,和y轴的正方向的交点为B,P为第一象限内椭圆上的点,使四边形OAPB面积最大(O为原点),那么四边形OAPB面积最大值为()
A.ab
B.ab
C.ab
D.2ab答案:B7.抛物线C:y=x2上两点M、N满足MN=12MP,若OP=(0,-2),则|MN|=______.答案:设M(x1,x12),N(x2,x22),则MN=(x2-x1,x22-x12)MP=(-x1,-2-x12).因为MN=12MP,所以(x2-x1,x22-x12)=12(-x1,-2-x12),即x2-x1=-12x1,x22-x12=12(-2-x12),所以x1=2x2,2x22=-2+x12,联立解得:x2=1,x1=2或x2=-1,x1=-2即M(1,1),N(2,4)或M(-1,1),N(-2,4)所以|MN|=10故为10.8.已知200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速在[60,70]的汽车大约有()辆.A.90B.80C.70D.60答案:由已知可得样本容量为200,又∵数据落在区间[60,70]的频率为0.04×10=0.4∴时速在[60,70]的汽车大约有200×0.4=80故选B.9.从一批含有13只正品,2只次品的产品中,不放回地抽取3次,每次抽取1只,设抽得次品数为X,则E(5X+1)=______.答案:由题意,X的取值为0,1,2,则P(X=0)=1315×1214×1113=2235;P(X=1)=215×1314×1213+1315×214×1213+1315×1214×213=1235P(X=2)=1315×214×113+215×1314×113+215×114×1313=135所以期望E(X)=0×2235+1×1235+2×135=1435,所以E(5X+1)=1435×5+1=3故为3.10.已知一个几何体是由上下两部分构成的一个组合体,其三视图如图所示,则这个组合体的上下两部分分别是(
)答案:A11.若方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)答案:∵方程x2+ky2=2,即x22+y22k=1表示焦点在y轴上的椭圆∴2k>2故0<k<1故选D.12.给定两个长度为1且互相垂直的平面向量OA和OB,点C在以O为圆心的圆弧AB上变动.若OC=2xOA+yOB,其中x,y∈R,则x+y的最大值是______.答案:由题意|OC|=1,即4x2+y2=1,令x=12cosθ,y=sinθ则x+y=12cosθ+sinθ=(12)2+1sin(θ+φ)≤52故x+y的最大值是52故为:5213.如图,平面内有三个向量OA、OB、OC,其中与OA与OB的夹角为120°,OA与OC的夹角为30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),则λ+μ的值为______.答案:过C作OA与OB的平行线与它们的延长线相交,可得平行四边形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四边形的边长为2和4,λ+μ=2+4=6.故为6.14.命题“存在x∈Z使x2+2x+m≤0”的否定是()
A.存在x∈Z使x2+2x+m>0
B.不存在x∈Z使x2+2x+m>0
C.对任意x∈Z使x2+2x+m≤0
D.对任意x∈Z使x2+2x+m>0答案:D15.一圆形纸片的圆心为点O,点Q是圆内异于O点的一定点,点A是圆周上一点.把纸片折叠使点A与Q重合,然后展平纸片,折痕与OA交于P点.当点A运动时点P的轨迹是()A.圆B.椭圆C.双曲线D.抛物线答案:如图所示,由题意可知:折痕l为线段AQ的垂直平分线,∴|AP|=|PQ|,而|OP|+|PA|=|OA|=R,∴|PO|+|PQ|=R定值>|OQ|.∴当点A运动时点P的轨迹是以点O,D为焦点,长轴长为R的椭圆.故选B.16.若x~B(3,13),则P(x=1)=______.答案:∵x~B(3,13),∴P(x=1)=C13(13)(1-13)2=49.故为:49.17.(理)下列以t为参数的参数方程中表示焦点在y轴上的椭圆的是()
A.
B.(a>b>0)
C.
D.
答案:C18.如图,l1、l2、l3是同一平面内的三条平行直线,l1与l2间的距离是1,l2与l3间的距离是2,正三角形ABC的三顶点分别在l1、l2、l3上,则△ABC的边长是()
A.2
B.
C.
D.
答案:D19.直线l与抛物线y2=2x相交于A、B两点,O为抛物线的顶点,若OA⊥OB.证明:直线l过定点.答案:证明:设点A,B的坐标分别为(x1,y1),(x2,y2)(I)当直线l有存在斜率时,设直线方程为y=kx+b,显然k≠0且b≠0.(2分)联立方程得:y=kx+by2=2x消去y得k2x2+(2kb-2)x+b2=0由题意:x1x2=b2k2,&
y1y2=(kx1+b)(kx2+b)=2bk(5分)又由OA⊥OB得x1x2+y1y2=0,(7分)即b2k2+2bk=0,解得b=0(舍去)或b=-2k(9分)故直线l的方程为:y=kx-2k=k(x-2),故直线过定点(2,0)(11分)(II)当直线l不存在斜率时,设它的方程为x=m,显然m>0联立方程得:x=my2=2x解得y=±2m,即y1y2=-2m又由OA⊥OB得x1x2+y1y2=0,即m2-2m=0,解得m=0(舍去)或m=2可知直线l方程为:x=2,故直线过定点(2,0)综合(1)(2)可知,满足条件的直线过定点(2,0).20.已知三角形ABC的一个顶点A(2,3),AB边上的高所在的直线方程为x-2y+3=0,角B的平分线所在的直线方程为x+y-4=0,求此三角形三边所在的直线方程.答案:由题意可得AB边的斜率为-2,由点斜式求得AB边所在的直线方程为y-3=-2(x-2),即2x+y-7=0.由2x+y-7=0x+y-4=0
求得x=3y=1,故点B的坐标为(3,1).设点A关于角B的平分线所在的直线方程为x+y-4=0的对称点为M(a,b),则M在BC边所在的直线上.则由b-3a-2=-1a+22+b+32-4=0
求得a=1b=2,故点M(1,2),由两点式求得BC的方程为y-12-1=x-31-3,即x+2y-5=0.再由x-2y+3=0x+2y-5=0求得点C的坐标为(2,52),由此可得得AC的方程为x=2.21.求证:若圆内接五边形的每个角都相等,则它为正五边形.答案:证明:设圆内接五边形为ABCDE,圆心是O.连接OA,OB,OCOD,OE,可得五个三角形∵OA=OB=OC=OD=OE=半径,∴有五个等腰三角形在△OAB、△OBC、△OCD、△ODE、△OEA中则∠OAB=∠OBA,∠OBC=∠OCB,∠OCD=∠ODC,∠ODE=∠OED,∠OEA=∠OAE因为所有内角相等,所以∠OAE+∠OAB=∠OBA+∠OBC,所以∠OAE=∠OBC同理证明∠OBA=∠OCD,∠OCB=∠OED,∠ODC=∠OEA,∠OED=∠OAB则△OAB、△OBC、△OCD、△ODE、△OEA中,∠AOB=∠BOC=∠COD=∠DOE=∠EOA∴△OAB≌△OBC≌△OCD≌△ODE≌△OEA
(SAS边角边定律)∴AB=BC=CD=DE=EA∴五边形ABCDE为正五边形22.将某班的60名学生编号为:01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是______.答案:用系统抽样抽出的5个学生的号码从小到大成等差数列,随机抽得的一个号码为04则剩下的四个号码依次是16、28、40、52.故为:16、28、40、5223.若p、q是两个简单命题,且“p或q”的否定形式是真命题,则()
A.p真q真
B.p真q假
C.p假q真
D.p假q假答案:D24.设方程lgx+x=3的实数根为x0,则x0所在的一个区间是()A.(3,+∝)B.(2,3)C.(1,2)D.(0,1)答案:由lgx+x=3得:lgx=3-x.分别画出等式:lgx=3-x两边对应的函数图象:如图.由图知:它们的交点x0在区间(2,3)内,故选B.25.直线y=2的倾斜角和斜率分别是()A.90°,斜率不存在B.90°,斜率为0C.180°,斜率为0D.0°,斜率为0答案:由题意,直线y=2的倾斜角是0°,斜率为0故选D.26.在平面直角坐标中,h为坐标原点,设向量OA=a,OB=b,其中a=(3,1),b=(1,3),若OC=λa+μb,且0≤λ≤μ≤1,C点所有可能的位置区域用阴影表示正确的是()A.
B.
C.
D.
答案:∵向量OA=a,OB=b,a=(3,1),b=(1,3),OC=λa+μb,∴OC=(3λ,λ)+(μ,3μ)=(3λ+μ,λ+3μ),∵0≤λ≤μ≤1,∴0≤3λ+μ≤4,0≤λ+3μ≤4,且3λ+μ≤λ+3μ.故选A.27.一个盒子装有10个红、白两色同一型号的乒乓球,已知红色乒乓球有3个,若从盒子里随机取出3个乒乓球,则其中含有红色乒乓球个数的数学期望是______.答案:由题设知含有红色乒乓球个数ξ的可能取值是0,1,2,3,P(ξ=0)=C37C310=724,P(ξ=1)=C27C13C310=2140,P(ξ=2)=C17C23C310=740,P(ξ=3)=C33C310=1120.∴Eξ=0×724+1×
2140+2×740+3×1120=910.故为:910.28.△ABC是边长为1的正三角形,那么△ABC的斜二测平面直观图△A′B′C′的面积为(
)
A.
B.
C.
D.答案:D29.集合A={1,2}的子集有几个()A.2B.4C.3D.1答案:集合A={1,2}的子集有:?,{2},{1},{2,1}共4个.故选B.30.函数y=(12)x的值域为______.答案:因为函数y=(12)x是指数函数,所以它的值域是(0,+∞).故为:(0,+∞).31.函数y=()|x|的图象是()
A.
B.
C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年第三方担保合同护航跨境电商交易范本3篇
- 二零二五版发型师与美发机构聘用合同3篇
- 二零二五版环保节能技术合作合同模板2篇
- 二零二五年音乐节餐饮租赁合同2篇
- 二零二五版环保型建筑砂浆采购合同模板-绿色建筑专用3篇
- 二零二五版海绵城市建设土石方运输与雨水收集合同3篇
- 二零二五版环保打印机销售与环保认证合同范本3篇
- 二零二五年钢板桩租赁及拆除作业合同3篇
- 二零二五年度文化艺术展览赞助合同3篇
- 2025年度智能机器人制造领域技术转移合同规范3篇
- 申根签证申请表模板
- 企业会计准则、应用指南及附录2023年8月
- 谅解书(标准样本)
- 2022年浙江省事业编制招聘考试《计算机专业基础知识》真题试卷【1000题】
- 认养一头牛IPO上市招股书
- GB/T 3767-2016声学声压法测定噪声源声功率级和声能量级反射面上方近似自由场的工程法
- GB/T 23574-2009金属切削机床油雾浓度的测量方法
- 西班牙语构词.前后缀
- 动物生理学-全套课件(上)
- 河北省衡水市各县区乡镇行政村村庄村名居民村民委员会明细
- DB32-T 2665-2014机动车维修费用结算规范-(高清现行)
评论
0/150
提交评论