版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年江门职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.过直线x+y-22=0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的坐标是______.答案:根据题意画出相应的图形,如图所示:直线PA和PB为过点P的两条切线,且∠APB=60°,设P的坐标为(a,b),连接OP,OA,OB,∴OA⊥AP,OB⊥BP,PO平分∠APB,∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,又圆x2+y2=1,即圆心坐标为(0,0),半径r=1,∴OA=OB=1,∴OP=2AO=2BO=2,∴a2+b2=2,即a2+b2=4①,又P在直线x+y-22=0上,∴a+b-22=0,即a+b=22②,联立①②解得:a=b=2,则P的坐标为(2,2).故为:(2,2)2.用反证法证明命题“三角形中最多只有一个内角是钝角”时,则假设的内容是()
A.三角形中有两个内角是钝角
B.三角形中有三个内角是钝角
C.三角形中至少有两个内角是钝角
D.三角形中没有一个内角是钝角答案:C3.对任意实数x,y,定义运算x*y为:x*y=ax+by+cxy,其中a,b,c为常数,等式右端运算为通常的实数加法和乘法,现已知1*2=3,2*3=4,并且有一个非零实数m,使得对于任意的实数都有x*m=x,则d的值为(
)
A.4
B.1
C.0
D.不确定答案:A4.已知直线l经过点P(3,1),且被两平行直线l1;x+y+1=0和l2:x+y+6=0截得的线段之长为5,求直线l的方程.答案:解法一:若直线l的斜率不存在,则直线l的方程为x=3,此时与l1、l2的交点分别为A′(3,-4)或B′(3,-9),截得的线段AB的长|AB|=|-4+9|=5,符合题意.若直线l的斜率存在,则设直线l的方程为y=k(x-3)+1.解方程组y=k(x-3)+1x+y+1=0得A(3k-2k+1,-4k-1k+1).解方程组y=k(x-3)+1x+y+6=0得B(3k-7k+1,-9k-1k+1).由|AB|=5.得(3k-2k+1-3k-7k+1)2+(-4k-1k+1+9k-1k+1)2=52.解之,得k=0,直线方程为y=1.综上可知,所求l的方程为x=3或y=1.解法二:由题意,直线l1、l2之间的距离为d=|1-6|2=522,且直线L被平行直线l1、l2所截得的线段AB的长为5,设直线l与直线l1的夹角为θ,则sinθ=5225=22,故θ=45°.由直线l1:x+y+1=0的倾斜角为135°,知直线l的倾斜角为0°或90°,又由直线l过点P(3,1),故直线l的方程为:x=3或y=1.解法三:设直线l与l1、l2分别相交A(x1,y1)、B(x2,y2),则x1+y1+1=0,x2+y2+6=0.两式相减,得(x1-x2)+(y1-y2)=5.①又(x1-x2)2+(y1-y2)2=25.②联立①、②可得x1-x2=5y1-y2=0或x1-x2=0y1-y2=5由上可知,直线l的倾斜角分别为0°或90°.故所求的直线方程为x=3或y=1.5.若随机变量X~B(5,12),那么P(X≤1)=______.答案:P(X≤1)=C06(12)0(12)6+C16(12)1(12)5=316故为:3166.若把A、B、C、D、E、F、G七人排成一排,则A、B必须相邻,且C、D不能相邻的概率是______(结果用数值表示).答案:把AB看成一个整体,CD不能相邻,就用插空法,则有A22A44A25种方法把A、B、C、D、E、F、G七人排成一排,随便排的种数A77所以概率为A22A44A25A77=421故为:421.7.下列给变量赋值的语句正确的是()
A.5=a
B.a+2=a
C.a=b=4
D.a=2*a答案:D8.已知点P1的球坐标是P1(4,,),P2的柱坐标是P2(2,,1),则|P1P2|=()
A.
B.
C.
D.4答案:A9.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.答案::如图可知:∵AC1=6,cos∠AC1A1=33∴A1C1=2,AA1=2∴正四棱柱的体积等于A1B12?AA1=2故为:210.赋值语句M=M+3表示的意义()
A.将M的值赋给M+3
B.将M的值加3后再赋给M
C.M和M+3的值相等
D.以上说法都不对答案:B11.天气预报说,在今后的三天中每一天下雨的概率均为40%,用随机模拟的方法进行试验,由1、2、3、4表示下雨,由5、6、7、8、9、0表示不下雨,利用计算器中的随机函数产生0~9之间随机整数的20组如下:
907966191925271932812458569683
431257393027556488730113537989
通过以上随机模拟的数据可知三天中恰有两天下雨的概率近似为(
)。答案:0.2512.某个命题与正整数n有关,如果当n=k(k∈N+)时命题成立,那么可推得当n=k+1时命题也成立.
现已知当n=7时该命题不成立,那么可推得()
A.当n=6时该命题不成立
B.当n=6时该命题成立
C.当n=8时该命题不成立
D.当n=8时该命题成立答案:A13.已知圆锥的母线长与底面半径长之比为3:1,一个正方体有四个顶点在圆锥的底面内,另外的四个顶点在圆锥的侧面上(如图),则圆锥与正方体的表面积之比为(
)
A.π:1
B.3π:1
C.3π:2
D.3π:4
答案:D14.已知A(3,4,5),B(0,2,1),O(0,0,0),若,则C的坐标是()
A.(-,-,-)
B.(,-,-)
C.(-,-,)
D.(,,)答案:A15.下表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程.y=0.7x+0.35,那么表中m的值为______.
x3456y2.5m44.5答案:∵根据所给的表格可以求出.x=3+4+5+64=4.5,.y=2.5+m+4+4.54=11+m4∵这组数据的样本中心点在线性回归直线上,∴11+m4=0.7×4.5+0.35,∴m=3,故为:316.已知曲线C上的动点P(x,y)满足到点F(0,1)的距离比到直线l:y=-2的距离小1.
(Ⅰ)求曲线C的方程;
(Ⅱ)动点E在直线l上,过点E分别作曲线C的切线EA,EB,切点为A、B.
(ⅰ)求证:直线AB恒过一定点,并求出该定点的坐标;
(ⅱ)在直线l上是否存在一点E,使得△ABM为等边三角形(M点也在直线l上)?若存在,求出点E坐标,若不存在,请说明理由.答案:(Ⅰ)曲线C的方程x2=4y(5分)(Ⅱ)(ⅰ)设E(a,-2),A(x1,x214),B(x2,x224),∵y=x24∴y′=12x过点A的抛物线切线方程为y-x214=12x1(x-x1),∵切线过E点,∴-2-x214=12x1(a-x1),整理得:x12-2ax1-8=0同理可得:x22-2ax2-8=0,∴x1,x2是方程x2-2ax-8=0的两根,∴x1+x2=2a,x1•x2=-8可得AB中点为(a,a2+42)又kAB=y1-y2x1-x2=x214-x224x1-x2=x1+x24=a2,∴直线AB的方程为y-(a22+2)=a2(x-a)即y=a2x+2,∴AB过定点(0,2)(10分)(ⅱ)由(ⅰ)知AB中点N(a,a2+42),直线AB的方程为y=a2x+2当a≠0时,则AB的中垂线方程为y-a2+42=-2a(x-a),∴AB的中垂线与直线y=-2的交点M(a3+12a4,-2)∴|MN|2=(a3+12a4-a)2+(-2-a2+42)2=116(a2+8)2(a2+4)∵|AB|=1+a24(x1+x2)2-4x1x2=(a2+4)(a2+8)若△ABM为等边三角形,则|MN|=32|AB|,∴116(a2+8)2(a2+4)=34(a2+4)(a2+8),解得a2=4,∴a=±2,此时E(±2,-2),当a=0时,经检验不存在满足条件的点E综上可得:满足条件的点E存在,坐标为E(±2,-2).(15分)17.栽培甲、乙两种果树,先要培育成苗,然后再进行移栽.已知甲、乙两种果树成苗的概率分别为,,移栽后成活的概率分别为,.
(1)求甲、乙两种果树至少有一种果树成苗的概率;
(2)求恰好有一种果树能培育成苗且移栽成活的概率.答案:(1)甲、乙两种果树至少有一种成苗的概率为;(2).恰好有一种果树培育成苗且移栽成活的概率为.解析:分别记甲、乙两种果树成苗为事件,;分别记甲、乙两种果树苗移栽成活为事件,,,,,.(1)甲、乙两种果树至少有一种成苗的概率为;(2)解法一:分别记两种果树培育成苗且移栽成活为事件,则,.恰好有一种果树培育成苗且移栽成活的概率为.解法二:恰好有一种果树栽培成活的概率为.18.用数学归纳法证明等式时,第一步验证n=1时,左边应取的项是()
A.1
B.1+2
C.1+2+3
D.1+2+3+4答案:D19.F1,F2是椭圆x2a2+y2b2=1的两个焦点,点P是椭圆上任意一点,从F1引∠F1PF2的外角平分线的垂线,交F2P的延长线于M,则点M的轨迹是______.答案:设从F1引∠F1PF2的外角平分线的垂线,垂足为R∵△PF1M中,PR⊥F1M且PR是∠F1PM的平分线∴|MP|=|F1P|,可得|PF1|+|PF2|=|PM|+|PF2|=|MF2|根据椭圆的定义,可得|PF1|+|PF2|=2a,∴|MF2|=2a,即动点M到点F2的距离为定值2a,因此,点M的轨迹是以点F2为圆心,半径为2a的圆.故为:以点F2为圆心,半径为2a的圆.20.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ______(结果用最简分数表示).答案:用随机变量ξ表示选出的志愿者中女生的人数,ξ可取0,1,2,当ξ=0时,表示没有选到女生;当ξ=1时,表示选到一个女生;当ξ=2时,表示选到2个女生,∴P(ξ=0)=C25C27=1021,P(ξ=1)=C15C12C27=1021,P(ξ=2)=C22C27=121,∴Eξ=0×1021+1×1021+2×121=47.故为:4721.如图放置的等腰直角三角形ABC薄片(∠ACB=90°,AC=2)沿x轴滚动,设顶点A(x,y)的轨迹方程是y=f(x),则f(x)在其相邻两个零点间的图象与x轴所围区域的面积为______.答案:作出点A的轨迹中相邻两个零点间的图象,如图所示.其轨迹为两段圆弧,一段是以C为圆心,CA为半径的四分之一圆弧;一段是以B为圆心,BA为半径,圆心角为3π4的圆弧.其与x轴围成的图形的面积为12×22×π2+12×2×2+12×(22)2×3π4=2+4π.故为:2+4π.22.设四边形ABCD中,有DC=12AB,且|AD|=|BC|,则这个四边形是
______.答案:由DC=12AB知四边形ABCD是梯形,又|AD|=|BC|,即梯形的对角线相等,所以,四边形ABCD是等腰梯形.故为:等腰梯形.23.过点(-3,-1),且与直线x-2y=0平行的直线方程为______.答案:直线l经过点(-3,-1),且与直线x-2y=0平行,直线的斜率为12所以直线l的方程为:y+1=12(x+3)即x-2y+1=0.故为:x-2y+1=0.24.抛物线y2=4x上一点M与该抛物线的焦点F的距离|MF|=4,则点M的横坐标x=______.答案:∵抛物线y2=4x=2px,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=4=x+p2=4,∴x=3,故为:3.25.若a<b<c,x<y<z,则下列各式中值最大的一个是()
A.ax+cy+bz
B.bx+ay+cz
C.bx+cy+az
D.ax+by+cz答案:D26.(本题10分)设函数的定义域为A,的定义域为B.(1)求A;
(2)若,求实数a的取值范围答案:(1);(2)。解析:略27.函数f(x)=x2+2的单调递增区间为
______.答案:如图所示:函数的递增区间是:[0,+∞)故为:[0,+∞)28.已知直线的倾斜角为α,且cosα=45,则此直线的斜率是______.答案:∵直线l的倾斜角为α,cosα=45,∴α的终边在第一象限,故sinα=35故l的斜率为tanα=sinαcosα=34故为:3429.下列说法中正确的是()
A.若∥,则与向相同
B.若||<||,则<
C.起点不同,但方向相同且模相等的两个向量相等
D.所有的单位向量都相等答案:C30.甲盒子中装有3个编号分别为1,2,3的小球,乙盒子中装有5个编号分别为1,2,3,4,5的小球,从甲、乙两个盒子中各随机取一个小球,则取出两小球编号之积为奇数的概率为______.答案:由题意知本题是一个等可能事件的概率,试验发生包含的事件是从两个盒子中分别取一个小球,共有3×5=15种结果,满足条件的事件是取出的两个小球编号之积是奇数,可以列举出有(1,1),(1,3),(1,5),(3,1),(3,3),(3,5)共有6种结果,∴要求的概率是615=25.故为25.31.已知某一随机变量ξ的分布列如下,且Eξ=6.3,则a的值为()
ξ
4
a
9
P
0.5
0.1
b
A.5
B.6
C.7
D.8答案:C32.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程.
在如图中纵轴表示离学校的距离,横轴表示出发后的时间,则如图中的四个图形中较符合该学生走法的是()A.
B.
C.
D.
答案:由题意可知:由于怕迟到,所以一开始就跑步,所以刚开始离学校的距离随时间的推移应该相对较快.而等跑累了再走余下的路程,则说明离学校的距离随时间的推移在后半段时间应该相对较慢.所以适合的图象为:故选B.33.已知定直线l及定点A(A不在l上),n为过点A且垂直于l的直线,设N为l上任意一点,线段AN的垂直平分线交n于B,点B关于AN的对称点为P,求证:点P的轨迹为抛物线.答案:证明:如图所示,建立平面直角坐标系,并且连结PA,PN,NB.由题意知PB垂直平分AN,且点B关于AN的对称点为P,∴AN也垂直平分PB.∴四边形PABN为菱形,∴PA=PN.∵AB⊥l,∴PN⊥l.故点P符合抛物线上点的条件:到定点A的距离和到定直线l的距离相等,∴点P的轨迹为抛物线.34.当a>0时,不等式组的解集为(
)。答案:当a>时为;当a=时为{};当0<a<时为[a,1-a]35.确定方程3x2-9+4x2-16+5x2-25=120x的解集______.答案:由题意,x2-9≥0x2-16≥0x2-25≥0x>0,∴x≥5∴x2-9≥4,x2-16≥3,x2-25≥0,∴3x2-9+4x2-16+5x2-25≥24∵3x2-9+4x2-16+5x2-25=120x∴120x≥24∵x≥5,∴120x≤24∴120x=24∴x=5故为:{5}36.如图,在直角坐标系中,A,B,C三点在x轴上,原点O和点B分别是线段AB和AC的中点,已知AO=m(m为常数),平面上的点P满足PA+PB=6m.
(1)试求点P的轨迹C1的方程;
(2)若点(x,y)在曲线C1上,求证:点(x3,y22)一定在某圆C2上;
(3)过点C作直线l,与圆C2相交于M,N两点,若点N恰好是线段CM的中点,试求直线l的方程.答案:(1)由题意可得点P的轨迹C1是以A,B为焦点的椭圆.…(2分)且半焦距长c=m,长半轴长a=3m,则C1的方程为x29m2+y28m2=1.…(5分)(2)若点(x,y)在曲线C1上,则x29m2+y28m2=1.设x3=x0,y22=y0,则x=3x0,y=22y0.…(7分)代入x29m2+y28m2=1,得x02+y02=m2,所以点(x3,y22)一定在某一圆C2上.…(10分)(3)由题意C(3m,0).…(11分)设M(x1,y1),则x12+y12=m2.…①因为点N恰好是线段CM的中点,所以N(x1+3m2,y12).代入C2的方程得(x1+3m2)2+(y12)2=m2.…②联立①②,解得x1=-m,y1=0.…(15分)故直线l有且只有一条,方程为y=0.…(16分)(若只写出直线方程,不说明理由,给1分)37.由小正方体木块搭成的几何体的三视图如图所示,则搭成该几何体的小正方体木块有()
A.6块
B.7块
C.8块
D.9块答案:B38.在平面直角坐标中,h为坐标原点,设向量OA=a,OB=b,其中a=(3,1),b=(1,3),若OC=λa+μb,且0≤λ≤μ≤1,C点所有可能的位置区域用阴影表示正确的是()A.
B.
C.
D.
答案:∵向量OA=a,OB=b,a=(3,1),b=(1,3),OC=λa+μb,∴OC=(3λ,λ)+(μ,3μ)=(3λ+μ,λ+3μ),∵0≤λ≤μ≤1,∴0≤3λ+μ≤4,0≤λ+3μ≤4,且3λ+μ≤λ+3μ.故选A.39.直线l1到l2的角为α,直线l2到l1的角为β,则cos=()
A.
B.
C.0
D.1答案:A40.已知圆的极坐标方程是ρ=2cosθ,那么该圆的直角坐标方程是()
A.(x-1)2+y2=1
B.x2+(y-1)2=1
C.(x+1)2+y2=1
D.x2+y2=2答案:A41.集合{0,1}的子集有()个.A.1个B.2个C.3个D.4个答案:根据题意,集合{0,1}的子集有{0}、{1}、{0,1}、?,共4个,故选D.42.已知a>b>0,则3a,3b,4a由小到大的顺序是______.答案:由于指数函数y=3x在R上是增函数,且a>b>0,可得3a>3b.由于幂函数y=xa在(0,+∞)上是增函数,故有3a<4a,故3a,3b,4a由小到大的顺序是3b<3a<4a.,故为3b<3a<4a.43.函数f(x)=11+x2(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]答案:∵函数f(x)=11+x2(x∈R),∴1+x2≥1,所以原函数的值域是(0,1],故选B.44.已知点A分BC所成的比为-13,则点B分AC所成的比为______.答案:由已知得B是AC的内分点,且2|AB|=|BC|,故B分AC
的比为ABBC=|AB||BC|=12,故为12.45.设A(3,3,1),B(1,0,5),C(0,1,0),则AB的中点M到点C的距离为
______.答案:M为AB的中点设为(x,y,z),∴x=3+12=2,y=32,z=1+52=3,∴M(2,32,3),∵C(0,1,0),∴MC=22+(32-1)
2
+33=532,故为:532.46.在画两个变量的散点图时,下面哪个叙述是正确的(
)
A.预报变量x轴上,解释变量y轴上
B.解释变量x轴上,预报变量y轴上
C.可以选择两个变量中任意一个变量x轴上
D.可以选择两个变量中任意一个变量y轴上答案:B47.某班试用电子投票系统选举班干部候选人.全班k名同学都有选举权和被选举权,他们的编号分别为1,2,…,k,规定:同意按“1”,不同意(含弃权)按“0”,令aij=1,第i号同学同意第j号同学当选.0,第i号同学不同意第j号同学当选.其中i=1,2,…,k,且j=1,2,…,k,则同时同意第1,2号同学当选的人数为()A.a11+a12+…+a1k+a21+a22+…+a2kB.a11+a21+…+ak1+a12+a22+…+ak2C.a11a12+a21a22+…+ak1ak2D.a11a21+a12a22+…+a1ka2k答案:第1,2,…,k名学生是否同意第1号同学当选依次由a11,a21,a31,…,ak1来确定(aij=1表示同意,aij=0表示不同意或弃权),是否同意第2号同学当选依次由a12,a22,…,ak2确定,而是否同时同意1,2号同学当选依次由a11a12,a21a22,…,ak1ak2确定,故同时同意1,2号同学当选的人数为a11a12+a21a22+…+ak1ak2,故选C.48.编号为A、B、C、D、E的五个小球放在如图所示的五个盒子中,要求每个盒子只能放一个小球,且A不能放1,2号,B必需放在与A相邻的盒子中,则不同的放法有()种.A.42B.36C.30D.28答案:根据题意,A不能放1,2号,则A可以放在3、4、5号盒子,分2种情况讨论:①当A在4、5号盒子时,B有1种放法,剩下3个有A33=6种不同放法,此时,共有2×1×6=12种情况;②当A在3号盒子时,B有3种放法,剩下3个有A33=6种不同放法,此时,共有1×3×6=18种情况;由加法原理,计算可得共有12+18=30种不同情况;故选C.49.关于x的方程(m+3)x2-4mx+2m-1=0的两根异号,且负数根的绝对值比正数根大,那么实数m的取值范围是()
A.-3<m<0
B.0<m<3
C.m<-3或m>0
D.m<0或m>3答案:A50.如图所示,已知点P为菱形ABCD外一点,且PA⊥面ABCD,PA=AD=AC,点F为PC中点,则二面角CBFD的正切值为()
A.
B.
C.
D.
答案:D第2卷一.综合题(共50题)1.b1是[0,1]上的均匀随机数,b=3(b1-2),则b是区间______上的均匀随机数.答案:∵b1是[0,1]上的均匀随机数,b=3(b1-2)∵b1-2是[-2,-1]上的均匀随机数,∴b=3(b1-2)是[-6,-3]上的均匀随机数,故为:[-6,-3]2.直线kx-y=k-1与直线ky=x+2k的交点在第二象限内,则k的取值范围是
______.答案:联立两直线方程得kx-y=k-1①ky=x+2k②,由②得y=x+2kk③,把③代入①得:kx-x+2kk=k-1,当k+1≠0即k≠-1时,解得x=kk-1,把x=kk-1代入③得到y=2k-1k-1,所以交点坐标为(kk-1,2k-1k-1)因为直线kx-y=k-1与直线ky=x+2k的交点在第二象限内,得kk-1<02k-1k-1>
0解得0<k<1,k>1或k<12,所以不等式组的解集为0<k<12则k的取值范围是0<k<12故为:0<k<123.气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22
(℃)”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):
①甲地:5个数据的中位数为24,众数为22;
②乙地:5个数据的中位数为27,总体均值为24;
③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8;
则肯定进入夏季的地区有()A.0个B.1个C.2个D.3个答案:①甲地:5个数据的中位数为24,众数为22,根据数据得出:甲地连续5天的日平均温度的记录数据可能为:22,22,24,25,26.其连续5天的日平均温度均不低于22.
②乙地:5个数据的中位数为27,总体均值为24.根据其总体均值为24可知其连续5天的日平均温度均不低于22.③丙地:5个数据中有一个数据是32,总体均值为26,根据其总体均值为24可知其连续5天的日平均温度均不低于22.则肯定进入夏季的地区有甲、乙、丙三地.故选D.4.下表是x与y之间的一组数据,则y关于x的线性回归方程
必过点()
x
0
1
2
3
y
1
3
5
7
A.(2,2)
B.(1.5,2)
C.(1,2)
D.(1.5,4)答案:D5.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ______(结果用最简分数表示).答案:用随机变量ξ表示选出的志愿者中女生的人数,ξ可取0,1,2,当ξ=0时,表示没有选到女生;当ξ=1时,表示选到一个女生;当ξ=2时,表示选到2个女生,∴P(ξ=0)=C25C27=1021,P(ξ=1)=C15C12C27=1021,P(ξ=2)=C22C27=121,∴Eξ=0×1021+1×1021+2×121=47.故为:476.下列命题中为真命题的是(
)
A.平行直线的倾斜角相等
B.平行直线的斜率相等
C.互相垂直的两直线的倾斜角互补
D.互相垂直的两直线的斜率互为相反数答案:A7.用综合法或分析法证明:
(1)如果a>0,b>0,则lga+b2≥lga+lgb2(2)求证6+7>22+5.答案:证明:(1)∵a>0,b>0,a+b2≥ab,∴lga+b2≥lgab=lga+lgb2,即lga+b2≥lga+lgb2;(2)要证6+7>22+5,只需证明(6+7)
2>(8+5)2,即证明242>
240,也就是证明42>40,上式显然成立,故原结论成立.8.若lga,lgb是方程2x2-4x+1=0的两个根,则的值等于
A.2
B.
C.4
D.答案:A9.设直线l与平面α相交,且l的方向向量为a,α的法向量为n,若<a,n>=,则l与α所成的角为()
A.
B.
C.
D.答案:C10.算法的有穷性是指()A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确答案:一个算法必须在有限步内结束,简单的说就是没有死循环即算法的步骤必须有限故选C.11.命题“三角形中最多只有一个内角是直角”的结论的否定是()
A.有两个内角是直角
B.有三个内角是直角
C.至少有两个内角是直角
D.没有一个内角是直角答案:C12.如图所示,图中线条构成的所有矩形中(由6个小的正方形组成),其中为正方形的概率为
______.答案:它的长有10种取法,由长与宽的对称性,得到它的宽也有10种取法;因为,长与宽相互独立,所以得到长X宽的个数有:10X10=100个即总的矩形的个数有:100个长=宽的个数为:(1X1的正方形的个数)+(2X2的正方形个数)+(3X3的正方形个数)+(4X4的正方形个数)=16+9+4+1=30个即正方形的个数有:30个所以为正方形的概率是30100=0.3故为0.313.不等式的解集是(
)
A.
B.
C.
D.答案:D14.参数方程(t是参数)表示的图象是()
A.射线
B.直线
C.圆
D.双曲线答案:A15.(理)已知向量=(3,5,-1),=(2,2,3),=(4,-1,-3),则向量2-3+4的坐标为()
A.(16,0,-23)
B.(28,0,-23)
C.(16,-4,-1)
D.(0,0,9)答案:A16.若非零向量满足,则()
A.
B.
C.
D.答案:C17.椭圆的短轴长是2,一个焦点是(3,0),则椭圆的标准方程是______.答案:∵椭圆的一个焦点是(3,0),∴c=3,又∵短轴长是2,∴2b=2.b=1,∴a2=4∵焦点在x轴上,∴椭圆的标准方程是x24+y2=1故为x24+y2=118.已知四边形ABCD,
点E、
F、
G、
H分别是AB、BC、CD、DA的中点,
求证:
EF=HG.答案:证明:∵E、F、G、H分别是AB、BC、CD、DA的中点,∴HG=12AC,EF=12AC,∴EF=HG.19.若向量a=(4,2,-4),b=(6,-3,2),则(2a-3b)•(a+2b)=______.答案:∵2a-3b=(-10,13,-14),a+2b=(16,-4,0)∴(2a-3b)•(a+2b)=-10×16+13×(-4)=-212故为-21220.设矩阵M=.32-121232.的逆矩阵是M-1=.abcd.,则a+c的值为______.答案:由题意,矩阵M的行列式为.32-121232.=32×32+12×12=1∴矩阵M=.32-121232.的逆矩阵是M-1=.3212-1232.∴a+c=3-12故为3-1221.在平面直角坐标系xOy中,设F1(-4,0),F2(4,0),方程x225+y29=1的曲线为C,关于曲线C有下列命题:
①曲线C是以F1、F2为焦点的椭圆的一部分;
②曲线C关于x轴、y轴、坐标原点O对称;
③若P是上任意一点,则PF1+PF2≤10;
④若P是上任意一点,则PF1+PF2≥10;
⑤曲线C围成图形的面积为30.
其中真命题的序号是______.答案:∵x225+y29=1即为|x|5+|y|3=1表示四条线段,如图故①④错,②③对对于⑤,图形的面积为3×52×4=30,故⑤对.故为②③⑤22.方程2x2+ky2=1表示的曲线是长轴在y轴的椭圆,则实数k的范围是()A.(0,+∞)B.(2,+∞)C.(0,2)D.(2,0)答案:椭圆方程化为x212+y21k=1.焦点在y轴上,则1k>12,即k<2.又k>0,∴0<k<2.故选C.23.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是()
A.假设三内角都不大于60度
B.假设三内角都大于60度
C.假设三内角至多有一个大于60度
D.假设三内角至多有两个大于60度答案:B24.极点到直线ρ(cosθ+sinθ)=3的距离是
______.答案:将原极坐标方程ρ(cosθ+sinθ)=3化为:直角坐标方程为:x+y=3,原点到该直线的距离是:d=|3|2=62.∴所求的距离是:62.故填:62.25.已知x,y的取值如下表所示:
x0134y2.24.34.86.7从散点图分析,y与x线性相关,且y^=0.95x+a,以此预测当x=2时,y=______.答案:∵从所给的数据可以得到.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5∴这组数据的样本中心点是(2,4.5)∴4.5=0.95×2+a,∴a=2.6∴线性回归方程是y=0.95x+2.6,∴预测当x=2时,y=0.95×2+2.6=4.5故为:4.526.点P从(2,0)出发,沿圆x2+y2=4按逆时针方向运动弧长到达点Q,则点Q的坐标为()
A.(-1,
)
B.(-,
-1)
C.(-1,
-)
D.(-,
1)答案:C27.2007年10月24日18时05分,在西昌卫星发射中心,“嫦娥一号”卫星顺利升空,24分钟后,星箭成功分离,卫星首次进入以地心为焦点的椭圆形调相轨道,卫星近地点为约200公里,远地点为约51000公里.设地球的半经为R,则卫星轨道的离心率为______(结果用R的式子表示)答案:由题意卫星进入以地心为焦点的椭圆形调相轨道,卫星近地点为约200公里,远地点为约51000公里.设地球的半经为R,易知,a=25600+R,c=25400,则卫星轨道的离心率e=2540025600+R.故为:2540025600+R.28.若点M,A,B,C对空间任意一点O都满足则这四个点()
A.不共线
B.不共面
C.共线
D.共面答案:D29.电子手表厂生产某批电子手表正品率为,次品率为,现对该批电子手表进行测试,设第X次首次测到正品,则P(1≤X≤2013)等于()
A.1-()2012
B.1-()2013
C.1-()2012
D.1-()2013答案:B30.双曲线的中心是原点O,它的虚轴长为26,右焦点为F(c,0)(c>0),直线l:x=a2c与x轴交于点A,且|OF|=3|OA|.过点F的直线与双曲线交于P、Q两点.
(Ⅰ)求双曲线的方程;
(Ⅱ)若AP•AQ=0,求直线PQ的方程.答案:解.(Ⅰ)由题意,设曲线的方程为x2a2-y2b2=1(a>0,b>0)由已知a2+6=c2c=3a2c解得a=3,c=3所以双曲线的方程:x23-y26=1.(Ⅱ)由(Ⅰ)知A(1,0),F(3,0),当直线PQ与x轴垂直时,PQ方程为x=3.此时,AP•AQ≠0,应舍去.当直线PQ与x轴不垂直时,设直线PQ的方程为y=k(x-3).由方程组x23-y26=1y=k(x-3)得(k2-2)x2-6k2x+9k2+6=0由于过点F的直线与双曲线交于P、Q两点,则k2-2≠0,即k≠±2,由于△=36k4-4(k2-2)(9k2+6)=48(k2+1)>0得k∈R.∴k∈R且k≠±2(*)设P(x1,y1),Q(x2,y2),则x1+x2=6k2k2-2(1)x1x2=9k2+6k2-2(2)由直线PQ的方程得y1=k(x1-3),y2=k(x2-3)于是y1y2=k2(x1-3)(x2-3)=k2[x1x2-3(x1+x2)+9](3)∵AP•AQ=0,∴(x1-1,y1)•(x2-1,y2)=0即x1x2-(x1+x2)+1+y1y2=0(4)由(1)、(2)、(3)、(4)得9k2+6k2-2-6k2k2-2+1+k2(9k2+6k2-2-36k2k2-2+9)=0整理得k2=12,∴k=±22满足(*)∴直线PQ的方程为x-2y-3=0或x+2y-3=031.如图,在四棱柱的上底面ABCD中,AB=DC,则下列向量相等的是()
A.AD与CB
B.OA与OC
C.AC与DB
D.DO与OB
答案:D32.△ABC内接于以O为圆心的圆,且∠AOB=60°.则∠C=______.答案:∵△ABC内接于以O为圆心的圆,∴∠C=12∠AOB,∵∠AOB=60°∴∠C=12×60°=30°故为30°.33.(理)在极坐标系中,半径为1,且圆心在(1,0)的圆的方程为()
A.ρ=sinθ
B.ρ=cosθ
C.ρ=2sinθ
D.ρ=2cosθ答案:D34.如图中的阴影部分用集合表示为______.答案:由已知中阴影部分所表示的集合元素满足是A的元素且C的元素,或是B的元素”,故阴影部分所表示的集合是(A∪C)∩(CUB)故为:B∪(A∩C)35.过直线x+y-22=0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的坐标是______.答案:根据题意画出相应的图形,如图所示:直线PA和PB为过点P的两条切线,且∠APB=60°,设P的坐标为(a,b),连接OP,OA,OB,∴OA⊥AP,OB⊥BP,PO平分∠APB,∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,又圆x2+y2=1,即圆心坐标为(0,0),半径r=1,∴OA=OB=1,∴OP=2AO=2BO=2,∴a2+b2=2,即a2+b2=4①,又P在直线x+y-22=0上,∴a+b-22=0,即a+b=22②,联立①②解得:a=b=2,则P的坐标为(2,2).故为:(2,2)36.已知|a|<1,|b|<1,求证:<1.答案:证明略解析:∵<1<1a2+b2+2ab<1+2ab+a2b2a2b2-a2-b2+1>0
(a2-1)(b2-1)>0又|a|<1,|b|<1,∴(a2-1)(b2-1)>0.∴原不等式成立.37.用数学归纳法证明1+2+3+…+n2=,则当n=k+1时左端应在n=k的基础上加上()
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2答案:D38.已知a,b为正数,求证:≥.答案:证明略解析:1:∵a>0,b>0,∴≥,≥,两式相加,得≥,∴≥.解析2.≥.∴≥.解析3.∵a>0,b>0,∴,∴欲证≥,即证≥,只要证
≥,只要证
≥,即证
≥,只要证a3+b3≥ab(a+b),只要证a2+b2-ab≥ab,即证(a-b)2≥0.∵(a-b)2≥0成立,∴原不等式成立.【名师指引】当要证明的不等式形式上比较复杂时,常通过分析法寻求证题思路.“分析法”与“综合法”是数学推理中常用的思维方法,特别是这两种方法的综合运用能力,对解决实际问题有重要的作用.这两种数学方法是高考考查的重要数学思维方法.39.已知x,y之间的一组数据:
x0123y1357则y与x的回归方程必经过()A.(2,2)B.(1,3)C.(1.5,4)D.(2,5)答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4∴这组数据的样本中心点是(1.5,4)根据线性回归方程一定过样本中心点,∴线性回归方程y=a+bx所表示的直线必经过点(1.5,4)故选C40.与函数y=x相等的函数是()A.f(x)=(x)2B.f(x)=x2xC.f(x)=x2D.f(x)=3x3答案:对于A,f(x)=x(x≥0),不符合;对于B,f(x)=x(x≠0),不符合;对于C,f(x)=|x|(x∈R),不符合;对于D,f(x)=x(x∈R),符合;故选D.41.若A(-2,3),B(3,-2),C(,m)三点共线
则m的值为()
A.
B.-
C.-2
D.2答案:A42.用0,1,2,3组成没有重复数字的四位数,其中奇数有()
A.8个
B.10个
C.18个
D.24个答案:A43.若0<x<1,则2x,(12)x,(0.2)x之间的大小关系为()A.2x<(0.2)x<(12)xB.2x<(12)x<(0.2)xC.(12)x<(0.2)x<2xD.(0.2)x<(12)x<2x答案:由题意考察幂函数y=xn(0<n<1),利用幂函数的性质,∵0<n<1,∴幂函数y=xn在第一象限是增函数,又2>12>0.2∴2x>(12)x>(0.2)x故选D44.已知直线l的参数方程为x=12ty=22+32t(t为参数),若以直角坐标系xOy的O点为极点,Ox方向为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程为ρ=2cos(θ-π4)
(1)求直线l的倾斜角;
(2)若直线l与曲线C交于A,B两点,求|AB|.答案:(1)直线参数方程可以化x=tcos60°y=22+tsin60°,根据直线参数方程的意义,这条经过点(0,22),倾斜角为60°的直线.(2)l的直角坐标方程为y=3x+22,ρ=2cos(θ-π4)的直角坐标方程为(x-22)2+(y-22)2=1,所以圆心(22,22)到直线l的距离d=64,∴|AB|=102.45.设二项式(33x+1x)n的展开式的各项系数的和为P,所有二项式系数的和为S,若P+S=272,则n=()A.4B.5C.6D.8答案:根据题意,对于二项式(33x+1x)n的展开式的所有二项式系数的和为S,则S=2n,令x=1,可得其展开式的各项系数的和,即P=4n,结合题意,有4n+2n=272,解可得,n=4,故选A.46.已知f(x)=,求不等式x+(x+2)·f(x+2)≤5的解集。答案:解:原不等式等价于或解得或即故不等式的解集为。47.某公司招聘员工,经过笔试确定面试对象人数,面试对象人数按拟录用人数分段计算,计算公式为y=4x1≤x≤102x+1010<x≤1001.5xx>100其中x代表拟录用人数,y代表面试对象人数.若应聘的面试对象人数为60人,则该公司拟录用人数为()A.15B.40C.25D.130答案:由题意知:当10<x≤100时,y=2x+10∈(30,210],又因为60∈(30,210],∴2x+10=60,∴x=25.故:该公司拟录用人数为25人.故选C.48.直线x+ky=0,2x+3y+8=0和x-y-1=0交于一点,则k的值是()
A.
B.-
C.2
D.-2答案:B49.两条平行线l1:3x+4y-2=0,l2:9x+12y-10=0间的距离等于()
A.
B.
C.
D.答案:C50.点B是点A(1,2,3)在坐标平面yOz内的正投影,则|OB|等于()
A.
B.
C.
D.答案:B第3卷一.综合题(共50题)1.以椭圆的焦点为顶点、顶点为焦点的双曲线方程是()
A.
B.
C.
D.答案:C2.已知空间向量a=(1,2,3),点A(0,1,0),若AB=-2a,则点B的坐标是()A.(-2,-4,-6)B.(2,4,6)C.(2,3,6)D.(-2,-3,-6)答案:设B=(x,y,z),因为AB=-2a,所以(x,y-1,z)=-2(1,2,3),所以:x=-2,y-1=-4,z=-6,即x=-2,y=-3,z=-6.B(-2,-3,-6).故选D.3.已知圆台的上下底面半径分别是2cm、5cm,高为3cm,求圆台的体积.答案:∵圆台的上下底面半径分别是2cm、5cm,高为3cm,∴圆台的体积V=13×3×(4π+4π?25π+25π)=39πcm3.4.如图,平面内有三个向量OA、OB、OC,其中与OA与OB的夹角为120°,OA与OC的夹角为30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),则λ+μ的值为______.答案:过C作OA与OB的平行线与它们的延长线相交,可得平行四边形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四边形的边长为2和4,λ+μ=2+4=6.故为6.5.参数方程x=sinθ+cosθy=sinθ•cosθ化为普通方程是______.答案:把x=sinθ+cosθy=sinθ•cosθ利用同角三角函数的基本关系消去参数θ,化为普通方程可得x2=1+2y,故为x2=1+2y.6.如果椭圆x225+y216=1上一点P到焦点F1的距离为6,则点P到另一个焦点F2的距离为()A.5B.4C.8D.6答案:由椭圆的定义知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.故选B.7.平面向量与的夹角为60°,=(1,0),||=1,则|+2|=(
)
A.7
B.
C.4
D.12答案:B8.“cosα=12”是“α=π3”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:∵“coa=12”?“a=π3+2kπ,k∈Z,或a=53π+2kπ,k∈Z”,“a=π3”?“coa=12”.故选D.9.b=ac(a,b,c∈R)是a、b、c成等比数列的()A.必要非充分条件B.充分非必要条件C.充要条件D.既非充分又非必要条件答案:当b=a=0时,b=ac推不出a,x,b成等比数列成立,故不充分;当a,b,c成等比数列且a<0,b<0,c<0时,得不到b=ac故不必要.故选:D10.圆心在原点且圆周被直线3x+4y+15=0分成1:2两部分的圆的方程为
______.答案:如图,因为圆周被直线3x+4y+15=0分成1:2两部分,所以∠AOB=120°.而圆心到直线3x+4y+15=0的距离d=1532+42=3,在△AOB中,可求得OA=6.所以所求圆的方程为x2+y2=36.故为:x2+y2=3611.某程序框图如图所示,若a=3,则该程序运行后,输出的x值为______.答案:由题意,x的初值为1,每次进行循环体则执行乘二加一的运算,执行4次后所得的结果是:1×2+1=3,3×2+1=7,7×2+1=15,15×2+1=31,故为:31.12.下列各组集合,表示相等集合的是()
①M={(3,2)},N={(2,3)};
②M={3,2},N={2,3};
③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对答案:①中M中表示点(3,2),N中表示点(2,3);②中由元素的无序性知是相等集合;③中M表示一个元素,即点(1,2),N中表示两个元素分别为1,2.所以表示相等的集合是②.故选B.13.已知两直线a1x+b1y+1=0和a2x+b2y+1=0的交点为P(2,3),求过两点Q1(a1,b1)、Q2(a2,b2)(a1≠a2)的直线方程.答案:∵P(2,3)在已知直线上,2a1+3b1+1=0,2a2+3b2+1=0.∴2(a1-a2)+3(b1-b2)=0,即b1-b2a1-a2=-23.∴所求直线方程为y-b1=-23(x-a1).∴2x+3y-(2a1+3b1)=0,即2x+3y+1=0.14.已知平面内的向量a,b,c两两所成的角相等,且|a|=2,|b|=3,|c|=5,则|a+b+c|的值的集合为______.答案:设平面内的向量a,b,c两两所成的角为α,|a+b+c|2=4+9+25+12cosα+20cosα+30cosα=38+62cosα,当α=0°时,|a+b+c|2=100,|a+b+c|=10,当α=120°时,|a+b+c|2=7,|a+b+c|=7.所以,|a+b+c|的值的集合为{7,10}.故为:{7,10}.15.在极坐标系中,点A的极坐标为(2,0),直线l的极坐标方程为ρ(cosθ+sinθ)+2=0,则点A到直线l的距离为______.答案:由题意得点A(2,0),直线l为
ρ(cosθ+sinθ)+2=0,即
x+y+2=0,∴点A到直线l的距离为
|2+0+2|2=22,故为22.16.已知A,B,C三点不共线,O为平面ABC外一点,若由向量OP=15OA+23OB+λOC确定的点P与A,B,C共面,那么λ=______.答案:由题意A,B,C三点不共线,点O是平面ABC外一点,若由向量OP=15OA+23OB+λOC确定的点P与A,B,C共面,∴15+23+λ=1解得λ=215故为:21517.在我市新一轮农村电网改造升级过程中,需要选一个电阻调试某村某设备的线路,但调试者手中必有阻值分别为0.5KΩ,1KΩ,1.3KΩ,2KΩ,3KΩ,5KΩ,5.5KΩ等七种阻值不等的定值电阻,他用分数法进行优选试验时,依次将电阻从小到大安排序号,如果第1个试点与第2个试点比较,第1个试点是一个好点,则第3个试点值的阻值为[
]A、1KΩ
B、1.3KΩ
C、5KΩ
D、1KΩ或5KΩ答案:C18.已知=2+i,则复数z=()
A.-1+3i
B.1-3i
C.3+i
D.3-i答案:B19.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.答案::如图可知:∵AC1=6,cos∠AC1A1=33∴A1C1=2,AA1=2∴正四棱柱的体积等于A1B12?AA1=2故为:220.写出1×2×3×4×5×6的一个算法.答案:按照逐一相乘的程序进行第一步:计算1×2,得到2;第二步:将第一步的运算结果2与3相乘,得到6;第三步:将第二步的运算结果6与4相乘,得到24;第四步:将第三步的运算结果24与5相乘,得到120;第五步:将第四的运算结果120与6相乘,得到720;第六步:输出结果.21.已知向量a表示“向东航行1km”,向量b表示“向北航行3km”,则向量a+b表示()A.向东北方向航行2kmB.向北偏东30°方向航行2kmC.向北偏东60°方向航行2kmD.向东北方向航行(1+3)km答案:如图,作OA=a,OB=b.则OC=a+b,所以|OC|=3+1=2,且sin∠BOC=12,所以∠BOC=30°.因此
a+b表示向北偏东30°方向航行2km.故选B.22.如图:在平行六面体ABCD-A1B1C1D1中,M为A1C1与B1D1的交点.若则下列向量中与相等的向量是()
A.
B.
C.
D.
答案:A23.已知点P是以F1、F2为左、右焦点的双曲线(a>0,b>0)左支上一点,且满足PF1⊥PF2,且|PF1|:|PF2|=2:3,则此双曲线的离心率为()
A.
B.
C.
D.答案:D24.设函数f(x)定义如下表,数列{xn}满足x0=5,且对任意自然数均有xn+1=f(xn),则x2004的值为()
A.1B.2C.4D.5答案:由于函数f(x)定义如下表:故数列{xn}满足:5,2,1,4,5,2,1,…是一个周期性变化的数列,周期为:4.∴x2004=x0=5.故选D.25.甲、乙两人约定上午7:20至8:00之间到某站乘公共汽车,在这段时间内有3班公共汽车,它们开车的时刻分别是7:40、7:50和8:00,甲、乙两人约定,见车就乘,则甲、乙同乘一车的概率为(假定甲、乙两人到达车站的时刻是互相不牵连的,且每人在7:20至8:00时的任何时刻到达车站都是等可能的)()A.13B.12C.38D.58答案:甲、乙同乘第一辆车的概率为12×12=14,甲、乙同乘第二辆车的概率为14×14=116,甲、乙同乘第三辆车的概率为14×14=116,甲、乙同乘一车的概率为14+116+116=38,故选C.26.直线(t为参数)的倾斜角是()
A.20°
B.70°
C.45°
D.135°答案:D27.已知圆柱的轴截面周长为6,体积为V,则下列关系式总成立的是()A.V≥πB.V≤πC.V≥18πD.V≤18π答案:设圆柱的底面半径为r,高为h,由题意得:4r+2h=6,即2r+h=3,∴体积为V=πr2h≤π[13(r+r+h)]2=π×(33)2=π当且仅当r=h时取等号,由此可得V≤π恒成立故选:B28.如图,在梯形ABCD中,对角线AC和BD交于点O,E、F分别是AC和BD的中点,分别写出
(1)图中与EF、CO共线的向量;
(2)与EA相等的向量.答案:(1)由图可知,与EF共线的向量有:CD、AB;与CO共线的向量有:CE、CA、OE、OA、EA;(2)由E为CA的中点可知,CE=EA,即与EA相等的向量为CE;29.过点A(a,4)和B(-1,a)的直线的倾斜角等于45°,则a的值是______.答案:∵过点A(a,4)和B(-1,a)的直线的倾斜角等于45°,∴kAB=a-4-1-a=tan45°=1,∴a=32.故为:32.30.与双曲线x2-y24=1有共同的渐近线,且过点(2,2)的双曲线的标准方程为______.答案:设双曲线方程为x2-y24=λ∵过点(2,2),∴λ=3∴所求双曲线方程为x23-y212=1故为x23-y212=131.已知曲线,
θ∈[0,2π)上一点P到点A(-2,0)、B(2,0)的距离之差为2,则△PAB是()
A.锐角三角形
B.钝角三角形
C.直角三角形
D.等腰三角形答案:C32.若椭圆长轴长与短轴长之比为2,它的一个焦点是(215,0),则椭圆的标准方程是______.答案:由题设条件知a=2b,c=215,∴4b2=b2+60,∴b2=20,a2=80,∴椭圆的标准方程是x280+y220=1.故为:x280+y220=1.33.若21-i=a+bi(i为虚数单位,a,b∈R),则a+b=______.答案:∵21-i=2(1+i)(1-i)(1+i)=2(1+i)2=1+i,∵21-i=a+bi∴a+bi=1+i∴a=b=1∴a+b=2.故为:234.在边长为1的正方形ABCD中,若AB=a,BC=b,AC=c.则|a+b+2c|的值是______.答案:由题意可得|a|=|b|=1,|c|=2,a+
b=c,∴|a+b+2c|=|3c|=32,故为32.35.读下面的程序:
上面的程序在执行时如果输入6,那么输出的结果为()
A.6
B.720
C.120
D.1答案:B36.两封信随机投入A、B、C三个空邮箱,则A邮箱的信件数ξ的数学期望Eξ=______;答案:由题意知ξ的取值有0,1,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年标准版简易建筑施工合作合同版B版
- 2024年物流快递行业股权投资与转让合同3篇
- 2025镇政府合同合法性审核办法
- 2007年离婚协议范文
- 2024年甲乙双方关于石油开采用塑料管材供应合同
- 商丘医学高等专科学校《扩声技术1》2023-2024学年第一学期期末试卷
- 2024年简易版自愿离婚协议书3篇
- 家具卖场采购合同范例
- 砂石供应居间合同范例
- 汕头大学《环境生态工程原理》2023-2024学年第一学期期末试卷
- (小学组)全国版图知识竞赛考试题含答案
- 期末+(试题)+-2024-2025学年人教PEP版英语六年级上册
- 安徽合肥国有企业招聘笔试题库2024
- 军队文职公共科目(国防与军队)模拟试卷1(共248题)
- 大国外交演讲与辩论智慧树知到期末考试答案章节答案2024年中国石油大学(华东)
- GB/T 19633.1-2024最终灭菌医疗器械包装第1部分:材料、无菌屏障系统和包装系统的要求
- 数据通信与计算机网络智慧树知到期末考试答案章节答案2024年四川铁道职业学院
- 心理成长与发展智慧树知到期末考试答案章节答案2024年武汉职业技术学院
- 青少版新概念3B-U21市公开课一等奖省赛课微课金奖课件
- 储能业务培训
- 2024届新高考物理冲刺复习:“正则动量”解决带电粒子在磁场中的运动问题
评论
0/150
提交评论