2023年天津城市建设管理职业技术学院高职单招(数学)试题库含答案解析_第1页
2023年天津城市建设管理职业技术学院高职单招(数学)试题库含答案解析_第2页
2023年天津城市建设管理职业技术学院高职单招(数学)试题库含答案解析_第3页
2023年天津城市建设管理职业技术学院高职单招(数学)试题库含答案解析_第4页
2023年天津城市建设管理职业技术学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年天津城市建设管理职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.凡自然数都是整数,而

4是自然数

所以4是整数.以上三段论推理()

A.正确

B.推理形式不正确

C.两个“自然数”概念不一致

D.两个“整数”概念不一致答案:A2.若双曲线与椭圆x216+y225=1有相同的焦点,与双曲线x22-y2=1有相同渐近线,求双曲线方程.答案:依题意可设所求的双曲线的方程为y2-x22=λ(λ>0)…(3分)即y2λ-x22λ=1…(5分)又∵双曲线与椭圆x216+y225=1有相同的焦点∴λ+2λ=25-16=9…(9分)解得λ=3…(11分)∴双曲线的方程为y23-x26=1…(13分)3.若复数z=(m2-1)+(m+1)i为纯虚数,则实数m的值等于______.答案:复数z=(m2-1)+(m+1)i当z是纯虚数时,必有:m2-1=0且m+1≠0解得,m=1.故为1.4.某工厂生产产品,用传送带将产品送到下一道工序,质检人员每隔十分钟在传送带的某一个位置取一件检验,则这种抽样方法是()A.简单随机抽样B.系统抽样C.分层抽样D.非上述答案答案:本题符合系统抽样的特征:总体中各单位按一定顺序排列,根据样本容量要求确定抽选间隔,然后随机确定起点,每隔一定的间隔抽取一个单位的一种抽样方式.故选B.5.因为样本是总体的一部分,是由某些个体所组成的,尽管对总体具有一定的代表性,但并不等于总体,为什么不把所有个体考查一遍,使样本就是总体?答案:如果样本就是总体,抽样调查就变成普查了,尽管这样确实反映了实际情况,但不是统计的基本思想,其操作性、可行性、人力、物力等方面,都会有制约因素存在,何况有些调查是破坏性的,如考查一批玻璃的抗碎能力,灯泡的使用寿命等,普查就全破坏了.6.以过椭圆+=1(a>b>0)的右焦点的弦为直径的圆与其右准线的位置关系是()

A.相交

B.相切

C.相离

D.不能确定答案:C7.方程x2+ky2=2表示焦点在y轴的椭圆,那么实数k的取值范围是

______.答案:椭圆方程化为x22+y22k=1.焦点在y轴上,则2k>2,即k<1.又k>0,∴0<k<1.故为:0<k<18.抽样方法有()A.随机抽样、系统抽样和分层抽样B.随机数法、抽签法和分层抽样法C.简单随机抽样、分层抽样和系统抽样D.系统抽样、分层抽样和随机数法答案:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而抽签法和随机数法,只是简单随机抽样的两种不同抽取方法故选C9.x+y+z=1,则2x2+3y2+z2的最小值为()

A.1

B.

C.

D.答案:C10.直线3x+5y-1=0与4x+3y-5=0的交点是()

A.(-2,1)

B.(-3,2)

C.(2,-1)

D.(3,-2)答案:C11.设α∈[0,π],则方程x2sinα+y2cosα=1不能表示的曲线为()

A.椭圆

B.双曲线

C.抛物线

D.圆答案:C12.如图,P-ABCD是正四棱锥,ABCD-A1B1C1D1是正方体,其中AB=2,PA=6.

(1)求证:PA⊥B1D1;

(2)求平面PAD与平面BDD1B1所成锐二面角的余弦值.答案:以D1为原点,D1A1所在直线为x轴,D1C1所在直线为y轴,D1D所在直线为z轴建立空间直角坐标系,则D1(0,0,0),A1(2,0,0),B1(2,2,0),C1(0,2,0),D(0,0,2),A(2,0,2),B(2,2,2),C(0,2,2),P(1,1,4).(1)证明:∵AP=(-1,1,2),D1B1=(2,2,0),∴AP•D1B1=-2+2+0=0,∴PA⊥B1D1.(2)平面BDD1B1的法向量为AC=(-2,2,0).DA=(2,0,0),OP=(1,1,2).设平面PAD的法向量为n=(x,y,z),则n⊥DA,n⊥DP.∴2x=0x+y+2z=0∴x=0y=-2z.取n=(0,-2,1),设所求锐二面角为θ,则cosθ=|n•AC||n|•|AC|=|0-4+0|22×5=105.13.在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是______.答案:由题意知本题是一个古典概型,试验发生包含的基本事件有C52=10种结果,其中至少有一个红球的事件包括C22+C21C31=7个基本事件,根据古典概型公式得到P=710,故为:710.14.以直线x+3=0为准线的抛物线的标准方程是______.答案:由题意,抛物线的焦点在x轴上,焦点坐标为(3,0),∴抛物线的标准方程是y2=12x故为:y2=12x15.在空间中,有如下命题:

①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线;

②若平面α∥平面β,则平面α内任意一条直线m∥平面β;

③若平面α与平面β的交线为m,平面α内的直线n⊥直线m,则直线n⊥平面β.

其中正确命题的个数为()个.

A.0

B.1

C.2

D.3答案:B16.某研究小组在一项实验中获得一组数据,将其整理得到如图所示的散点图,下列函数中,最能近似刻画y与t之间关系的是(

A.y=2t

B.y=2t2

C.y=t3

D.y=log2t

答案:D17.(每题6分共12分)解不等式

(1)(2)答案:(1)(2)解析:本试题主要是考查了分式不等式和一元二次不等式的求解,以及含有根式的二次不等式的求解运用。(1)移向,通分,合并,将分式化为整式,然后得到解集。(2)首先分析函数式有意义的x的取值,然后保证两边都有意义的时候,且都为正,两边平方求解得到。解:(2)当8-x<0显然成立。当8-x》0时,则两边平方可得。所以18.已知关于x的方程2kx2-2x-3k-2=0的两实根一个小于1,另一个大于1,求实数k的取值范围。答案:解:令,为使方程f(x)=0的两实根一个小于1,另一个大于1,只需或,即或,解得k>0或k<-4,故k的取值范围是k>0或k<-4.19.(本小题满分10分)选修4-1:几何证明选讲

如图,的角平分线的延长线交它的外接圆于点.

(Ⅰ)证明:;

(Ⅱ)若的面积,求的大小.答案:(Ⅰ)证明见解析(Ⅱ)90°解析:本题主要考查平面几何中与圆有关的定理及性质的应用、三角形相似及性质的应用.证明:(Ⅰ)由已知条件,可得∠BAE=∠CAD.因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD.故△ABE∽△ADC.(Ⅱ)因为△ABE∽△ADC,所以,即AB·AC=AD·AE.又S=AB·ACsin∠BAC,且S=AD·AE,故AB·ACsin∠BAC=AD·AE.则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.【点评】在圆的有关问题中经常要用到弦切角定理、圆周角定理、相交弦定理等结论,解题时要注意根据已知条件进行灵活的选择,同时三角形相似是证明一些与比例有关问题的的最好的方法.20.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人,为了解职工收入情况,决定采用分层抽样的方法从中抽取样本.若样本中具有初级职称的职工为10人,则样本容量为()

A.10

B.20

C.40

D.50答案:C21.(文科做)

f(x)=1x

(x<0)(13)x(x≥0),则不等式f(x)≥13的解集是______.答案:x<0时,f(x)=1x≥13,解得x∈?;x≥0时,f(x)=(13)x≥13,解得x≤1,故0≤x≤1.综上所述,不等式f(x)≥13的解集为{x|0≤x≤1}.故为:{x|0≤x≤1}.22.已知函数y=f(x)是偶函数,其图象与x轴有四个交点,则f(x)=0的所有实数根之和为______.答案:∵函数y=f(x)是偶函数∴其图象关于y轴对称∴其图象与x轴有四个交点也关于y轴对称∴方程f(x)=0的所有实根之和为0故为:023.设四边形ABCD中,有且,则这个四边形是()

A.平行四边形

B.矩形

C.等腰梯形

D.菱形答案:C24.(不等式选讲选做题)

已知实数a、b、x、y满足a2+b2=1,x2+y2=3,则ax+by的最大值为______.答案:因为a2+b2=1,x2+y2=3,由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得3≥(ax+by)2,不且仅当ay=bx时取等号,所以ax+by的最大值为3.故为:3.25.已知f(x)=,若f(x0)>1,则x0的取值范围是()

A.(0,1)

B.(-∞,0)∪(0,+∞)

C.(-∞,0)∪(1,+∞)

D.(1,+∞)答案:C26.据上海中心气象台发布的天气预报,一月上旬某天上海下雨的概率是70%至80%.写出下列解释中正确的序号______.

①上海地区面积的70%至80%将降雨;

②上海地区下雨的时间在16.8小时至19.2%小时之间;

③上海地区在相似的气候条件下有70%至80%的日子是下雨的;

④上海地区在相似的气候条件下有20%至30%的日子是晴,或多云,或阴.答案:据上海中心气象台发布的天气预报,一月上旬某天上海下雨的概率是70%至80%.表示上海地区在相似的气候条件下下雨的可能性很大,是有70%至80%的日子是下雨的.是但不一定下,也不是的70%至80%的时间与地区.故解释中正确的序号③故为:③27.直线3x+4y-7=0与直线6x+8y+3=0之间的距离是()

A.

B.2

C.

D.答案:C28.已知曲线C的参数方程是(θ为参数),曲线C不经过第二象限,则实数a的取值范围是()

A.a≥2

B.a>3

C.a≥1

D.a<0答案:A29.某重点高中高二历史会考前,进行了五次历史会考模拟考试,某同学在这五次考试中成绩如下:90,90,93,94,93,则该同学的这五次成绩的平均值和方差分别为()

A.92,2

B.92,2.8

C.93,2

D.93,2.8答案:B30.在极坐标系中,若点A(ρ0,π3)(ρ0≠0)是曲线ρ=2cosθ上的一点,则ρ0=______.答案:∵点A(ρ0,π3)(ρ0≠0)是曲线ρ=2cosθ上的一点,∴ρ0=2cosπ3.∴ρ0=2×12=1.故为:1.31.附加题选做题B.(矩阵与变换)

设矩阵A=m00n,若矩阵A的属于特征值1的一个特征向量为10,属于特征值2的一个特征向量为01,求实数m,n的值.答案:由题意得m00n10=110,m00n01=201,…6分化简得m=10?n=00?m=0n=2所以m=1n=2.…10分32.某公司招聘员工,经过笔试确定面试对象人数,面试对象人数按拟录用人数分段计算,计算公式为:y=4x,1≤x≤102x+10,10<x≤1001.5x

,x>100其中x代表拟录用人数,y代表面试对象人数.若应聘的面试对象人数为60人,则该公司拟录用人数为()A.15B.40C.130D.25答案:∵y=4x,1≤x≤102x+10,10<x≤1001.5x

,x>100=60,∴当1≤x≤10时,由4x=60得x=15?[1,10],不满足题意;当10<x≤100时,由2x+10=60得x=25∈(10,100],满足题意;当x>100时,由1.5x=60得x=40?(100,+∞),不满足题意.∴该公司拟录用人数为25.故选D.33.化简的结果是()

A.aB.C.a2D.答案:B解析:分析:指数函数的性质34.一位母亲记录了她的儿子3~9岁的身高数据,并由此建立身高与年龄的回归模型为y=7.19x+73.93,用这个模型预测她的儿子10岁时的身高,则正确的叙述是()A.身高一定是145.83

cmB.身高在145.83

cm以上C.身高在145.83

cm左右D.身高在145.83

cm以下答案:∵身高与年龄的回归模型为y=7.19x+73.93.∴可以预报孩子10岁时的身高是y=7.19x+73.93.=7.19×10+73.93=145.83则她儿子10岁时的身高在145.83cm左右.故选C.35.已知圆的极坐标方程为ρ=4cosθ,圆心为C,点P的极坐标为(4,π3),则|CP|=______.答案:圆的极坐标方程为ρ=4cosθ,圆的方程为:x2+y2=4x,圆心为C(2,0),点P的极坐标为(4,π3),所以P的直角坐标(2,23),所以|CP|=(2-2)2+(23-0)2=23.故为:23.36.根据一组数据判断是否线性相关时,应选用(

A.散点图

B.茎叶图

C.频率分布直方图

D.频率分布折线图答案:A37.在平面直角坐标系中,横坐标、纵坐标均为有理数的点称为有理点.试根据这一定义,证明下列命题:若直线y=kx+b(k≠0)经过点M(2,1),则此直线不能经过两个有理点.答案:证明:假设此直线上有两个有理点A(x1,y1),B(x2,y2),其中x1、y1、x2、y2均为有理数,则有y1=kx1+b,y2=kx2+b,两式相减,得y1-y2=k(x1-x2).∵斜率k存在,∴x1≠x2,得k=y1-y2x1-x2.而有理数经过四则运算后还是有理数,故k为有理数.又由y1=kx1+b知,b也是有理数.又∵点M(2,1)在此直线上,∴1=2k+b,于是有2=1-bk(k≠0).此式左端为无理数,右端为有理数,显然矛盾,故此直线不能经过两个有理点.38.已知函数f(x)=(12)x,a,b∈R*,A=f(a+b2),B=f(ab),C=f(2aba+b),则A、B、C的大小关系为______.答案:∵a+b2≥ab,2aba+b=21a+1b≤221ab=ab,∴a+b2≥ab≥2aba+b>0又

f(x)=(12)x在R上是减函数,∴f(a+b2)≤f(ab)

≤f(2aba+b)即A≤B≤C故为:A≤B≤C.39.为了调查上海市中学生的身体状况,在甲、乙两所学校中各随意抽取了

100名学生,测试引体向上,结果如下表所示:

(1)甲乙两校被测学生引体向上的平均数分别是:甲校______个,乙校______个.

(2)若5个以下(不含5个)为不合格,则甲乙两校的合格率分别为甲校______

乙校______

(3)若15个以上(含15个)为优秀,则甲乙两校中优秀率______校较高(填“甲”或“乙”)

(4)用你所学的统计知识对两所学校学生的身体状况作一个比较.你的结论是______.答案:(1)甲校被测学生引体向上的平均数是=6×3+15×5+44×8+20×11+9×5+6×20100=8.3,乙校被测学生引体向上的平均数是=6×3+11×5+51×8+18×11+8×15+6×20100=9.19;(2)甲校的合格率=15+44+20+9+6100×100%=94%,乙校的合格率=11+51+18+8+6100×100%=94%;(3)甲校中优秀率=9+6100×100%=15%,乙校中优秀率=8+6100×100%=14%,所以甲校较高;(4)虽然合格率相等,但是乙校平均数更高一些,所以乙校更好一些.故为:8.3,9.19,94%,94%,乙校更好一些40.已知抛物线和双曲线都经过点M(1,2),它们在x轴上有共同焦点,抛物线的顶点为坐标原点,则双曲线的标准方程是______.答案:设抛物线方程为y2=2px(p>0),将M(1,2)代入y2=2px,得P=2.∴抛物线方程为y2=4x,焦点为F(1,0)由题意知双曲线的焦点为F1(-1,0),F2(1,0)∴c=1对于双曲线,2a=||MF1|-|MF2||=22-2∴a=2-1,a2=3-22,b2=22-2∴双曲线方程为x23-22-y222-2=1.故为:x23-22-y222-2=1.41.点(1,1)在圆(x-a)2+(y+a)2=4的内部,则a的取值范围是(

A.-1<a<1

B.0<a<1

C.a<-1或a>1

D.a=±1答案:A42.已知向量a与b的夹角为60°,且|a|=1,|b|=2,那么(a+b)2的值为______.答案:由题意可得a?b=|a|?|b|cos<a

b>=1×2×cos60°=1.∴(a+b)2=a2+b2+2a?b=1+4+2×1=7.故为:7.43.如图所示的方格纸中有定点O,P,Q,E,F,G,H,则=()

A.

B.

C.

D.

答案:C44.已知A,B,C三点不共线,O为平面ABC外一点,若由向量OP=15OA+23OB+λOC确定的点P与A,B,C共面,那么λ=______.答案:由题意A,B,C三点不共线,点O是平面ABC外一点,若由向量OP=15OA+23OB+λOC确定的点P与A,B,C共面,∴15+23+λ=1解得λ=215故为:21545.在残差分析中,残差图的纵坐标为______.答案:有残差图的定义知道,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重的估计值,这样做出的图形称为残差图.故为:残差.46.我市某机构为调查2009年下半年落实中学生“阳光体育”活动的情况,设平均每人每天参加体育锻炼时间为X(单位:分钟),按锻炼时间分下列四种情况统计:①0~10分钟;②11~20分钟;③21~30分钟;④30分钟以上,有10000名中学生参加了此项活动,右图是此次调查中某一项的流程图,其输出的结果是6200,则平均每天参加体育锻炼时间在0~20分钟内的学生的频率是()A.0.62B.0.38C.6200D.3800答案:由图知输出的S的值是运动时间超过20分钟的学生人数,由于统计总人数是10000,又输出的S=6200,故运动时间不超过20分钟的学生人数是3800事件“平均每天参加体育锻炼时间在0~20分钟内的学生的”频率是380010000=0.38故选B47.如图所示,圆的内接△ABC的∠C的平分线CD延长后交圆于点E,连接BE,已知BD=3,CE=7,BC=5,则线段BE=()

A.

B.

C.

D.4

答案:B48.若随机变量X~B(5,12),那么P(X≤1)=______.答案:P(X≤1)=C06(12)0(12)6+C16(12)1(12)5=316故为:31649.以过椭圆+=1(a>b>0)的右焦点的弦为直径的圆与直线l:x=的位置关系是()

A.相交

B.相切

C.相离

D.不能确定答案:C50.已知二项分布满足X~B(6,23),则P(X=2)=______,EX=______.答案:∵X服从二项分布X~B(6,23)∴P(X=2)=C26(13)4(23)2=20243∵随机变量ξ服从二项分布ξ~B(6,23),∴期望Eξ=np=6×23=4故为:20243;4第2卷一.综合题(共50题)1.已知实数x,y满足2x+y+5=0,那么x2+y2的最小值为()A.5B.10C.25D.210答案:求x2+y2的最小值,就是求2x+y+5=0上的点到原点的距离的最小值,转化为坐标原点到直线2x+y+5=0的距离,d=522+1=5.故选A.2.已知{x1,x2,x3,…,xn}的平均数是2,则3x1+2,3x2+2,…,3xn+2的平均数=_______.答案:∵x1,x2,x3,…,xn的平均数是2即(x1+x2+x3+…+xn)÷n=2∴3x1+2,3x2+2,…,3xn+2的平均数为(3x1+2+3x2+2+…+3xn+2)÷n=[3(x1+x2+x3+…+xn)+2n]÷n=3×2+2=8故为:83.若一个圆锥的轴截面是边长为4cm的等边三角形,则这个圆锥的侧面积为______cm2.答案:如图所示:∵轴截面是边长为4等边三角形,∴OB=2,PB=4.圆锥的侧面积S=π×2×4=8πcm2.故为8π.4.不等式log2(x+1)<1的解集为()

A.{x|0<x<1}

B.{x|-1<x≤0}

C.{x|-1<x<1}

D.{x|x>-1}答案:C5.参数方程x=sinθ+cosθy=sinθ•cosθ化为普通方程是______.答案:把x=sinθ+cosθy=sinθ•cosθ利用同角三角函数的基本关系消去参数θ,化为普通方程可得x2=1+2y,故为x2=1+2y.6.如图,圆心角∠AOB=120°,P是AB上任一点(不与A,B重合),点C在AP的延长线上,则∠BPC等于______.

答案:解:设点E是优弧AB(不与A、B重合)上的一点,∵∠AOB=120°,∴∠AEB=60°,∵∠BPA=180°-∠AEB=180°-∠BPC,∴∠BPC=∠AEB.∴∠BPC=60°.故为60°.7.同时掷两颗骰子,得到的点数和为4的概率是______.答案:同时掷两颗骰子得到的点数共有36种情况,即(1,1)(1,2)(1,3)(1,4)(1,5)(1,6),(2,1)(2,2)(2,3)(2,4)(2,5)(2,6),(3,1)(3,2)(3,3)(3,4)(3,5)(3,6),(4,1)(4,2)(4,3)(4,4)(4,5)(4,6),(5,1)(5,2)(5,3)(5,4)(5,5)(5,6),(6,1)(6,2)(6,3)(6,4)(6,5)(6,6),而和为4的情况数有3种,即(1,3)(2,2)(3,1)所以所求概率为336=112,故为:1128.根据给出的空间几何体的三视图,用斜二侧画法画出它的直观图.答案:画法:(1)画轴如下图,画x轴、y轴、z轴,三轴相交于点O,使∠xOy=45°,∠xOz=90°.(2)画圆台的两底面画出底面⊙O假设交x轴于A、B两点,在z轴上截取O′,使OO′等于三视图中相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′利用O′x′与O′y′画出底面⊙O′,设⊙O′交x′轴于A′、B′两点.(3)成图连接A′A、B′B,去掉辅助线,将被遮挡的部分要改为虚线,即得到给出三视图所表示的直观图.9.圆C1x2+y2-4y-5=0与圆C2x2+y2-2x-2y+1=0位置关系是()

A.内含

B.内切

C.相交

D.外切答案:A10.设S(n)=1n+1n+1+1n+2+1n+3+…+1n2,则()A.S(2)=12+13B.S(2)=12+14C.S(2)=1+12+13+14D.S(2)=12+13+14答案:∵S(n)=1n+1n+1+1n+2+1n+3+…+1n2,当n=2时,n2=4故S(2)=12+13+14故选D11.下图是由哪个平面图形旋转得到的(

)答案:A12.为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00-10:00间各自的点击量,得如下所示的统计图,根据统计图:

(1)甲、乙两个网站点击量的极差,中位数分别是多少?

(2)甲网站点击量在[10,40]间的频率是多少?(结果用分数表示)

(3)甲、乙两个网站哪个更受欢迎?并说明理由。答案:解:(1)甲网站的极差为73-8=65,乙网站的极差为71-5=66;甲网站的中位数是56.5,乙网站的中位数是36.5。(2)甲网站点击量在[10,40]间的频率是;(3)甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方,从数据的分布情况来看,甲网站更受欢迎。13.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为______米.答案:如图建立直角坐标系,设抛物线方程为x2=my,将A(2,-2)代入x2=my,得m=-2∴x2=-2y,代入B(x0,-3)得x0=6,故水面宽为26m.故为:26.14.如果过点A(x,4)和(-2,x)的直线的斜率等于1,那么x=()A.4B.1C.1或3D.1或4答案:由于直线的斜率等于1,故1=4-xx-(-2),解得x=1故选B15.已知a,b是非零向量,且a,b夹角为π3,则向量p=a丨a丨+b丨b丨的模为______.答案:∵|a|a||=|a||a|=1=|b|b||,a?b=|a|

|b|cosπ3=12|a|

|b|∴p2=|(a|a|+b|b|)2=1+1+2?a|a|?b|b|=2+2×12=3,∴|p|=3.故为3.16.由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的自然数有______.答案:由题意,一位数有:1,2,3;两位数有:12,21,23,32,13,31;三位数有:123,132,213,231,321,312故为:1,2,3,12,13,23,21,31,32,123,132,213,231,321,312.17.如图所示,圆的内接三角形ABC的角平分线BD与AC交于点D,与圆交于点E,连接AE,已知ED=3,BD=6,则线段AE的长=______.答案:∵BD平分角∠CBA,∴∠CBE=∠EBA又∵∠CBE=∠EAD在△EDA和△EAB中,∠E=∠E,∠EAD=∠EBA∴△EDA∽△EAB∴AE:BE=ED:AE∴AE2=ED?BE又∵ED=3,BD=6,∴BE=9∴AE2=27∴AE=33故为:3318.已知抛物线y=14x2,则过其焦点垂直于其对称轴的直线方程为______.答案:抛物线y=14x2的标准方程为x2=4y的焦点F(0,1),对称轴为y轴所以抛物线y=14x2,则过其焦点垂直于其对称轴的直线方程为y=1故为y=1.19.已知正方形ABCD的边长为a,则|AC+AD|等于______.答案:∵正方形ABCD的边长为a,∴AC=2a,AC与AD的夹角为45°|AC+AD|2=|AC

|2+2AC?AD+|AD|2=2a2+2×2a×a×22+a2=5a2∴|AC+AD|=5a故为:5a20.下列四个函数中,与y=x表示同一函数的是()A.y=(x)2B.y=3x3C.y=x2D.y=x2x答案:选项A中的函数的定义域与已知函数不同,故排除选项A.选项B中的函数与已知函数具有相同的定义域、值域和对应关系,故是同一个函数,故选项B满足条件.选项C中的函数与已知函数的值域不同,故不是同一个函数,故排除选项C.选项D中的函数与与已知函数的定义域不同,故不是同一个函数,故排除选项D,故选B.21.直线x=-3+ty=1-t(t是参数)被圆x=5cosθy=5sinθ(θ是参数)所截得的弦长是______.答案:把直线和圆的参数方程化为普通方程得:直线x+y+2=0,圆x2+y2=25,画出函数图象,如图所示:过圆心O(0,0)作OC⊥AB,根据垂径定理得到:AC=BC=12AB,连接OA,则|OA|=5,且圆心O到直线x+y+2=0的距离|OC|=|2|2=2,在直角△ACO中,根据勾股定理得:AC=23,所以AB=223,则直线被圆截得的弦长为223.故为:22322.设x,y,z∈R,且满足:x2+y2+z2=1,x+2y+3z=14,则x+y+z=______.答案:根据柯西不等式,得(x+2y+3z)2≤(12+22+32)(x2+y2+z2)=14(x2+y2+z2)当且仅当x1=y2=z3时,上式的等号成立∵x2+y2+z2=1,∴(x+2y+3z)2≤14,结合x+2y+3z=14,可得x+2y+3z恰好取到最大值14∴x1=y2=z3=1414,可得x=1414,y=147,z=31414因此,x+y+z=1414+147+31414=3147故为:314723.函数y=x2x4+9(x≠0)的最大值为______,此时x的值为______.答案:y=x2x4+9=1x2+9x2≤129=16,当且仅当x2=9x2,即x=±3时取等号.故为:16,

±324.用反证法证明命题“在函数f(x)=x2+px+q中,|f(1)|,|f(2)|,|f(3)|至少有一个不小于”时,假设正确的是()

A.假设|f(1)|,|f(2)|,|f(3)|至多有一个小于

B.假设|f(1)|,|f(2)|,|f(3)|至多有两个小于

C.假设|f(1)|,|f(2)|,|f(3)|都不小于

D.假设|f(1)|,|f(2)|,|f(3)|都小于答案:D25.编号为A、B、C、D、E的五个小球放在如图所示的五个盒子中,要求每个盒子只能放一个小球,且A不能放1,2号,B必需放在与A相邻的盒子中,则不同的放法有()种.A.42B.36C.30D.28答案:根据题意,A不能放1,2号,则A可以放在3、4、5号盒子,分2种情况讨论:①当A在4、5号盒子时,B有1种放法,剩下3个有A33=6种不同放法,此时,共有2×1×6=12种情况;②当A在3号盒子时,B有3种放法,剩下3个有A33=6种不同放法,此时,共有1×3×6=18种情况;由加法原理,计算可得共有12+18=30种不同情况;故选C.26.已知函数f(x)对其定义域内任意两个实数a,b,当a<b时,都有f(a)<f(b).试用反证法证明:函数f(x)的图象与x轴至多有一个交点.答案:证明:假设函数f(x)的图象与x轴至少有两个交点,…(2分)(1)若f(x)的图象与x轴有两个交点,不妨设两个交点的横坐标分别为x1,x2,且x1<x2,…(5分)由已知,函数f(x)对其定义域内任意实数x1,x2,当x1<x2时,有f(x1)<f(x2).…(7分)又根据假设,x1,x2是函数f(x)的两个零点,所以,f(x1)=f(x2)=0,…(9分)这与f(x1)<f(x2)矛盾,…(10分)所以,函数f(x)的图象不可能与x轴有两个交点.…(11分)(2)若f(x)的图象与x轴交点多于两个,可同理推出矛盾,…(12分)所以,函数f(x)的图象不可能与x轴有两个以上交点.综上,函数f(x)的图象与x轴至多有一个交点…(14分)27.已知直线a、b、c,其中a、b是异面直线,c∥a,b与c不相交.用反证法证明b、c是异面直线.答案:证明:假设b、c不是异面直线,则b、c共面.∵b与c不相交,∴b∥c.又∵c∥a,∴根据公理4可知b∥a.这与已知a、b是异面直线相矛盾.故b、c是异面直线.28.已知点P1(3,-5),P2(-1,-2),在直线P1P2上有一点P,且|P1P|=15,则P点坐标为()

A.(-9,-4)

B.(-14,15)

C.(-9,4)或(15,-14)

D.(-9,4)或(-14,15)答案:C29.根据下面的要求,求满足1+2+3+…+n>500的最小的自然数n.

(1)画出执行该问题的程序框图;

(2)以下是解决该问题的一个程序,但有几处错误,请找出错误并予以更正.

i=1S=1n=0DO

S<=500

S=S+i

i=i+1

n=n+1WENDPRINT

n+1END.答案:(1)程序框图如左图所示.或者,如右图所示:(2)①DO应改为WHILE;

②PRINT

n+1

应改为PRINT

n;

③S=1应改为S=0.30.如图所示,有两个独立的转盘(A)、(B),其中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘玩游戏,规则是:依次随机转动两个转盘再随机停下(指针固定不动,当指针恰好落在分界线时,则这次转动无效,重新开始)为一次游戏,记转盘(A)指针所对的数为X转盘(B)指针对的数为Y设X+Yξ,每次游戏得到的奖励分为ξ分.

(1)求X<2且Y>1时的概率

(2)某人玩12次游戏,求他平均可以得到多少奖励分?答案:(1)由几何概型知P(x=1)=16,P(x=2)=13,P(x=3)=12;

P(y=1)=13,P(y=2)=12,P(y=3)=16.则P(x<2)=P(x=1)=16,P(y>1)=p(y=2)+P(y=3)=23,P(x<2且y>1)=P(x<2)?P(y>1)=19.(2)ξ的取值范围为2,3,4,6.P(ξ=2)=P(x=1)?P(y=1)=16×13=118;P(ξ=3)=P(x=1)?P(y=2)+P(x=2)?P(y=1)=16×12+13×13=736;P(ξ=4)=P(x=1)?P(y=3)+P(x=2)?P(y=2)+P(x=3)?P(y=1)=16×16+13×12+12×13=1336;P(ξ=5)=P(x=2)P(y=3)+P(x=3)P(y=2)=13×16+12×12=1136;P(ξ=6)=P(x=3)?P(y=3)=12×16=112.其分布为:ξ23456P11873613361136112他平均每次可得到的奖励分为Eξ=2×118+3×736+4×1336+5×1136+6×112=256,所以,他玩12次平均可以得到的奖励分为12×Eξ=50.31.若=(2,0),那么=(

A.(1,2)

B.3

C.2

D.1答案:C32.设随机变量X服从B(6,),则P(X=3)的值是()

A.

B.

C.

D.答案:B33.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P(ξ≤6)=______.答案:取出的4只球中红球个数可能为4,3,2,1个,黑球相应个数为0,1,2,3个.其分值为ξ=4,6,8.P(ξ≤6)=P(ξ=4)+P(ξ=6)=C44C03C47+C34C13C47=1335.故为:1335.34.在△ABC中,D为AB上一点,M为△ABC内一点,且满足AD=34AB,AM=AD+35BC,则△AMD与△ABC的面积比为()A.925B.45C.916D.920答案:AP=AD+DP=AD+35BC,DP=35BC.∴三角形ADP的高三角形ABC=ADAB=34,∴S△APDS△ABC=35?34=920.故选D.35.2010年广州亚运会乒乓球男单决赛中,马龙与王皓在前三局的比分分别是9:11、11:8、11:7,已知马琳与王皓的水平相当,比赛实行“七局四胜”制,即先赢四局者胜,求(1)王皓获胜的概率;

(2)比赛打满七局的概率.(3)记比赛结束时的比赛局数为ξ,求ξ的分布列及数学期望.答案:(1)在马龙先前三局赢两局的情况下,王皓取胜有两种情况.第一种是王皓连胜三局;第二种是在第四到第六局,王皓赢了两局,第七局王皓赢.在第一种情况下王皓取胜的概率为(12)3=18;在第二种情况下王皓取胜的概率为为C23(12)3×12=316,王皓获胜的概率18+316=516;(3分)(2)比赛打满七局有两种结果:马龙胜或王皓胜.记“比赛打满七局,马龙胜”为事件A,则P(A)=C13(12)3×12=316;记“比赛打满七局,王皓胜”为事件B,则P(B)=C23(12)3×12=316;因为事件A、B互斥,所以比赛打满七局的概率为P(A)+P(B)=38.(7分)(3)比赛结束时,比赛的局数为5,6,7,则打完五局马龙获胜的概率为12×12=14;打完六局马琳获胜的概率为C12(12)2×12=14,王皓取胜的概率为(12)3=18;比赛打满七局,马龙获胜的概率为C13(12)3×12=316,王皓取胜的概率为为C23(12)3×12=316;所以ξ的分布列为ξ567P(ξ)143838Eξ=5×14+6×38+7×38=498.(12分)36.运行如图的程序,将自然数列0,1,2,…依次输入作为a的值,则输出结果x为______.

答案:当n=2时,x=5×6+0=30,当n=1时,x=30×6+1=181,当n=0时,x=181×6+2=1088,故为:108837.把函数y=ex的图像按向量=(2,3)平移,得到y=f(x)的图像,则f(x)=(

A.ex+2+3

B.ex+2-3

C.ex-2+3

D.ex-2-3答案:C38.从30个足球中抽取10个进行质量检测,说明利用随机数法抽取这个样本的步骤及公平性.答案:第一步:首先将30个足球编号:00,01,02…29,第二步:在随机数表中随机的选一个数作为开始.第三步:从选定的数字向右读,得到二位数字,将它取出,把大于29的去掉,,按照这种方法继续向右读,取出的二位数若与前面相同,则去掉,依次下去,就得到一个具有10个数据的样本.其公平性在于:第一随机数表中每一个位置上出现的哪一个数都是等可能的,第二从30个个体中抽到那一个个体的号码也是机会均等的,基于以上两点,利用随机数表抽取样本保证了各个个体被抽到的机会是等可能的.39.给出下列四个命题,其中正确的一个是()

A.在线性回归模型中,相关指数R2=0.80,说明预报变量对解释变量的贡献率是80%

B.在独立性检验时,两个变量的2×2列联表中对角线上数据的乘积相差越大,说明这两个变量没有关系成立的可能性就越大

C.相关指数R2用来刻画回归效果,R2越小,则残差平方和越大,模型的拟合效果越好

D.线性相关系数r的绝对值越接近于1,表明两个随机变量线性相关性越强答案:D40.如图,AB是半圆O的直径,C、D是半圆上的两点,半圆O的切线PC交AB的延长线于点P,∠PCB=25°,则∠ADC为()

A.105°

B.115°

C.120°

D.125°

答案:B41.已知函数f

(x)=logx,则方程()|x|=|f(x)|的实根个数是()

A.1

B.2

C.3

D.2006答案:B42.函数y=(12)x的值域为______.答案:因为函数y=(12)x是指数函数,所以它的值域是(0,+∞).故为:(0,+∞).43.在平面直角坐标系中,经伸缩变换后曲线方程变换为椭圆方程,此伸缩变换公式是(

)A.B.C.D.答案:B解析:解:因为在平面直角坐标系中,经伸缩变换后曲线方程变换为椭圆方程,设变换为,将其代入方程中,得到x,y的关系式,对应相等可知,选B44.选修4-4:坐标系与参数方程

已知直线l:x=m+tcosαy=tsinα(t为参数)经过椭圆C:x=2cosφy=3sinφ(φ为参数)的左焦点F.

(Ⅰ)求m的值;

(Ⅱ)设直线l与椭圆C交于A、B两点,求|FA|•|FB|的最大值和最小值.答案:(Ⅰ)将椭圆C的参数方程化为普通方程,得x24+y23=1.a=2,b=3,c=1,则点F坐标为(-1,0).l是经过点(m,0)的直线,故m=-1.…(4分)(Ⅱ)将l的参数方程代入椭圆C的普通方程,并整理,得(3cos2α+4sin2α)t2-6tcosα-9=0.设点A,B在直线参数方程中对应的参数分别为t1,t2,则|FA|•|FB|=|t1t2|=93cos2α+4sin2α=93+sin2α.当sinα=0时,|FA|•|FB|取最大值3;当sinα=±1时,|FA|•|FB|取最小值94.…(10分)45.如果执行如图的程序框图,那么输出的S=______.答案:根据题意可知该循环体运行5次第一次:k=2,s=2,第二次:k=3,s=2+4,第三次:k=4,s=2+4+6,第四次:k=5,s=2+4+6+8,因为k=5,结束循环,输出结果S=2+4+6+8=20.故为:20.46.已知=2+i,则复数z=()

A.-1+3i

B.1-3i

C.3+i

D.3-i答案:B47.解不等式logx(2x+1)>logx2.答案:当0<x<1,logx(2x+1)>logx2?0<2x+1<20<x<1,解得0<x<12;当x>1,logx(2x+1)>logx2?2x+1>2x>1,解得x>1.综上所述,原不等式的解集为{x|0<x<12或x>1}.48.下列在曲线上的点是()

A.

B.

C.

D.答案:D49.与双曲线x2-y24=1有共同的渐近线,且过点(2,2)的双曲线的标准方程为______.答案:设双曲线方程为x2-y24=λ∵过点(2,2),∴λ=3∴所求双曲线方程为x23-y212=1故为x23-y212=150.设复数z=cosθ+sinθi,0≤θ≤π,则|z+1|的最大值为______.答案:复数z=cosθ+sinθi,0≤θ≤π,则|z+1|=|cosθ+1+isinθ|=(1+cosθ)2+sin2θ=2+2cosθ≤2.故为:2.第3卷一.综合题(共50题)1.下表是x与y之间的一组数据,则y关于x的线性回归方程

必过点()

x

0

1

2

3

y

1

3

5

7

A.(2,2)

B.(1.5,2)

C.(1,2)

D.(1.5,4)答案:D2.设a,b,c∈R,则复数(a+bi)(c+di)为实数的充要条件是()

A.ad-bc=0

B.ac-bd=0

C.ac+bd=0

D.ad+bc=0答案:D3.四名男生三名女生排成一排,若三名女生中有两名相邻,但三名女生不能连排,则不同的排法数有()A.3600B.3200C.3080D.2880答案:由题意知本题需要利用分步计数原理来解,∵三名女生有且仅有两名相邻,∴把这两名女生看做一个元素,与另外一名女生作为两个元素,有C32A22种结果,把男生排列有A44,把女生在男生所形成的5个空位中排列有A52种结果,共有C32A22A44A52=2880种结果,故选D.4.给出下列说法:①球的半径是球面上任意一点与球心的连线段;②球的直径是球面上任意两点的连线段;③用一个平面截一个球面,得到的是一个圆;④球常用表示球心的字母表示.其中说法正确的是______.答案:根据球的定义直接判断①正确;②错误;;③用一个平面截一个球面,得到的是一个圆;可以是小圆,也可能是大圆,正确;④球常用表示球心的字母表示.满足球的定义正确;故为:①③④5.双曲线(n>1)的两焦点为F1、、F2,P在双曲线上,且满足|PF1|+|PF2|=2,则△P

F1F2的面积为()

A.

B.1

C.2

D.4答案:B6.平面向量a与b的夹角为,若a=(2,0),|b|=1,则|a+2b|=()

A.

B.2

C.4

D.12答案:B7.若点(2,-2)在圆(x-a)2+(y-a)2=16的内部,则实数a的取值范围是()

A.-2<a<2

B.0<a<2

C.a<-2或a>2

D.a=±2答案:A8.设四边形ABCD中,有DC=12AB,且|AD|=|BC|,则这个四边形是

______.答案:由DC=12AB知四边形ABCD是梯形,又|AD|=|BC|,即梯形的对角线相等,所以,四边形ABCD是等腰梯形.故为:等腰梯形.9.不等式0.52x>0.5x-1的解集为______.答案:由于函数y=0.5x

是R上的减函数,故由0.52x>0.5x-1可得2x<x-1,解得x<-1.故不等式0.52x>0.5x-1的解集为(-∞,-1),故为(-∞,-1).10.已知直线l1:(k-3)x+(4-k)y+1=0,与l2:2(k-3)x-2y+3=0,平行,则k的值是______.答案:当k=3时两条直线平行,当k≠3时有2=-24-k≠3

所以

k=5故为:3或5.11.如果过点A(x,4)和(-2,x)的直线的斜率等于1,那么x=()A.4B.1C.1或3D.1或4答案:由于直线的斜率等于1,故1=4-xx-(-2),解得x=1故选B12.用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是______.答案:不妨设在第1组中随机抽到的号码为x,则在第16组中应抽出的号码为120+x.设第1组抽出的号码为x,则第16组应抽出的号码是8×15+x=126,∴x=6.故为:6.13.根据如图所示的伪代码,可知输出的结果a为______.答案:由题设循环体要执行3次,图知第一次循环结束后c=a+b=2,a=1.b=2,第二次循环结束后c=a+b=3,a=2.b=3,第三次循环结束后c=a+b=5,a=3.b=5,第四次循环结束后不满足循环的条件是b<4,程序输出的结果为3故为:3.14.

008年北京成功举办了第29届奥运会,中国取得了51金、21银、28铜的骄人成绩.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷赛前准备用12000元预定15张下表中球类比赛的门票:

比赛项目

票价(元/场)

篮球

1000

足球

800

乒乓球

500

若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票数与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,则可以预订男篮门票数为

A.2

B.3

C.4

D.5

答案:D15.若将方程|(x-4)2+y2-(x+4)2+y2|=6化简为x2a2-y2b2=1的形式,则a2-b2=______.答案:方程|(x-4)2+y2-(x+4)2+y2|=6,表示点(x,y)到(4,0),(-4,0)两点距离差的绝对值为6,∴轨迹为以(4,0),(-4,0)为焦点的双曲线,方程为x29-y27=1∴a2-b2=2故为:216.已知△ABC中,过重心G的直线交边AB于P,交边AC于Q,设AP=pPB,AQ=qQC,则pqp+q=()A.1B.3C.13D.2答案:取特殊直线PQ使其过重心G且平行于边BC∵点G为重心∴APPB=AQQC=21∵AP=pPB,AQ=qQC∴p=2,q=2∴pqp+q=44=1故选项为A17.有四条线段,其长度分别为2,3,4,5,现从中任取三条,则以这三条线段为边可以构成三角形的概率是______.答案:所有的取法共有C34=4种,三条线段构成三角形的条件是任意两边之和大于第三边,其中能够成三角形的取法有①2、3、4;②2、4、5;③3、4、5,共有3种,故这三条线段为边可以构成三角形的概率是34,故为34.18.下列说法中正确的是()

A.若∥,则与向相同

B.若||<||,则<

C.起点不同,但方向相同且模相等的两个向量相等

D.所有的单位向量都相等答案:C19.设a1,a2,…,an为正数,证明a1+a2+…+ann≥n1a1+1a2+…+1an.答案:证明:∵a1,a2,…,an为正数,∴要证明a1+a2+…+ann≥n1a1+1a2+…+1an,只要证明(a1+a2+…+an)(1a1+1a2+…1an)≥n2∵a1+a2+…+an≥nna1a2…an,1a1+1a2+…1an≥nn1a1a2…an∴两式相乘,可得(a1+a2+…+an)(1a1+1a2+…1an)≥n2∴原不等式成立.20.小李在一旅游景区附近租下一个小店面卖纪念品和T恤,由于经营条件限制,他最多进50件T恤和30件纪念品,他至少需要T恤和纪念品40件才能维持经营,已知进货价为T恤每件36元,纪念品每件50元,现在他有2400元可进货,假设每件T恤的利润是18元,每件纪念品的利润是20元,问怎样进货才能使他的利润最大,最大利润为多少?答案:设进T恤x件,纪念品y件,可得利润为z元,由题意得x、y满足的约束条件为:

0≤x≤50

0≤y≤30

x+y≥4036x+48y≤2400,且x、y∈N*目标函数z=18x+20y约束条件的可行域如图所示:五边形ABCDE的各个顶点坐标分别为:A(40,0),B(50,0),C(50,252),D(803,30),E(10,30),当直线l:z=18x+20y经过C(50,252)时取最大值,∵x,y必为整数,∴当x=50,y=12时,z取最大值即进50件T恤,12件纪念品时,可获最大利润,最大利润为1140元.21.已知的单调区间;

(2)若答案:(1)(2)证明略解析:(1)对已知函数进行降次分项变形

,得,(2)首先证明任意事实上,而

.22.如图,CD是⊙O的直径,AE切⊙O于点B,连接DB,若∠D=20°,则∠DBE的大小为()

A.20°

B.40°

C.60°

D.70°答案:D23.山东鲁洁棉业公司的科研人员在7块并排、形状大小相同的试验田上对某棉花新品种进行施化肥量x对产量y影响的试验,得到如下表所示的一组数据(单位:kg).

施化肥量x15202530354045棉花产量y330345365405445450455(1)画出散点图;

(2)判断是否具有相关关系.答案:(1)根据已知表格中的数据可得施化肥量x和产量y的散点图如下所示:(2)根据(1)中散点图可知,各组数据对应点大致分布在一个条形区域内(一条直线附近)故施化肥量x和产量y具有线性相关关系.24.命题“零向量与任意向量共线”的否定为______.答案:命题“零向量与任意向量共线”即“任意向量与零向量共线”,是全称命题,其否定为特称命题:“有的向量与零向量不共线”.故为:“有的向量与零向量不共线”.25.如图,直线AB是平面α的斜线,A为斜足,若点P在平面α内运动,使得点P到直线AB的距离为定值a(a>0),则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线答案:因为点P到直线AB的距离为定值a,所以,P点在以AB为轴的圆柱的侧面上,又直线AB是平面α的斜线,且点P在平面α内运动,所以,可以理解为用用与圆柱底面不平行的平面截圆柱的侧面,所以得到的轨迹是椭圆.故选B.26.将一根长为3m的绳子在任意位置剪断,则剪得两段的长都不小于1m的概率是()A.14B.13C.12D.23答案:记“两段的长都不小于1m”为事件A,则只能在中间1m的绳子上剪断,剪得两段的长都不小于1m,所以事件A发生的概率

P(A)=13.故选B27.直线2x-3y+10=0的法向量的坐标可以是答案:C28.已知点P是抛物线y2=2x上的动点,点P在y轴上的射影是M,点A(72,4),则|PA|+|PM|的最小值是()A.5B.92C.4D.AD答案:依题意可知焦点F(12,0),准线x=-12,延长PM交准线于H点.则|PF|=|PH||PM|=|PH|-12=|PA|-12|PM|+|PA|=|PF|+|PA|-12,我们只有求出|PF|+|PA|最小值即可.由三角形两边长大于第三边可知,|PF|+|PA|≥|FA|,①设直线FA与抛物线交于P0点,可计算得P0(3,94),另一交点(-13,118)舍去.当P重合于P0时,|PF|+|PA|可取得最小值,可得|FA|=194.则所求为|PM|+|PA|=194-14=92.故选B.29.关于x的方程mx2+2(m+3)x+2m+14=0有两实根,且一个大于4,一个小于4,求m的取值范围。答案:解:令f(x)=mx2+2(m+3)x+2m+14,依题意得或,即或,解得。30.已知F1、F2为椭圆x225+y29=1的两个焦点,过F1的直线交椭圆于A、B两点.若|F2A|+|F2B|=12,则|AB|=______.答案:由椭圆的定义得|AF1|+|AF2|=10|BF1|+|BF2|=10两式相加得|AB|+|AF2|+|BF2|=20,即|AB|+12=20,∴|AB|=8.故:831.欲对某商场作一简要审计,通过检查发票及销售记录的2%来快速估计每月的销售总额.现采用如下方法:从某本50张的发票存根中随机抽一张,如15号,然后按序往后将65号,115号,165号,…发票上的销售额组成一个调查样本.这种抽取样本的方法是()A.简单随机抽样B.系统抽样C.分层抽样D.其它方式的抽样答案:∵总体的个体比较多,抽样时某本50张的发票存根中随机抽一张,如15号,这是系统抽样中的分组,然后按序往后将65号,115号,165号,…发票上的销售额组成一个调查样本.故选B.32.参数方程x=2cosαy=3sinα(a为参数)化成普通方程为______.答案:∵x=2cosαy=3sinα,∴cosα=x2sinα=y3∴(x2)2+(y3)2=cos2α+sin2α=1.即:参数方程x=2cosαy=3sinα化成普通方程为:x24+y29=1.故为:x24+y29=1.33.将(x+y+z)5展开合并同类项后共有______项,其中x3yz项的系数是______.答案:将(x+y+z)5展开合并同类项后,每一项都是m?xa?yb?zc

的形式,且a+b+c=5,其中,m是实数,a、b、c∈N,构造8个完全一样的小球模型,分成3组,每组至少一个,共有分法C27种,每一组中都去掉一个小球的数目分别作为(x+y+z)5的展开式中每一项中x,y,z各字母的次数,小球分组模型与各项的次数是一一对应的.故将(x+y+z)5展开合并同类项后共有C27=21项.把(x+y+z)5的展开式看成5个因式(x+y+z)的乘积形式.从中任意选3个因式,这3个因式都取x,另外的2个因式分别取y、z,相乘即得含x3yz项,故含x3yz项的系数为C35=20,故为21;20.34.某校为了研究学生的性别和对待某一活动的态度(支持和不支持两种态度)的关系,运用2×2列联表进行独立性检验,经计算K2=7.069,则所得到的统计学结论是:有()的把握认为“学生性别与支持该活动有关系”.

P(k2≥k0)

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

A.0.1%

B.1%

C.99%

D.99.9%答案:C35.棱长为1的正方体ABCD-A1B1C1D1的8个顶点都在球O的表面上,E,F分别是棱AA1,DD1的中点,则直线EF被球O截得的线段长为()

A.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论