2023年新疆职业大学高职单招(数学)试题库含答案解析_第1页
2023年新疆职业大学高职单招(数学)试题库含答案解析_第2页
2023年新疆职业大学高职单招(数学)试题库含答案解析_第3页
2023年新疆职业大学高职单招(数学)试题库含答案解析_第4页
2023年新疆职业大学高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年新疆职业大学高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.(几何证明选讲选做题)如图4,A,B是圆O上的两点,且OA⊥OB,OA=2,C为OA的中点,连接BC并延长交圆O于点D,则CD=______.答案:如图所示:作出直径AE,∵OA=2,C为OA的中点,∴OC=CA=1,CE=3.∵OB⊥OA,∴BC=22+12=5.由相交弦定理得BC?CD=EC?CA,∴CD=EC?CABC=3×15=355.故为355.2.老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学和进行作业检查,这种抽样方法是()

A.随机抽样

B.分层抽样

C.系统抽样

D.以上都是答案:C3.如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E.求∠DAC的度数与线段AE的长.答案:如图,连接OC,因BC=OB=OC=3,因此∠CBO=60°,由于∠DCA=∠CBO,所以∠DCA=60°,又AD⊥DC得∠DAC=30°;(5分)又因为∠ACB=90°,得∠CAB=30°,那么∠EAB=60°,从而∠ABE=30°,于是AE=12AB=3.(10分)4.利用“直接插入排序法”给按从大到小的顺序排序,

当插入第四个数时,实际是插入哪两个数之间(

)A.与B.与C.与D.与答案:B解析:先比较与,得;把插入到,得;把插入到,得;5.已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是(

)。答案:40或60(不唯一)6.设集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么M与P的关系为______.答案:由x+y<0,xy>0,?x<0,y<0.∴M=P.故为M=P.7.函数f(x)=2|log2x|的图象大致是()

A.

B.

C.

D.

答案:C8.已知0<a<1,loga(1-x)<logax则()

A.0<x<1

B.x<

C.0<x<

D.<x<1答案:C9.已知=2+i,则复数z=()

A.-1+3i

B.1-3i

C.3+i

D.3-i答案:B10.如果过点A(x,4)和(-2,x)的直线的斜率等于1,那么x=()A.4B.1C.1或3D.1或4答案:由于直线的斜率等于1,故1=4-xx-(-2),解得x=1故选B11.如图,在△ABC中,BC边上的高所在的直线方程为x-2y+1=0,∠A的平分线所在的直线方程为y=0,若点B的坐标为(1,2),求点A和点C的坐标.答案:点A为y=0与x-2y+1=0两直线的交点,∴点A的坐标为(-1,0).∴kAB=2-01-(-1)=1.又∵∠A的平分线所在直线的方程是y=0,∴kAC=-1.∴直线AC的方程是y=-x-1.而BC与x-2y+1=0垂直,∴kBC=-2.∴直线BC的方程是y-2=-2(x-1).由y=-x-1,y=-2x+4,解得C(5,-6).∴点A和点C的坐标分别为(-1,0)和(5,-6)12.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人,为了解职工收入情况,决定采用分层抽样的方法从中抽取样本.若样本中具有初级职称的职工为10人,则样本容量为()

A.10

B.20

C.40

D.50答案:C13.对于各数互不相等的整数数组(i1,i2,i3,…in)

(n是不小于2的正整数),对于任意p,q∈1,2,3,…,n,当p<q时有ip>iq,则称ip,iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,则数组(2,4,3,1)中的逆序数等于______.答案:由题意知当p<q时有ip>iq,则称ip,iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,在数组(2,4,3,1)中逆序有2,1;4,3;4,1;3,1共有4对逆序数对,故为:4.14.在研究打酣与患心脏病之间的关系中,通过收集数据、整理分析数据得“打酣与患心脏病有关”的结论,并且有99%以上的把握认为这个结论是成立的.下列说法中正确的是()

A.100个心脏病患者中至少有99人打酣

B.1个人患心脏病,则这个人有99%的概率打酣

C.100个心脏病患者中一定有打酣的人

D.100个心脏病患者中可能一个打酣的人都没有答案:D15.己知集合A={1,2,3,k},B={4,7,a4,a2+3a},且a∈N*,x∈A,y∈B,使B中元素y=3x+1和A中的元素x对应,则a=______,k=______.答案:若x∈A,y∈B,使B中元素y=3x+1和A中的元素x对应,则当x=1时,y=4;当x=2时,y=7;当x=3时,y=10;当x=k时,y=3k+1;又由a∈N*,∴a4≠10,则a2+3a=10,a4=3k+1解得a=2,k=5故为:2,516.某校欲在一块长、短半轴长分别为10米与8米的椭圆形土地中规划一个矩形区域搞绿化,则在此椭圆形土地中可绿化的最大面积为()平方米.

A.80

B.160

C.320

D.160答案:B17.下列命题错误的是(

)A.命题“若,则中至少有一个为零”的否定是:“若,则都不为零”。B.对于命题,使得;则是,均有。C.命题“若,则方程有实根”的逆否命题为:“若方程无实根,则”。D.“”是“”的充分不必要条件。答案:A解析:命题的否定是只否定结论,∴选A.18.已知|a|=8,e是单位向量,当它们之间的夹角为π3时,a在e方向上的投影为

______.答案:a在e方向上的投影为a?e=|a||e|cosπ3=4故为:419.对于空间四点A、B、C、D,命题p:AB=xAC+yAD,且x+y=1;命题q:A、B、C、D四点共面,则命题p是命题q的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:根据命题p:AB=xAC+yAD,且x+y=1,可得AB

、AC

、AD

共面,从而可得命题q:A、B、C、D四点共面成立,故命题p是命题q的充分条件.根据命题q:A、B、C、D四点共面,可得A、B、C、D四点有可能在同一条直线上,若AB=xAC+yAD,则x+y不一定等于1,故命题p不是命题q的必要条件.综上,可得命题p是命题q的充分不必要条件.故选:A.20.已知两直线a1x+b1y+1=0和a2x+b2y+1=0的交点为P(2,3),求过两点Q1(a1,b1)、Q2(a2,b2)(a1≠a2)的直线方程.答案:∵P(2,3)在已知直线上,2a1+3b1+1=0,2a2+3b2+1=0.∴2(a1-a2)+3(b1-b2)=0,即b1-b2a1-a2=-23.∴所求直线方程为y-b1=-23(x-a1).∴2x+3y-(2a1+3b1)=0,即2x+3y+1=0.21.假设两圆互相外切,求证:用连心线做直径的圆,必与前两圆的外公切线相切.答案:证明:设⊙O1及⊙O2为互相外切的两个圆,其一外公切线为A1A2,切点为A1及A2令点O为连心线O1O2的中点,过O作OA⊥A1A2,由直角梯形的中位线性质得:OA=12(O1A1+O2A2)=12O1O2,∴以O1O2为直径,即以O为圆心,OA为半径的圆必与直线A1A2相切,同理可证,此圆必切于⊙O1及⊙O2的另一条外公切线.22.抽样方法有()A.随机抽样、系统抽样和分层抽样B.随机数法、抽签法和分层抽样法C.简单随机抽样、分层抽样和系统抽样D.系统抽样、分层抽样和随机数法答案:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而抽签法和随机数法,只是简单随机抽样的两种不同抽取方法故选C23.在复数范围内解方程|z|2+(z+.z)i=3-i2+i(i为虚数单位).答案:原方程化简为|z|2+(z+.z)i=1-i,设z=x+yi(x、y∈R),代入上述方程得x2+y2+2xi=1-i,∴x2+y2=1且2x=-1,解得x=-12且y=±32,∴原方程的解是z=-12±32i.24.一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂n次终止的概率是(n=1,2,3,…).记X为原物体在分裂终止后所生成的子块数目,则P(X≤10)=()

A.

B.

C.

D.以上均不对答案:A25.已知R为实数集,Q为有理数集.设函数f(x)=0,(x∈CRQ)1,(x∈Q),则()A.函数y=f(x)的图象是两条平行直线B.limx→∞f(x)=0或limx→∞f(x)=1C.函数f[f(x)]恒等于0D.函数f[f(x)]的导函数恒等于0答案:函数y=f(x)的图象是两条平行直线上的一些孤立的点,故A不正确;函数f(x)的极限只有唯一的值,左右极限不等,则该函数不存在极限,故B不正确;若x是无理数,则f(x)=0,f[f(x)]=f(0)=1,故C不正确;∵f[f(x)]=1,∴函数f[f(x)]的导函数恒等于0,故D正确;故选D.26.已知平面向量.a,b的夹角为60°,.a=(3,1),|b|=1,则|.a+2b|=______.答案:∵平面向量.a,b的夹角为60°,.a=(3,1),∴|.a|=2.b2

再由|b|=1,可得.a?b=2×1cos60°=1,∴|.a+2b|=(.a+2b)2=a2+4a?b+4b2=23,故为23.27.在平面直角坐标系xOy中,双曲线x24-y212=1上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是______答案:MFd=e=2,d为点M到右准线x=1的距离,则d=2,∴MF=4.故为428.曲线的参数方程是(t是参数,t≠0),它的普通方程是()

A.(x-1)2(y-1)=1

B.

C.

D.答案:B29.四名志愿者和两名运动员排成一排照相,要求两名运动员必须站在一起,则不同的排列方法为()A.A44A22B.A55A22C.A55D.A66A22答案:根据题意,要求两名运动员站在一起,所以使用捆绑法,两名运动员站在一起,有A22种情况,将其当做一个元素,与其他四名志愿者全排列,有A55种情况,结合分步计数原理,其不同的排列方法为A55A22种,故选B.30.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面()A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案:∵A(9,-3,4),B(9,2,1),∴AB=(9,2,1)-(9,-3,4)=(0,5,-3),∵yOz平面内的向量的一般形式为a=(0,y,z)∴向量AB∥a,可得AB∥平面yOz.故选:C31.设ABC是坐标平面上的一个三角形,P为平面上一点且AP=15AB+25AC,则△ABP的面积△ABC的面积=()A.12B.15C.25D.23答案:连接CP并延长交AB于D,∵P、C、D三点共线,∴AP=λAD+μAC且λ+μ=1设AB=kAD,结合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面积与△ABC有相同的底边AB高的比等于|PD|与|CD|之比∴△ABP的面积与△ABC面积之比为25故选:C32.命题“若a,b都是奇数,则a+b是偶数”的逆否命题是

______.答案:∵“a,b都是奇数”的否命题是“a,b不都是奇数”,“a+b是偶数”的否命题是“a+b不是偶数”,∴命题“若a,b都是奇数,则a+b是偶数”的逆否命题是“若a+b不是偶数,则a,b不都是奇数”.故为:若a+b不是偶数,则a,b不都是奇数.33.已知A(1,1),B(2,4),则直线AB的斜率为()

A.1

B.2

C.3

D.4答案:C34.命题“若A∪B=A,则A∩B=B”的否命题是()A.若A∪B≠A,则A∩B≠BB.若A∩B=B,则A∪B=AC.若A∩B≠A,则A∪B≠BD.若A∪B=B,则A∩B=A答案:“若A∪B=A,则A∩B=B”的否命题:“若A∪B≠A则A∩B≠B”故选A.35.已知图形F上的点A按向量平移前后的坐标分别是和,若B()是图形F上的又一点,则在F按向量平移后得到的图形F,上B,的坐标是(

)A.B.C.D.答案:选D解析:设向量,则平移公式为依题意有∴平移公式为将B点坐标代入可得B,点的坐标为.所以选D.36.某公司招聘员工,经过笔试确定面试对象人数,面试对象人数按拟录用人数分段计算,计算公式为:y=4x,1≤x≤102x+10,10<x≤1001.5x

,x>100其中x代表拟录用人数,y代表面试对象人数.若应聘的面试对象人数为60人,则该公司拟录用人数为()A.15B.40C.130D.25答案:∵y=4x,1≤x≤102x+10,10<x≤1001.5x

,x>100=60,∴当1≤x≤10时,由4x=60得x=15?[1,10],不满足题意;当10<x≤100时,由2x+10=60得x=25∈(10,100],满足题意;当x>100时,由1.5x=60得x=40?(100,+∞),不满足题意.∴该公司拟录用人数为25.故选D.37.在测量某物理量的过程中,因仪器和观察的误差,使得n次测量分别得到a1,a2,…,an,共n个数据.我们规定所测量的“量佳近似值”a是这样一个量:与其他近似值比较,a与各数据的差的平方和最小.依此规定,从a1,a2,…,an推出的a=______.答案:∵所测量的“量佳近似值”a是与其他近似值比较,a与各数据的差的平方和最小.根据均值不等式求平方和的最小值知这些数的底数要尽可能的接近,∴a是所有数字的平均数,∴a=a1+a2+…+ann,故为:a1+a2+…+ann38.

若平面向量,,两两所成的角相等,||=||=1,||=3,则|++|=()

A.2

B.4

C.2或5

D.4或5答案:C39.已知集合A到B的映射f:x→y=2x+1,那么集合A中元素2在B中的象是()A.2B.5C.6D.8答案:∵x=2,∴y=2x+1则y=2×2+1=5,那么集合A中元素2在B中的象是5故选B.40.设x,y∈R,且满足x2+y2=1,求x+y的最大值为()

A.

B.

C.2

D.1答案:A41.若(1+2)5=a+b2(a,b为有理数),则a+b=()A.45B.55C.70D.80答案:解析:由二项式定理得:(1+2)5=1+C512+C52(2)2+C53(2)3+C54(2)4+C55?(2)5=1+52+20+202+20+42=41+292,∴a=41,b=29,a+b=70.故选C42.与直线3x+4y-3=0平行,并且距离为3的直线方程为______.答案:设所求直线上任意一点P(x,y),由题意可得点P到所给直线的距离等于3,即|3x+4y-3|5=3,∴|3x+4y-3|=15,∴3x+4y-3=±15,即3x+4y-18=0或3x+4y+12=0.故为3x+4y-18=0或3x+4y+12=0.43.在(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是______.(用数字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是C31+C41+C51+…+C71=25故为:2544.直线l1:x+ay=2a+2与直线l2:ax+y=a+1平行,则a=______.答案:直线l1:x+ay=2a+2即x+ay-2a-2=0;直线l2:ax+y=a+1即ax+y-a-1=0,∵直线l1与直线l2互相平行∴当a≠0且a≠-1时,1a=a1≠-2a-2-a-1,解之得a=1当a=0时,两条直线垂直;当a=-1时,两条直线重合故为:145.为了了解某地母亲身高x与女儿身高y的相关关系,随机测得10对母女的身高如下表所示:

母亲身高x(cm)159160160163159154159158159157女儿身高y(cm)158159160161161155162157162156计算x与y的相关系数r=0.71,通过查表得r的临界值r0.05=______,从而有______的把握认为x与y之间具有线性相关关系,因而求回归直线方程是有意义的.通过计算得到回归直线方程为y=35.2+0.78x,当母亲身高每增加1cm时,女儿身高______,当母亲的身高为161cm时,估计女儿的身高为______cm.答案:查对临界值表,由临界值r0.05=0.632,可得有95%的把握认为x与Y之间具有线性相关关系,回归直线方程为y=35.2+0.78x,因此,当母亲身高每增加1cm时,女儿身高0.78,当x=161cm时,y=35.2+0.78x=35.2+0.78×161≈161cm故为:0.632,95%,0.78,161cm.46.平面向量a与b的夹角为60°,a=(2,0),|b|=1

则|a+2b|=______.答案:∵平面向量a与b的夹角为60°,a=(2,0),|b|=1

∴|a+2b|=(a+2b)2=a2+4×a?b+4b2=4+4×2×1×cos60°+4=23.故为:23.47.下面程序框图输出的S表示什么?虚线框表示什么结构?答案:由框图知,当r=5时,输出的s=πr2所以程序框图输出的S表示:求半径为5的圆的面积的算法的程序框图,虚线框是一个顺序结构.48.已知a,b,c为正数,且两两不等,求证:2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b).答案:证明:不妨设a>b>c>0,则(a-b)2>0,(b-c)2>0,(c-a)2>0.由于2(a3+b3+c3)-a2(b+c)+b2(a+c)+c2(a+b)=a2(a-b)+a2(a-c)+b2(b-c)+b2(b-a)+c2(c-a)+c2(c-b)

=(a-b)2(a+b)+(b-c)2(b+c)+(c-a)2(c+a)>0,故有2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b)成立.49.某工厂生产产品,用传送带将产品送到下一道工序,质检人员每隔十分钟在传送带的某一个位置取一件检验,则这种抽样方法是()A.简单随机抽样B.系统抽样C.分层抽样D.非上述答案答案:本题符合系统抽样的特征:总体中各单位按一定顺序排列,根据样本容量要求确定抽选间隔,然后随机确定起点,每隔一定的间隔抽取一个单位的一种抽样方式.故选B.50.用反证法证明命题“若a、b∈N,ab能被2整除,则a,b中至少有一个能被2整除”,那么反设的内容是______.答案:根据用反证法证明数学命题的步骤,应先假设要证命题的否定成立,而要证命题的否定为:“a,b都不能被2整除”,故为:a、b都不能被2整除.第2卷一.综合题(共50题)1.如图,从圆O外一点A引切线AD和割线ABC,AB=3,BC=2,则切线AD的长为______.答案:由切割线定理可得AD2=AB?AC=3×5,∴AD=15.故为15.2.已知直线3x+4y-3=0与直线6x+my+14=0平行,则它们之间的距离是______.答案:直线3x+4y-3=0即6x+8y-6=0,它直线6x+my+14=0平行,∴m=8,则它们之间的距离是d=|c1-c2|a2+b2=|-6-14|62+82=2,故为:2.3.给出以下命题:(1)若非零向量a与b互为负向量,则a∥b;(2)|a|=0是a=0的充要条件;(3)若|a|=|b|,则a=±b;(4)物理学中的作用力和反作用力互为负向量.其中为真命题的是______.答案:(1)若非零向量a与b互为负向量,根据相反向量的定义可知a∥b,故正确;(2)|a|=0则a=0,a=0则|a|=0,故|a|=0是a=0的充要条件,故正确;(3)若|a|=|b|,则两向量模等,方向任意,故不正确;(4)物理学中的作用力和反作用力大小相等,方向相反,故互为负向量,故正确故为:(1)(2)(4)4.已知函数f(x)=ax,(a>0,a≠1)的图象经过点P(12,12),则常数a的值为()A.2B.4C.12D.14答案:∵函数f(x)=ax,(a>0,a≠1)的图象经过点P(12,12),∴a12=12,?a=14.故选D.5.(选做题)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=与曲线(t为参数)相较于A,B来两点,则线段AB的中点的直角坐标为(

)。答案:(2.5,2.5)6.已知a=3i+2j-k,b=i-j+2k,则5a与3b的数量积等于______.答案:a=3i+2j-k=(3,2,-1),5a=(15,10,-5)b=i-j+2k=(1,-1,2),3b=(3,-3,6)5a•3b=15×3+10×(-3)+(-5)×6=-15故为:-157.已知两点A(2,1),B(3,3),则直线AB的斜率为()

A.2

B.

C.

D.-2答案:A8.若根据10名儿童的年龄

x(岁)和体重

y(㎏)数据用最小二乘法得到用年龄预报体重的回归方程是

y=2x+7,已知这10名儿童的年龄分别是

2、3、3、5、2、6、7、3、4、5,则这10名儿童的平均体重是()

A.17㎏

B.16㎏

C.15㎏

D.14㎏答案:C9.安排6名演员的演出顺序时,要求演员甲不第一个出场,也不最后一个出场,则不同的安排方法种数是()

A.120

B.240

C.480

D.720答案:C10.如图所示的方格纸中有定点O,P,Q,E,F,G,H,则=()

A.

B.

C.

D.

答案:C11.一平面截球面产生的截面形状是______;它截圆柱面所产生的截面形状是______.答案:根据球的几何特征,一平面截球面产生的截面形状是圆;当平面与圆柱的底面平行时,截圆柱面所产生的截面形状为圆;当平面与圆柱的底面不平行时,截圆柱面所产生的截面形状为椭圆;故为:圆,圆或椭圆12.不等式的解集是(

A.(-3,2)

B.(2,+∞)

C.(-∞,-3)∪(2,+∞)

D.(-∞,-3)∪(3,+∞)答案:C13.已知圆C:x2+y2=12,直线l:4x+3y=25.

(1)圆C的圆心到直线l的距离为______;

(2)圆C上任意一点A到直线l的距离小于2的概率为______.答案:(1)由题意知圆x2+y2=12的圆心是(0,0),圆心到直线的距离是d=2532+42=5,(2)由题意知本题是一个几何概型,试验发生包含的事件是从这个圆上随机的取一个点,对应的圆上整个圆周的弧长,满足条件的事件是到直线l的距离小于2,过圆心做一条直线交直线l与一点,根据上一问可知圆心到直线的距离是5,在这条垂直于直线l的半径上找到圆心的距离为3的点做半径的垂线,根据弦心距,半径,弦长之间组成的直角三角形得到符合条件的弧长对应的圆心角是60°根据几何概型的概率公式得到P=60°360°=16故为:5;1614.某学校为了了解学生的日平均睡眠时间(单位:h),随机选择了n名同学进行调查,下表是这n名同学的日平均睡眠时间的频率分布表:

序号(i)分组(睡眠时间)频数(人数)频率1[4,5)40.082[5,6)x0.203[6,7)ay4[7,8)bz5[8,9]m0.O8(1)求n的值;若a=20,试确定x、y、z、m的值;

(2)统计方法中,同一组数据常用该组区间的中点值(例如[4,5)的中点值4.5)作为代表.若据此计算的这n名学生的日平均睡眠时间的平均值为6.68.求a、b的值.答案:(1)样本容量n=40.08=50,∴x=0.20×50=10,y=0.4,z=0.24,m=4(5分)(2)n=50,P(i=3)=a50,P(i=4)=b50平均时间为:4.5×0.08+5.5×0.2+6.5×a50+7.5×b50+8.5×0.08=6.68,即13a+15b=454

①(9分)又4+10+a+b+4=50,即a+b=32

②由①,②解得:a=13,b=1.(12分)15.经过两点A(-3,5),B(1,1

)的直线倾斜角为______.答案:因为两点A(-3,5),B(1,1

)的直线的斜率为k=1-51-(-3)=-1所以直线的倾斜角为:135°.故为:135°.16.已知定点A(12.0),M为曲线x=6+2cosθy=2sinθ上的动点,若AP=2AM,试求动点P的轨迹C的方程.答案:设M(6+2cosθ,2sinθ),动点(x,y)由AP=2AM,即M为线段AP的中点故6+2cosθ=x+122,2sinθ=y+02即x=4cosθy=4sinθ即x2+y2=16∴动点P的轨迹C的方程为x2+y2=1617.(选做题)某制药企业为了对某种药用液体进行生物测定,需要优选培养温度,实验范围定为29℃~63℃,精确度要求±1℃,用分数法进行优选时,能保证找到最佳培养温度需要最少实验次数为(

)。答案:718.经过点P(4,-2)的抛物线的标准方程为()

A.y2=-8x

B.x2=-8y

C.y2=x或x2=-8y

D.y2=x或y2=8x答案:C19.已知事件A与B互斥,且P(A)=0.3,P(B)=0.6,则P(A|.B)=______.答案:∵P(B)=0.6,∴P(.B)=0.4.又事件A与B互斥,且P(A)=0.3,∴P(A|.B)=P(A)P(.B)=0.30.4=34.故为:34.20.已知圆C:x2+y2-4y-6y+12=0,求:

(1)过点A(3,5)的圆的切线方程;

(2)在两条坐标轴上截距相等的圆的切线方程.答案:(l)设过点A(3,5)的直线ɭ的方程为y-5=k(x-3).因为直线ɭ与⊙C相切,而圆心为C(2,3),则|2k-3-3k+5|k2+1=1,解得k=34所以切线方程为y-5=34(x-3),即3x-4y+11=0.由于过圆外一点A与圆相切的直线有两条,因此另一条切线方程为x=3.(2)因为原点在圆外,所以设在两坐标轴上截距相等的直线方程x+y=a或y=kx.由直线与圆相切得,|2+3-a|2=1或|2k-3|k2+1=1,解得a=5士2,k=6±223故所求的切线方程为x+y=5士2或y=6±223x.21.给出下列结论:

(1)两个变量之间的关系一定是确定的关系;

(2)相关关系就是函数关系;

(3)回归分析是对具有函数关系的两个变量进行统计分析的一种常用方法;

(4)回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.

以上结论中,正确的有几个?()

A.1

B.2

C.3

D.4答案:A22.若e1,e2是两个不共线的向量,已知AB=2e1+ke2,CB=e1+3e2,CD=2e1-e2,若A,B,D三点共线,则k=______.答案:BD=CD-CB=(2e1-e2)-(e1+3e2)=2e1-4e2因为A,B,D三点共线,所以AB=kBD,已知AB=2e1+ke2,BD=2e1-4e2所以k=-4故为:-423.中,是边上的中线(如图).

求证:.

答案:证明见解析解析:取线段所在的直线为轴,点为原点建立直角坐标系.设点的坐标为,点的坐标为,则点的坐标为.可得,,,.,..24.设椭圆C1的离心率为513,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为

______答案:根据题意可知椭圆方程中的a=13,∵ca=513∴c=5根据双曲线的定义可知曲线C2为双曲线,其中半焦距为5,实轴长为8∴虚轴长为225-16=6∴双曲线方程为x216-y29=1故为:x216-y29=125.已知两个函数f(x)和g(x)的定义域和值域都是集合1,2,3,其定义如下表:

表1:

x123f(x)231表2:

x123g(x)321则方程g[f(x)]=x的解集为______.答案:由题意得,当x=1时,g[f(1)]=g[2]=2不满足方程;当x=2时,g[f(2)]=g[3]=1不满足方程;x=3,g[f(3)]=g[1]=3满足方程,是方程的解.故为:{3}26.下表是x与y之间的一组数据,则y关于x的线性回归方程

必过点()

x

0

1

2

3

y

1

3

5

7

A.(2,2)

B.(1.5,2)

C.(1,2)

D.(1.5,4)答案:D27.已知平面向量a,b,c满足a+b+c=0,且a与b的夹角为135°,c与b的夹角为120°,|c|=2,则|a|=______.答案:∵a+b+c=0∴三个向量首尾相接后,构成一个三角形且a与b的夹角为135°,c与b的夹角为120°,|c|=2,故所得三角形如下图示:其中∠C=45°,∠A=60°,AB=2∴|a|=AB?Sin∠Asin∠C=6故为:628.已知曲线,

θ∈[0,2π)上一点P到点A(-2,0)、B(2,0)的距离之差为2,则△PAB是()

A.锐角三角形

B.钝角三角形

C.直角三角形

D.等腰三角形答案:C29.若关于x的不等式xa2-2xa-3<0在[-1,1]上恒成立,则实数a的取值范围是

A.[-1,1]

B.[-1,3]

C.(-1,1)

D.(-1,3)答案:D30.请输入一个奇数n的BASIC语句为______.答案:INPUT表示输入语句,输入一个奇数n的BASIC语句为:INPUT“输入一个奇数n”;n.故为:INPUT“输入一个奇数n”;n.31.随机地向某个区域抛撒了100粒种子,在面积为10m2的地方有2粒种子发芽,假设种子的发芽率为100%,则整个撒种区域的面积大约有______m2.答案:设整个撒种区域的面积大约xm2,由于假设种子的发芽率为100%,所以在面积为10m2的地方有2粒种子发芽,意味着在面积为10m2的地方有2粒种子,从而有:100x=210,∴x=500,故为:500.32.已知两个非空集合A、B满足A∪B={1,2,3},则符合条件的有序集合对(A,B)个数是()A.6B.8C.25D.27答案:按集合A分类讨论若A={1,2,3},则B是A的子集即可满足题意,故B有7种情况,即有序集合对(A,B)个数为7若A={1,2,}或{1,3}或{2,3}时,集合B中至少有一个元素,故每种情况下,B都有4种情况,故有序集合对(A,B)个数为4×3=12若A={1}或{3}或{2}时集合中至少有二个元素,故每种情况下,B都有2种情况,故有序集合对(A,B)个数为2×3=6综上,符合条件的有序集合对(A,B)个数是7+12+6=25故选C33.设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求实数a的取值范围。答案:解A={0,-4}∵A∩B=B

∴BA由x2+2(a+1)x+a2-1=0

得△=4(a+1)2-4(a2-1)=8(a+1)(1)当a<-1时△<0

B=φA(2)当a=-1时△=0

B={0}A(3)当a>-1时△>0

要使BA,则A=B∵0,-4是方程x2+2(a+1)x+a2-1=0的两根∴解之得a=1综上可得a≤-1或a=134.若P(A∪B)=P(A)+P(B)=1,则事件A与事件B的关系是()

A.互斥事件

B.对立事件

C.不是互斥事件

D.前者都不对答案:D35.定义在R上的二次函数y=f(x)在(0,2)上单调递减,其图象关于直线x=2对称,则下列式子可以成立的是()

A.

B.

C.

D.答案:D36.某班有40名学生,其中有15人是共青团员.现将全班分成4个小组,第一组有学生10人,共青团员4人,从该班任选一个学生代表.在选到的学生代表是共青团员的条件下,他又是第一组学生的概率为()A.415B.514C.14D.34答案:由于所有的共青团员共有15人,而第一小组有4人是共青团员,故在选到的学生代表是共青团员的条件下,他又是第一组学生的概率为415,故选A.37.设a>2,给定数列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求证:

(1)xn>2,且xn+1xn<1(n=1,2…);

(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:证明:(1)①当n=1时,∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12

-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.结论成立.②假设n=k时,结论成立,即2<xk+1<xk(k∈N+),则xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,综上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由条件x1=a≤3知不等式当n=1时成立假设不等式当n=k(k≥1)时成立当n=k+1时,由条件及xk>2知xk+1≤1+12k⇔x2k≤2(xk-1)(2+12k)⇔x2k-2(2+12k)xk+2(2+12k)≤0⇔(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及归纳假设知,上面最后一个不等式一定成立,所以不等式xk+1≤2+12k也成立,从而不等式xn≤2+12n-1对所有的正整数n成立38.设双曲线的两条渐近线为y=±x,则该双曲线的离心率e为()

A.5

B.或

C.或

D.答案:C39.函数数列{fn(x)}满足:f1(x)=x1+x2(x>0),fn+1(x)=f1[fn(x)]

(1)求f2(x),f3(x);

(2)猜想fn(x)的表达式,并证明你的结论.答案:(1)f2(x)=f1(f1(x))=f1(x)1+f21(x)=x1+2x2f3(x)=f1(f2(x))=f2(x)1+f22(x)=x1+3x2(2)猜想:fn(x)=x1+nx2(n∈N*)下面用数学归纳法证明:①当n=1时,f1(x)=x1+x22,已知,显然成立②假设当n=K(K∈N*)4时,猜想成立,即fk(x)=x1+kx2则当n=K+1时,fk+1(x)=f1(fk(x))=fk(x)1+f2k(x)=x1+kx21+(x1+kx2)2=x1+(k+1)x2即对n=K+1时,猜想也成立.结合①②可知:猜想fn(x)=x1+nx2对一切n∈N*都成立.40.一个口袋中有红球3个,白球4个.

(Ⅰ)从中不放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,求恰好第2次中奖的概率;

(Ⅱ)从中有放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,连续摸4次,求中奖次数X的数学期望E(X).答案:(I)“恰好第2次中奖“即为“第一次摸到的2个白球,第二次至少有1个红球”,其概率为C24C27×C23+C13C12C25=935;(II)摸一次中奖的概率为p=C23+C13C14C27=57,由条件知X~B(4,p),∴EX=np=4×57=207.41.甲、乙两人参加一次考试,已知在备选的10道试题中,甲能答对其中6题,乙能答对其中8题.若规定每次考试分别都从这10题中随机抽出3题进行测试,至少答对2题算合格.

(1)分别求甲、乙两人考试合格的概率;

(2)求甲、乙两人至少有一人合格的概率.答案:(1)(2)解析:(1)设甲、乙考试合格分别为事件A、B,甲考试合格的概率为P(A)=,乙考试合格的概率为P(B)=.(2)A与B相互独立,且P(A)=,P(B)=,则甲、乙两人至少有一人合格的概率为P(AB++A)=×+×+×=.42.函数f(x)=2|log2x|的图象大致是()

A.

B.

C.

D.

答案:C43.圆柱的底面积为S,侧面展开图为正方形,那么这个圆柱的侧面积为()A.πSB.2πSC.3πSD.4πS答案:设圆柱的底面半径是R,母线长是l,∵圆柱的底面积为S,侧面展开图为正方形,∴πR2=S,且l=2πR,∴圆柱的侧面积为2πRl=4πS.故选D.44.已知图形F上的点A按向量平移前后的坐标分别是和,若B()是图形F上的又一点,则在F按向量平移后得到的图形F,上B,的坐标是(

)A.B.C.D.答案:选D解析:设向量,则平移公式为依题意有∴平移公式为将B点坐标代入可得B,点的坐标为.所以选D.45.已知a>0,b>0且a+b>2,求证:1+ba,1+ab中至少有一个小于2.答案:证明:假设1+ba,1+ab都不小于2,则1+ba≥2,1+ab≥2(6分)因为a>0,b>0,所以1+b≥2a,1+a≥2b,1+1+a+b≥2(a+b)即2≥a+b,这与已知a+b>2相矛盾,故假设不成立(12分)综上1+ba,1+ab中至少有一个小于2.(14分)46.已知|a|=8,e是单位向量,当它们之间的夹角为π3时,a在e方向上的投影为

______.答案:a在e方向上的投影为a?e=|a||e|cosπ3=4故为:447.在空间直角坐标系中,在Ox轴上的点P1的坐标特点为

______,在Oy轴上的点P2的坐标特点为

______,在Oz轴上的点P3的坐标特点为

______,在xOy平面上的点P4的坐标特点为

______,在yOz平面上的点P5的坐标特点为

______,在xOz平面上的点P6的坐标特点为

______.答案:由空间坐标系的定义知;Ox轴上的点P1的坐标特点为(x,0,0),在Oy轴上的点P2的坐标特点为(0,y,0),在Oz轴上的点P3的坐标特点为(0,0,z),在xOy平面上的点P4的坐标特点为(x,y,0),在yOz平面上的点P5的坐标特点为(0,y,z),在xOz平面上的点P6的坐标特点为(x,0,z).故应依次为(x,0,0),(0,y,0),(0,0,z),(x,y,0),(0,y,z),(x,0,z).48.在极坐标系中与圆ρ=4sinθ相切的一条直线的方程为()

A.ρcosθ=2

B.ρsinθ=2

C.ρ=4sin(θ+)

D.ρ=4sin(θ-)答案:A49.某次我市高三教学质量检测中,甲、乙、丙三科考试成绩的直方图如如图所示(由于人数众多,成绩分布的直方图可视为正态分布),则由如图曲线可得下列说法中正确的一项是()

A.甲科总体的标准差最小

B.丙科总体的平均数最小

C.乙科总体的标准差及平均数都居中

D.甲、乙、丙的总体的平均数不相同

答案:A50.设集合A={(x,y)|x+y=6,x∈N,y∈N},使用列举法表示集合A.答案:集合A中的元素是点,点的横坐标,纵坐标都是自然数,且满足条件x+y=6.所以用列举法表示为:A={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.第3卷一.综合题(共50题)1.掷一颗均匀的骰子,若随机事件A表示“出现奇数点”,则A的对立事件B表示______.答案:掷一颗均匀的骰子,结果只有2种:出现奇数点、出现偶数点.若随机事件A表示“出现奇数点”,则A的对立事件B表示:“出现偶数点”,故为出现偶数点.2.命题“零向量与任意向量共线”的否定为______.答案:命题“零向量与任意向量共线”即“任意向量与零向量共线”,是全称命题,其否定为特称命题:“有的向量与零向量不共线”.故为:“有的向量与零向量不共线”.3.抛物线C:y=x2上两点M、N满足MN=12MP,若OP=(0,-2),则|MN|=______.答案:设M(x1,x12),N(x2,x22),则MN=(x2-x1,x22-x12)MP=(-x1,-2-x12).因为MN=12MP,所以(x2-x1,x22-x12)=12(-x1,-2-x12),即x2-x1=-12x1,x22-x12=12(-2-x12),所以x1=2x2,2x22=-2+x12,联立解得:x2=1,x1=2或x2=-1,x1=-2即M(1,1),N(2,4)或M(-1,1),N(-2,4)所以|MN|=10故为10.4.点(2,-2)的极坐标为______.答案:∵点(2,-2)中x=2,y=-2,∴ρ=x2+y2=4+4=22,tanθ=yx=-1,∴取θ=-π4.∴点(2,-2)的极坐标为(22,-π4)故为(22,-π4).5.算法:第一步

x=a;第二步

若b>x则x=b;第三步

若c>x,则x=c;

第四步

若d>x,则x=d;

第五步

输出x.则输出的x表示()A.a,b,c,d中的最大值B.a,b,c,d中的最小值C.将a,b,c,d由小到大排序D.将a,b,c,d由大到小排序答案:x=a,若b>x,则b>a,x=b,否则x=a,即x为a,b中较大的值;若c>x,则x=c,否则x仍为a,b中较大的值,即x为a,b,c中较大的值;若d>x,则x=d,否则x仍为a,b,c中较大的值,即x为a,b,c中较大的值.故x为a,b,c,d中最大的数,故选A.6.在平行四边形ABCD中,E和F分别是边CD和BC的中点,若AC=λAE+μAF,其中λ、μ∈R,则λ+μ=______.答案:解析:设AB=a,AD=b,那么AE=12a+b,AF=a+12b,又∵AC=a+b,∴AC=23(AE+AF),即λ=μ=23,∴λ+μ=43.故为:43.7.用反证法证明“a>b”时,反设正确的是()

A.a>b

B.a<b

C.a=b

D.以上都不对答案:D8.在曲线(t为参数)上的点是()

A.(1,-1)

B.(4,21)

C.(7,89)

D.答案:A9.设α和β为不重合的两个平面,给出下列命题:

(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;

(2)若α外一条直线l与α内的一条直线平行,则l和α平行;

(3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;

(4)直线l与α垂直的充分必要条件是l与α内的两条直线垂直.

上面命题,真命题的序号是______(写出所有真命题的序号)答案:由面面平行的判定定理可知,(1)正确.由线面平行的判定定理可知,(2)正确.对于(3)来说,α内直线只垂直于α和β的交线l,得不到其是β的垂线,故也得不出α⊥β.对于(4)来说,l只有和α内的两条相交直线垂直,才能得到l⊥α.也就是说当l垂直于α内的两条平行直线的话,l不一定垂直于α.10.{,,}是空间向量的一个基底,设=+,=+,=+,给出下列向量组:①{,,}②{,,},③{,,},④{,,},其中可以作为空间向量基底的向量组有()组.

A.1

B.2

C.3

D.4答案:C11.设向量a=(x+1,y),b=(x-1,y),点P(x,y)为动点,已知|a|+|b|=4.

(1)求点p的轨迹方程;

(2)设点p的轨迹与x轴负半轴交于点A,过点F(1,0)的直线交点P的轨迹于B、C两点,试推断△ABC的面积是否存在最大值?若存在,求其最大值;若不存在,请说明理由.答案:(1)由已知,(x+)2+y2+(x-1)2+1=4,所以动点P的轨迹M是以点E(-1,0),F(1,0)为焦点,长轴长为4的椭圆.因为c=1,a=2,则b2=a2-c2=3.故动点P的轨迹M方程是x24+y23=1(2)设直线BC的方程x=my+1与(1)中的椭圆方程x24+y23=1联立消去x可得(3m2+4)y2+6my-9=0,设点B(x1,y1),C(x2,y2)则y1+y2=-6m3m2+4,y1y2=-93m2+4,所以|BC|=m2+1(y1+y2)2-4y1y2=12(m2+1)3m2+4点A到直线BC的距离d=31+m2S△ABC=12|BC|d=181+m23m2+4令1+m2=t,t≥1,∴S△ABC=12|BC|d=18t3t2+1=183t+1t≤92故三角形的面积最大值为9212.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的14,且样本容量是160,则中间一组的频数为()A.32B.0.2C.40D.0.25答案:设间一个长方形的面积S则其他十个小长方形面积的和为4S,所以频率分布直方图的总面积为5S所以中间一组的频率为S5S=0.2所以中间一组的频数为160×0.2=32故选A13.参数方程x=3cosθy=4sinθ,(θ为参数)化为普通方程是______.答案:由参数方程x=3cosθy=4sinθ,得cosθ=13xsinθ=14y∵cos2θ+sin2θ=1,∴(13x)2+(14y)2=1,化简得x29+y216=1,即为椭圆的普通方程故为:x29+y216=114.用反证法证明命题:“三角形三个内角至少有一个不大于60°”时,应假设______.答案:根据用反证法证明数学命题的方法和步骤,先把要证的结论进行否定,得到要证的结论的反面,而命题:“三角形三个内角至少有一个不大于60°”的否定为“三个内角都大于60°”,故为三个内角都大于60°.15.证明不等式1+12+13+…+1n<2n(n∈N*)答案:证法一:(1)当n=1时,不等式左端=1,右端=2,所以不等式成立;(2)假设n=k(k≥1)时,不等式成立,即1+12+13+…+1k<2k,则1+12+13+…+1k+1<2k+1k+1=2k(k+1)+1k+1<k+(k+1)+1k+1=2k+1,∴当n=k+1时,不等式也成立.综合(1)、(2)得:当n∈N*时,都有1+12+13+…+1n<2n.证法二:设f(n)=2n-(1+12+13+…+1n),那么对任意k∈N*

都有:f(k+1)-f(k)=2(k+1-k)-1k+1=1k+1[2(k+1)-2k(k+1)-1]=1k+1•[(k+1)-2k(k+1)+k]=(k+1-k)2k+1>0∴f(k+1)>f(k)因此,对任意n∈N*

都有f(n)>f(n-1)>…>f(1)=1>0,∴1+12+13+…+1n<2n.16.若a=(1,2,-2),b=(1,0,2),则(a-b)•(a+2b)=______.答案:∵a=(1,2,-2),b=(1,0,2),∴a-b=(0,2,-4),a+2b=(3,2,2).∴(a-b)•(a+2b)=0×3+2×2-4×2=-4.故为-4.17.底面直径和高都是4cm的圆柱的侧面积为______cm2.答案:∵圆柱的底面直径和高都是4cm,∴圆柱的底面圆的周长是2π×2=4π∴圆柱的侧面积是4π×4=16π,故为:16π.18.已知随机变量ξ服从二项分布ξ~B(6,),则E(2ξ+4)=()

A.10

B.4

C.3

D.9答案:A19.每一吨铸铁成本y

(元)与铸件废品率x%建立的回归方程y=56+8x,下列说法正确的是()A.废品率每增加1%,成本每吨增加64元B.废品率每增加1%,成本每吨增加8%C.废品率每增加1%,成本每吨增加8元D.如果废品率增加1%,则每吨成本为56元答案:∵回归方程y=56+8x,∴当x增加一个单位时,对应的y要增加8个单位,这里是平均增加8个单位,故选C.20.已知

|x|<a,|y|<a.求证:|xy|<a.答案:证明:∵0<|x|<a,0<|y|<a∴由不等式的性质,可得|xy|<a21.O是正六边形ABCDE的中心,且OA=a,OB=b,AB=c,在以A,B,C,D,E,O为端点的向量中:

(1)与a相等的向量有

______;

(2)与b相等的向量有

______;

(3)与c相等的向量有

______.答案:如图,在O是正六边形ABCDE的中心,以A,B,C,D,E,O为端点的向量中(1)与a相等的向量有EF,DO,CB;(2)与b相等的向量有DC,EO,FA;(3)与c相等的向量有FO,OC,ED.故三个空依次应填EF,DO,CB;DC,EO,FA;FO,OC,ED.22.气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22

(℃)”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):

①甲地:5个数据的中位数为24,众数为22;

②乙地:5个数据的中位数为27,总体均值为24;

③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8;

则肯定进入夏季的地区有()A.0个B.1个C.2个D.3个答案:①甲地:5个数据的中位数为24,众数为22,根据数据得出:甲地连续5天的日平均温度的记录数据可能为:22,22,24,25,26.其连续5天的日平均温度均不低于22.

②乙地:5个数据的中位数为27,总体均值为24.根据其总体均值为24可知其连续5天的日平均温度均不低于22.③丙地:5个数据中有一个数据是32,总体均值为26,根据其总体均值为24可知其连续5天的日平均温度均不低于22.则肯定进入夏季的地区有甲、乙、丙三地.故选D.23.已知空间四边形ABCD中,M、G分别为BC、CD的中点,则等于()

A.

B.

C.

D.

答案:A24.方程|x|-1=2y-y2表示的曲线为()A.两个半圆B.一个圆C.半个圆D.两个圆答案:两边平方整理得:(|x|-1)2=2y-y2,化简得(|x|-1)2+(y-1)2=1,由|x|-1≥0得x≥1或x≤-1,当x≥1时,方程为(x-1)2+(y-1)2=1,表示圆心为(1,1)且半径为1的圆的右半圆;当x≤1时,方程为(x+1)2+(y-1)2=1,表示圆心为(-1,1)且半径为1的圆的右半圆综上所述,得方程|x|-1=2y-y2表示的曲线为为两个半圆故选:A25.若图中直线l1,l2,l3的斜率分别为k1,k2,k3,则()A.k2<k1<k3B.k3<k2<k1C.k2<k3<k1D.k1<k3<k2答案:∵直线l2的倾斜角为钝角,∴k2<0.直线l1,l3的倾斜角为锐角,且直线l1的倾斜角小于l3的倾斜角,∴0<k1<k3.故选A.26.如图,从圆O外一点P引两条直线分别交圆O于点A,B,C,D,且PA=AB,PC=5,CD=9,则AB的长等于______.答案:∵PAB和PBC是圆O的两条割线∴PA?PB=PC?PD又∵PA=AB,PC=5,CD=9,∴2AB2=5×(5+9)∴AB=35故为:3527.给定两个长度为1且互相垂直的平面向量OA和OB,点C在以O为圆心的圆弧AB上变动.若OC=2xOA+yOB,其中x,y∈R,则x+y的最大值是______.答案:由题意|OC|=1,即4x2+y2=1,令x=12cosθ,y=sinθ则x+y=12cosθ+sinθ=(12)2+1sin(θ+φ)≤52故x+y的最大值是52故为:5228.如图所示,已知PA切圆O于A,割线PBC交圆O于B、C,PD⊥AB于D,PD与AO的延长线相交于点E,连接CE并延长交圆O于点F,连接AF.

(1)求证:B,C,E,D四点共圆;

(2)当AB=12,tan∠EAF=23时,求圆O的半径.答案:(1)由切割线定理PA2=PB?PC由已知易得Rt△PAD∽Rt△PEA,∴PA2=PD?PE,∴PA2=PB?PC=PA2=PD?PE,又∠BPD为公共角,∴△PBD∽△PEC,∴∠BDP=∠C∴B,C,E,D四点共圆

(2)作OG⊥AB于G,由(1)知∠PBD=∠PEC,∵∠PBD=∠F,∴∠F=∠PEC,∴PE∥AF.∵AB=12,∴AG=6.∵PD⊥AB,∴PD∥OG.∴PE∥OG∥AF,∴∠AOG=∠EAF.在Rt△AOG中,tan∠AOG=tan∠EAF=23=6OG,∴OG=9∴R=AO=AG2+OG2=313∴圆O的半径313.29.定义xn+1yn+1=1011xnyn,n∈N*为向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一个矩阵变换,其中O是坐标原点.已知OP1=(1,0),则OP2010的坐标为______.答案:由题意,xn+1=xnyn+1=xn+yn∴向量的横坐标不变,纵坐标构成以0为首项,1为公差的等差数列∴OP2010的坐标为(1,2009)故为(1,2009)30.曲线(θ为参数)上的点到两坐标轴的距离之和的最大值是()

A.

B.

C.1

D.答案:D31.管理人员从一池塘中捞出30条鱼做上标记,然后放回池塘,将带标记的鱼完全混合于鱼群中.10天后,再捕上50条,发现其中带标记的鱼有2条.根据以上收据可以估计该池塘有______条鱼.答案:设该池塘中有x条鱼,由题设条件建立方程:30x=250,解得x=750.故为:750.32.选修4-5;不等式选讲.

当n>2时,求证:logn(n-1)logn(n+1)<1.答案:∵n>2,∴log(n-1)n>0,log(n+1)n>0,且log(n-1)n≠log(n+1)n,∴log(n-1)n×log(n+1)n<(log(n-1)n+log(n+1)n2)2=(log(n2-1)n2)2<(logn2n2)2=(22)2=1,∴当n>2时,logn(n-1)logn(n+1)<1.33.正方体的内切球和外接球的半径之比为

A.:1

B.:2

C.2:

D.:3答案:D34.构成多面体的面最少是()

A.三个

B.四个

C.五个

D.六个答案:B35.已知二次函数f(x)=x2+bx+c,f(0)<0,则该函数零点的个数为()

A.1

B.2

C.3

D.0答案:B36.在下列图象中,二次函数y=ax2+bx+c与函数(的图象可能是()

A.

B.

C.

D.

答案:A37.为了了解学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如图所示,根据此图,估计该校2000名高中男生中体重大于70.5公斤的人数为()

A.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论