2023年辽宁石化职业技术学院高职单招(数学)试题库含答案解析_第1页
2023年辽宁石化职业技术学院高职单招(数学)试题库含答案解析_第2页
2023年辽宁石化职业技术学院高职单招(数学)试题库含答案解析_第3页
2023年辽宁石化职业技术学院高职单招(数学)试题库含答案解析_第4页
2023年辽宁石化职业技术学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年辽宁石化职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知点G是△ABC的重心,O是空间任一点,若OA+OB+OC=λOG,则实数λ=______.答案:由于G是三角形ABC的重心,则有GA+GB+GC=0,OA-OG+OB-OG+OC-OG=0故OA+OB+OC=3OG又由已知OA+OB+OC=λOG故可得λ=3故为:32.在△ABC中,AB=2,AC=1,D为BC的中点,则AD•BC=______.答案:AD•BC=AB+AC2•(AC-AB)=AC2-AB22=1-42=-32,故为:-32.3.如果直线l1,l2的斜率分别为二次方程x2-4x+1=0的两个根,那么l1与l2的夹角为()

A.

B.

C.

D.答案:A4.在独立性检验中,统计量Χ2有两个临界值:3.841和6.635.当Χ2>3.841时,有95%的把握说明两个事件有关,当Χ2>6.635时,有99%的把握说明两个事件有关,当Χ2≤3.841时,认为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了2000人,经计算Χ2=20.87.根据这一数据分析,认为打鼾与患心脏病之间()

A.有95%的把握认为两者有关

B.约有95%的打鼾者患心脏病

C.有99%的把握认为两者有关

D.约有99%的打鼾者患心脏病答案:C5.若a=(1,2,-2),b=(1,0,2),则(a-b)•(a+2b)=______.答案:∵a=(1,2,-2),b=(1,0,2),∴a-b=(0,2,-4),a+2b=(3,2,2).∴(a-b)•(a+2b)=0×3+2×2-4×2=-4.故为-4.6.某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()

A.9

B.18

C.27

D.36答案:B7.已知|a|=1,|b|=2,<a,b>=60°,则|2a+b|=______.答案:∵|a|=1,|b|=2,<a,b>=60°,∴a?b=|a|×|b|cos60°=1由此可得(2a+b)2=4a2+4a?b+b2=4×12+4×1+22=12∴|2a+b|=(2a+b)2=23故为:238.(几何证明选讲选做题)

如图,已知PA是圆O的切线,切点为A,直线PO交圆O于B,C两点,AC=2,∠PAB=120°,则切线PA的长度等于______.答案:∵∠PAB=120°,∴优弧ACB=240°,∴劣弧AB=120°,∴∠ACB=60°,又∵OA=OC故∠AOP=60°,OA=AC=2,∠又∵PA是圆O的切线,切点为A,∴∠OAP=90°∴PA=3OA=23故为:239.如果椭圆x225+y216=1上一点P到焦点F1的距离为6,则点P到另一个焦点F2的距离为()A.5B.4C.8D.6答案:由椭圆的定义知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.故选B.10.某超市推出如下优惠方案:

(1)一次性购物不超过100元不享受优惠;

(2)一次性购物超过100元但不超过300元的一律九折;

(3)一次性购物超过300元的一律八折,有人两次购物分别付款80元,252元.

如果他一次性购买与上两次相同的商品,则应付款______.答案:该人一次性购物付款80元,据条件(1)、(2)知他没有享受优惠,故实际购物款为80元;另一次购物付款252元,有两种可能,其一购物超过300元按八折计,则实际购物款为2520.8=315元.其二购物超过100元但不超过300元按九折计算,则实际购物款为2520.9=280元.故该人两次购物总价值为395元或360元,若一次性购买这些商品应付款316元或288元.故为316元或288元.11.在某项体育比赛中,七位裁判为一选手打出分数的茎叶图如图,去掉一个最高分和一个摄低分后,该选手的平均分为()A.90B.91C.92D.93答案:由图表得到评委为该选手打出的7个分数数据为:89,90,90,93,93,94,95.去掉一个最低分89,去掉一个最高分95,该选手得分的平均数为15(90+90+93+93+94)=92.故选C.12.设A=xn+x-n,B=xn-1+x1-n,当x∈R+,n∈N+时,求证:A≥B.答案:证明:A-B=(xn+x-n)-(xn-1+x1-n)=x-n(x2n+1-x2n-1-x)=x-n[x(x2n-1-1)-(x2n-1-1)]=x-n(x-1)(x2n-1-1).由x∈R+,x-n>0,得当x≥1时,x-1≥0,x2n-1-1≥0;当x<1时,x-1<0,x2n-1<0,即x-1与x2n-1-1同号.∴A-B≥0.∴A≥B.13.(本题10分)设函数的定义域为A,的定义域为B.(1)求A;

(2)若,求实数a的取值范围答案:(1);(2)。解析:略14.类比“等差数列的定义”给出一个新数列“等和数列的定义”是()A.连续两项的和相等的数列叫等和数列B.从第一项起,以后每一项与前一项的和都相等的数列叫等和数列C.从第二项起,以后每一项与前一项的差都不相等的数列叫等和数列D.从第二项起,以后每一项与前一项的和都相等的数列叫等和数列答案:由等差数列的定义:从第二项起,以后每一项与前一项的差都相等的数列叫等差数列类比可得:从第二项起,以后每一项与前一项的和都相等的数列叫等和数列故选D15.解不等式:2<|3x-1|≤3.答案:由原不等式得-3≤3x-1<-2或2<3x-1≤3,∴-2≤3x<-1或3<3x≤4,∴-23≤x<-13或1<x≤43,∴不等式的解集是{x|-23≤x<-13或1<x≤43}.16.F1,F2是椭圆x2a2+y2b2=1的两个焦点,点P是椭圆上任意一点,从F1引∠F1PF2的外角平分线的垂线,交F2P的延长线于M,则点M的轨迹是______.答案:设从F1引∠F1PF2的外角平分线的垂线,垂足为R∵△PF1M中,PR⊥F1M且PR是∠F1PM的平分线∴|MP|=|F1P|,可得|PF1|+|PF2|=|PM|+|PF2|=|MF2|根据椭圆的定义,可得|PF1|+|PF2|=2a,∴|MF2|=2a,即动点M到点F2的距离为定值2a,因此,点M的轨迹是以点F2为圆心,半径为2a的圆.故为:以点F2为圆心,半径为2a的圆.17.已知当m∈R时,函数f(x)=m(x2-1)+x-a的图象和x轴恒有公共点,求实数a的取值范围.答案:(1)m=0时,f(x)=x-a是一次函数,它的图象恒与x轴相交,此时a∈R.(2)m≠0时,由题意知,方程mx2+x-(m+a)=0恒有实数解,其充要条件是△=1+4m(m+a)=4m2+4am+1≥0.又只需△′=(4a)2-16≤0,解得-1≤a≤1,即a∈[-1,1].∴m=0时,a∈R;m≠0时,a∈[-1,1].18.等腰三角形两腰所在的直线方程是l1:7x-y-9=0,l2:x+y-7=0,它的底边所在直线经过点A(3,-8),求底边所在直线方程.答案:设l1,l2,底边所在直线的斜率分别为k1,k2,k;由l1:7x-y-9=0得y=7x-9,所以k1=7,由l2:x+y-7=0得y=-x+7,所以k2=-1;…(2分)如图,由等腰三角形性质,可知:l到l1的角=l2到l的角;由到角公式得:7-k1+7k=k-(-1)1+k(-1)…(4分)解出:k=-3或k=13…(6分)由已知:底边经过点A(3,-8),代入点斜式,得出直线方程:y-(-8)=(-3)(x-3)或y-(-8)=13(x-3)…(7分)3x+y-1=0或x-3y-27=0.…(8分)19.如图给出的是计算1+13+15+…+12013的值的一个程序框图,图中空白执行框内应填入i=______.答案:∵该程序的功能是计算1+13+15+…+12013的值,最后一次进入循环的终值为2013,即小于等于2013的数满足循环条件,大于2013的数不满足循环条件,由循环变量的初值为1,步长为2,故执行框中应该填的语句是:i=i+2.故为:i+2.20.在正方体ABCD-A1B1C1D1中,若E为A1C1中点,则直线CE垂直于()A.ACB.BDC.A1DD.A1A答案:以A为原点,AB、AD、AA1所在直线分别为x,y,z轴建空间直角坐标系,设正方体棱长为1,则A(0,0,0),C(1,1,0),B(1,0,0),D(0,1,0),A1(0,0,1),E(12,12,1),∴CE=(-12,-12,1),AC=(1,1,0),BD=(-1,1,0),A1D=(0,1,-1),A1A=(0,0,-1),显然CE•BD=12-12+0=0,∴CE⊥BD,即CE⊥BD.

故选B.21.赋值语句n=n+1的意思是()

A.n等于n+1

B.n+1等于n

C.将n的值赋给n+1

D.将n的值增加1,再赋给n,即n的值增加1答案:D22.用冒泡法对43,34,22,23,54从小到大排序,需要(

)趟排序。

A.2

B.3

C.4

D.5答案:A23.已知:空间四边形ABCD,AB=AC,DB=DC,求证:BC⊥AD.答案:取BC的中点为E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.这样,BC就和平面ADE内的两条相交直线AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.24.如图,正方体ABCD-A1B1C1D1中,点E是棱BC的中点,点F

是棱CD上的动点.

(Ⅰ)试确定点F的位置,使得D1E⊥平面AB1F;

(Ⅱ)当D1E⊥平面AB1F时,求二面角C1-EF-A的余弦值以及BA1与面C1EF所成的角的大小.答案:(I)由题意可得:以A为原点,分别以直线AB、AD、AA1为x轴、y轴、z轴建立空间直角坐标系,不妨设正方体的棱长为1,且DF=x,则A1(0,0,1),A(0,0,0),B(1,0,0),D(0,1,0),B1(1,0,1),D1(0,1,1),E(1,12,0),F(x,1,0)所以D1E=(1,-12,-1),AB1=(1,0,1),AF=(x,1,0)由D1E⊥面AB1F⇔D1E⊥AB1且D1E⊥AF,所以D1E•AB1=0D1E•AF=0,可解得x=12所以当点F是CD的中点时,D1E⊥平面AB1F.(II)当D1E⊥平面AB1F时,F是CD的中点,F(12,1,0)由正方体的结构特征可得:平面AEF的一个法向量为m=(0,0,1),设平面C1EF的一个法向量为n=(x,y,z),在平面C1EF中,EC1=(0,12,1),EF=(-12,12,0),所以EC1•n=0EF•n

=0,即y=-2zx=y,所以取平面C1EF的一个法向量为n=(2,2,-1),所以cos<m,n>=-13,所以<m,n>=π-arccos13,又因为当把m,n都移向这个二面角内一点时,m背向平面AEF,而n指向平面C1EF,所以二面角C1-EF-A的大小为π-arccos13又因为BA1=(-1,0,1),所以cos<BA1,n>=-22,所以<BA1,n>=135∘,∴BA1与平面C1EF所成的角的大小为45°.25.过点A(0,2),且与抛物线C:y2=6x只有一个公共点的直线l有()条.A.1B.2C.3D.4答案:∵点A(0,2)在抛物线y2=6x的外部,∴与抛物线C:y2=6x只有一个公共点的直线l有三条,有两条直线与抛物线相切,有一条直线与抛物线的对称轴平行,故选C.26.在极坐标系中,若等边三角形ABC(顶点A,B,C按顺时针方向排列)的顶点A,B的极坐标分别为(2,π6),(2,7π6),则顶点C的极坐标为______.答案:如图所示:由于A,B的极坐标(2,π6),(2,7π6),故极点O为线段AB的中点.故等边三角形ABC的边长为4,AB边上的高(即点C到AB的距离)OC等于23.设点C的极坐标为(23,π6+π2),即(23,2π3),故为(23,2π3).27.(选做题)圆内非直径的两条弦AB、CD相交于圆内一点P,已知PA=PB=4,PC=14PD,则CD=______.答案:连接AC、BD.∵∠A=∠D,∠C=∠B,∴△ACP∽△DBP,∴PAPD=PCPB,∴4PD=14PD4,∴PD2=64∴PD=8∴CD=PD+PC=8+2=10,故为:1028.已知平面向量=(1,-3),=(4,-2),λ+与垂直,则λ是()

A.1

B.2

C.-2

D.-1答案:D29.已知两点分别为A(4,3)和B(7,-1),则这两点之间的距离为()A.1B.2C.3D.5答案:∵A(4,3)和B(7,-1),∴AB=(4-7)2+(3+1)2=5故选D.30.如图是2010年青年歌手大奖赛中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m为数字0~9中的

一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1,a2,则一定有()A.a1>a2B.a2>a1C.a1=a2D.a1,a2的大小与m的值有关答案:由题意知去掉一个最高分和一个最低分以后,两组数据都有五个数据,代入数据可以求得甲和乙的平均分a1=1+4+5×35+80=84,a2=4×3+6+75+80=85,∴a2>a1故选B31.在Rt△ABC中,若∠C=90°,AC=b,BC=a,则△ABC外接圆半径r=a2+b22.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,则其外接球的半径R=______.答案:直角三角形外接圆半径为斜边长的一半,由类比推理可知若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,将三棱锥补成一个长方体,其外接球的半径R为长方体对角线长的一半.故为a2+b2+c22故为:a2+b2+c2232.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为32,过右焦点F且斜率为k(k>0)的直线与C相交于A、B两点,若AF=3FB,则k=______.答案:设l为椭圆的右准线,过A、B作AA1,BB1垂直于l,A1,B1为垂足,过B作BE⊥AA1于E,则|AA1|=|AF|e,|BB1|=|BF|e,由AF=3FB知,|AA1|=3|BF|e,∴cos<BAE=|AE||AB|=2|BF|e4|BF|=12e=33,∴sin∠BAE=63,∴tan∠BAE=2.∴k=2.故:2.33.过P(-1,1),Q(3,9)两点的直线的斜率为(

A.2

B.

C.4

D.答案:A34.已知、分别是的外接圆和内切圆;证明:过上的任意一点,都可作一个三角形,使得、分别是的外接圆和内切圆.答案:略解析:证:如图,设,分别是的外接圆和内切圆半径,延长交于,则,,延长交于;则,即;过分别作的切线,在上,连,则平分,只要证,也与相切;设,则是的中点,连,则,,,所以,由于在角的平分线上,因此点是的内心,(这是由于,,而,所以,点是的内心).即弦与相切.35.已知圆O:x2+y2=5和点A(1,2),则过A且与圆O相切的直线与两坐标轴围成的三角形的面积=______.答案:由题意知,点A在圆上,切线斜率为-1KOA=-121=-12,用点斜式可直接求出切线方程为:y-2=-12(x-1),即x+2y-5=0,从而求出在两坐标轴上的截距分别是5和52,所以,所求面积为12×52×5=254.36.已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是()

A.圆

B.椭圆

C.双曲线

D.抛物线答案:B37.复数Z=arccosx-π+(-2x)i(x∈R,i是虚数单位),在复平面上的对应点只可能位于()A.第一象限B.第二象限C.第三象限D.第四象限答案:∵a=arccosx-π,arccosx∈[0,π],∴a<0,∵b=-2x<0,∴复数Z对应的点的实部和虚部都小于零,∴复数在第三象限,故选C.38.1

甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲、丙两台机床加工的零件都是一等品的概率为

(1)分别求甲、乙、丙三台机床各自加工零件是一等品的概率;

(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.答案:见解析解析:解:(1)设A、B、C分别为甲、乙、丙三台机床各自加工的零件是一等品的事件①②③39.如图所示的程序框图,运行相应的程序,若输出S的值为254,则判断框①中应填入的条件是()A.n≤5B.n≤6C.n≤7D.n≤8答案:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出满足条件S=2+22+23+…+2n=126时S的值∵2+22+23+…+27=254,故最后一次进行循环时n的值为7,故判断框中的条件应为n≤7.故选C.40.我市某机构为调查2009年下半年落实中学生“阳光体育”活动的情况,设平均每人每天参加体育锻炼时间为X(单位:分钟),按锻炼时间分下列四种情况统计:①0~10分钟;②11~20分钟;③21~30分钟;④30分钟以上,有10000名中学生参加了此项活动,右图是此次调查中某一项的流程图,其输出的结果是6200,则平均每天参加体育锻炼时间在0~20分钟内的学生的频率是()A.0.62B.0.38C.6200D.3800答案:由图知输出的S的值是运动时间超过20分钟的学生人数,由于统计总人数是10000,又输出的S=6200,故运动时间不超过20分钟的学生人数是3800事件“平均每天参加体育锻炼时间在0~20分钟内的学生的”频率是380010000=0.38故选B41.从5名男学生、3名女学生中选3人参加某项知识对抗赛,要求这3人中既有男生又有女生,则不同的选法共有()A.45种B.56种C.90种D.120种答案:由题意知本题是一个分类计数问题,要求这3人中既有男生又有女生包括两种情况,一是两女一男,二是两男一女,当包括两女一男时,有C32C51=15种结果,当包括两男一女时,有C31C52=30种结果,∴根据分类加法得到共有15+30=45故选A.42.某班试用电子投票系统选举班干部候选人.全班k名同学都有选举权和被选举权,他们的编号分别为1,2,…,k,规定:同意按“1”,不同意(含弃权)按“0”,令aij=1,第i号同学同意第j号同学当选.0,第i号同学不同意第j号同学当选.其中i=1,2,…,k,且j=1,2,…,k,则同时同意第1,2号同学当选的人数为()A.a11+a12+…+a1k+a21+a22+…+a2kB.a11+a21+…+ak1+a12+a22+…+ak2C.a11a12+a21a22+…+ak1ak2D.a11a21+a12a22+…+a1ka2k答案:第1,2,…,k名学生是否同意第1号同学当选依次由a11,a21,a31,…,ak1来确定(aij=1表示同意,aij=0表示不同意或弃权),是否同意第2号同学当选依次由a12,a22,…,ak2确定,而是否同时同意1,2号同学当选依次由a11a12,a21a22,…,ak1ak2确定,故同时同意1,2号同学当选的人数为a11a12+a21a22+…+ak1ak2,故选C.43.若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题,则x的取值范围是______.答案:若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题则它的否命题为真命题即{x|x<2或x>5}且{x|1≤x≤4}是真命题所以的取值范围是[1,2),故为[1,2).44.已知点B是点A(2,-3,5)关于平面xOy的对称点,则|AB|=()

A.10

B.

C.

D.38答案:A45.设四边形ABCD中,有DC=12AB,且|AD|=|BC|,则这个四边形是

______.答案:由DC=12AB知四边形ABCD是梯形,又|AD|=|BC|,即梯形的对角线相等,所以,四边形ABCD是等腰梯形.故为:等腰梯形.46.给出一个程序框图,输出的结果为s=132,则判断框中应填()

A.i≥11

B.i≥10

C.i≤11

D.i≤12

答案:A47.如图,从圆O外一点A引切线AD和割线ABC,AB=3,BC=2,则切线AD的长为______.答案:由切割线定理可得AD2=AB?AC=3×5,∴AD=15.故为15.48.已知函数y=f(x)是R上的奇函数,其零点为x1,x2,…,x2011,则x1+x2+…+x2011=______.答案:∵f(x)是R上的奇函数,∴0是函数y=f(x)的零点.其他非0的零点关于原点对称.∴x1+x2+…+x2011=0.故为:0.49.巳知椭圆{xn}与{yn}的中心在坐标原点,长轴在x轴上,离心率为32,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为______.答案:由题设知e=32,2a=12,∴a=6,b=3,∴所求椭圆方程为x236+y29=1.:x236+y29=1.50.与直线3x+4y-3=0平行,并且距离为3的直线方程为______.答案:设所求直线上任意一点P(x,y),由题意可得点P到所给直线的距离等于3,即|3x+4y-3|5=3,∴|3x+4y-3|=15,∴3x+4y-3=±15,即3x+4y-18=0或3x+4y+12=0.故为3x+4y-18=0或3x+4y+12=0.第2卷一.综合题(共50题)1.与原数据单位不一样的是()

A.众数

B.平均数

C.标准差

D.方差答案:D2.如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线上一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.

(1)求证:DE是⊙O的切线;

(2)若AB=6,AE=245,求BD和BC的长.答案:(1)证明:连接OC∵AC平分∠EAB∴∠EAC=∠BAC又在圆中OA=OC∴∠AC0=∠BAC∴∠EAC=∠ACO∴OC∥AE(内错角相等,两直线平行)则由AE⊥DC知OC⊥DC即DE是⊙O的切线.(2)∵∠D=∠D,∠E=∠OCD=90°∴△DCO∽△DEA∴BD=2∵Rt△EAC∽Rt△CAB.∴AC2=1445由勾股定理得BC=655.3.已知矩阵A=b-2-7a的逆矩阵是B=a273,则a+b=______.答案:根据矩阵A=b-2-7a的逆矩阵是B=a273,得a273b-2-7a=1001,∴ab-14=1-2a+2a=07b-21=0-14+3a=1,解得a=5b=3∴a+b=8.故为:8.4.如果椭圆x225+y216=1上一点P到焦点F1的距离为6,则点P到另一个焦点F2的距离为()A.5B.4C.8D.6答案:由椭圆的定义知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.故选B.5.一次函数y=3x+2的斜率和截距分别是()A.2、3B.2、2C.3、2D.3、3答案:根据一次函数的定义和直线的斜截式方程知,此一次函数的斜率为3、截距为2故选C6.命题:“若a>0,则a2>0”的否命题是()A.若a2>0,则a>0B.若a<0,则a2<0C.若a≤0,则a2≤0D.若a≤0,则a2≤0答案:否命题是将条件,结论同时否定,∴若a>0,则a2>0”的否命题是若a≤0,则a2≤0,故为:C7.三段论:“①船准时启航就能准时到达目的港,②这艘船准时到达了目的港,③这艘船是准时启航的”中,“小前提”是______.(填序号)答案:三段论:“①船准时启航就能准时到达目的港;②这艘船准时到达了目的港,③这艘船是准时启航的,我们易得大前提是①,小前提是②,结论是③,故为:②.8.若一次函数y=mx+b在(-∞,+∞)上是增函数,则有()A.b>0B.b<0C.m>0D.m<0答案:∵一次函数y=mx+b在(-∞,+∞)上是增函数,∴一次项系数m>0,故选C.9.Rt△ABC中,AB=3,BC=4,AC=5,将三角形绕直角边AB旋转一周形成一个新的几何体,想象几何体的结构,画出它的三视图,求出它的表面积和体积.答案:以绕AB边旋转为例,其直观图、正(侧)视图、俯视图依次分别为:其表面是扇形的表面,所以其表面积为S=πRL=36π,V=13×π×BC2×AB=16π.10.直线y=3x+1的斜率是()A.1B.2C.3D.4答案:因为直线y=3x+1是直线的斜截式方程,所以直线的斜率是3.故选C.11.口袋内有100个大小相同的红球、白球和黑球,其中有45个红球,从中摸出1个球,摸出白球的概率为0.23,则摸出黑球的概率为______.答案:∵口袋内有100个大小相同的红球、白球和黑球从中摸出1个球,摸出白球的概率为0.23,∴口袋内白球数为32个,又∵有45个红球,∴为32个.从中摸出1个球,摸出黑球的概率为32100=0.32故为0.3212.已知圆C的极坐标方程是ρ=2sinθ,那么该圆的直角坐标方程为

______,半径长是

______.答案:把极坐标方程是ρ=2sinθ的两边同时乘以ρ得:ρ2=2ρsinθ,∴x2+y2=2y,即x2+(y-1)2=1,表示以(0,1)为圆心,半径等于1的圆,故为:x2+(y-1)2=1;1.13.已知点A(-3,8),B(2,4),若y轴上的点P满足PA的斜率是PB斜率的2倍,则P点的坐标为______.答案:设P(0,y),则∵点P满足PA的斜率是PB斜率的2倍,∴y-80+3=2•y-40-2∴y=5∴P(0,5)故为:(0,5)14.在用样本频率估计总体分布的过程中,下列说法正确的是()A.总体容量越大,估计越精确B.总体容量越小,估计越精确C.样本容量越大,估计越精确D.样本容量越小,估计越精确答案:∵用样本频率估计总体分布的过程中,估计的是否准确与总体的数量无关,只与样本容量在总体中所占的比例有关,∴样本容量越大,估计的月准确,故选C.15.如图,在⊙O中,AB是弦,AC是⊙O的切线,A是切点,过

B作BD⊥AC于D,BD交⊙O于E点,若AE平分

∠BAD,则∠BAD=()

A.30°

B.45°

C.50°

D.60°

答案:D16.命题“梯形的两对角线互相不平分”的命题形式为()A.p或qB.p且qC.非pD.简单命题答案:记命题p:梯形的两对角线互相平分,

而原命题是“梯形的两对角线互相不平分”,是命题p的否定形式

故选C17.(坐标系与参数方程选做题)

直线x=-2+ty=1-t(t为参数)被圆x=3+5cosθy=-1+5sinθ(θ为参数,θ∈[0,2π))所截得的弦长为______.答案:直线和圆的参数方程化为普通方程得x+y+1=0,(x-3)2+(y+1)2=25,于是弦心距d=322,弦长l=225-92=82.故为:8218.设直角三角形的三边长分别为a,b,c(a<b<c),则“a:b:c=3:4:5”是“a,b,c成等差数列”的()A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分又非必要条件答案:∵直角三角形的三边长分别为a,b,c(a<b<c),a:b:c=3:4:5,∴a=3k,b=4k,c=5k(k>0),∴a,b,c成等差数列.即“a:b:c=3:4:5”?“a,b,c成等差数列”.∵直角三角形的三边长分别为a,b,c(a<b<c),a,b,c成等差数列,∴a2+b2=c22b=a+c,∴a2+a2+

c2+2ac4=c2,∴4a=3b,5a=3c,∴a:b:c=3:4:5,即“a,b,c成等差数列”?“a:b:c=3:4:5”.故选C.19.已知边长为1的正方形ABCD,则|AB+BC+CD|=______.答案:利用向量加法的几何性质,得AB+BC=AC∴AB+BC+CD=AD因为正方形的边长等于1所以|AB+BC+CD|=|AD|

=1故为:120.已知a,b,c是三条直线,且a∥b,a与c的夹角为θ,那么b与c夹角是______.答案:∵a∥b,∴b与c夹角等于a与c的夹角又∵a与c的夹角为θ∴b与c夹角也为θ故为:θ21.设随机变量X的分布列为P(X=k)=,k=1,2,3,4,5,则P()等于()

A.

B.

C.

D.答案:C22.要考察某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第11列的数1开始向右读,请你依次写出最先检测的4颗种子的编号______,______,______,______.

(下面摘取了随机数表第7行至第9行的一部分)

84

42

17

53

31

57

24

55

06

88

77

04

74

47

67

21

76

33

50

25

63

01

63

78

59

16

95

55

67

19

98

10

50

71

75

12

86

73

58

07

44

39

52

38

79

33

21

12

34

29

78

64

56

07

82

52

42

07

44

38.答案:由于随机数表中第8行的数字为:63

01

63

78

59

16

95

5567

19

98

10

50

71

75

12

86

73

58

07其第11列数字为1,故产生的第一个数字为:169,第二个数字为:555,第三个数字为:671,第四个数字为:998(超出编号范围舍)第五个数字为:105故为:169,555,671,10523.已知A(3,4,5),B(0,2,1),O(0,0,0),若,则C的坐标是()

A.(-,-,-)

B.(,-,-)

C.(-,-,)

D.(,,)答案:A24.设A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},A∩B={2}.

(1)求a的值及集合A、B;

(2)设全集U=A∪B,求(CUA)∪(CUB)的所有子集.答案:解:(1)∵A∩B={2},∴2∈A,∴8+2a+2=0,∴a=﹣5;B={2,﹣5}(2)U=A∪B=,∴CUA={﹣5},CUB=∴(CUA)∪(CUB)=∴(CUA)∪(CUB)的所有子集为:,{﹣5},{},{﹣5,}.25.圆ρ=5cosθ-5sinθ的圆心的极坐标是()

A.(-5,-)

B.(-5,)

C.(5,)

D.(-5,)答案:A26.两封信随机投入A、B、C三个空邮箱,则A邮箱的信件数ξ的数学期望Eξ=______;答案:由题意知ξ的取值有0,1,2,当ξ=0时,即A邮箱的信件数为0,由分步计数原理知两封信随机投入A、B、C三个空邮箱,共有3×3种结果,而满足条件的A邮箱的信件数为0的结果数是2×2,由古典概型公式得到ξ=0时的概率,同理可得ξ=1时,ξ=2时,ξ=3时的概率p(ξ=0)=2×29=49,p(ξ=1)=C12C129=49,p(ξ=2)=19,∴Eξ=0×49+1×49+2×19=23故为:23.27.命题“方程|x|=1的解是x=±1”中,使用逻辑词的情况是()A.没有使用逻辑连接词B.使用了逻辑连接词“或”C.使用了逻辑连接词“且”D.使用了逻辑连接词“或”与“且”答案:∵命题“方程|x|=1的解是x=±1”等价于命题“方程|x|=1的解是x=1或x=-1.”∴该命题使用了逻辑连接词“或”.故选B.28.若向量a=(4,2,-4),b=(6,-3,2),则(2a-3b)•(a+2b)=______.答案:∵2a-3b=(-10,13,-14),a+2b=(16,-4,0)∴(2a-3b)•(a+2b)=-10×16+13×(-4)=-212故为-21229.若函数y=f(x)是函数y=ax(a>0且a≠1)的反函数,且y=f(x)的图象过点(2,1),则f(x)=______.答案:因为函数y=f(x)是函数y=ax(a>0且a≠1)的反函数,且y=f(x)的图象过点(2,1),所以函数y=ax经过(1,2),所以a=2,所以函数y=f(x)=log2x.故为:log2x.30.若点M,A,B,C对空间任意一点O都满足则这四个点()

A.不共线

B.不共面

C.共线

D.共面答案:D31.圆x2+y2=1上的点到直线x=2的距离的最大值是

______.答案:根据题意,圆上点到直线距离最大值为:半径+圆心到直线的距离.而根据圆x2+y2=1圆心为(0,0),半径为1∴dmax=1+2=3故为:332.设等比数列{an}的首项为a1,公比为q,则“a1<0且0<q<1”是“对于任意n∈N*都有an+1>an”的

()

A.充分不必要条件

B.必要不充分条件

C.充分必要条件

D.既不充分又不必要条件答案:A33.一个总体中有100个个体,随机编号为0,1,2,3,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k号码的个位数字相同,若m=6,则在第7组中抽取的号码是()

A.66

B.76

C.63

D.73答案:C34.把方程化为以参数的参数方程是(

)A.B.C.D.答案:D解析:,取非零实数,而A,B,C中的的范围有各自的限制35.若lga,lgb是方程2x2-4x+1=0的两个根,则的值等于

A.2

B.

C.4

D.答案:A36.若直线

3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a的值为()

A.-1

B.1

C.3

D.-3答案:B37.在空间直角坐标系中,已知两点P1(-1,3,5),P2(2,4,-3),则|P1P2|=()

A.

B.3

C.

D.答案:A38.已知方程(1+k)x2-(1-k)y2=1表示焦点在x轴上的双曲线,则k的取值范围为(

A.-1<k<1

B.k>1

C.k<-1

D.k>1或k<-1答案:A39.要从已编号(1~60)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是()

A.5、10、15、20、25、30

B.3、13、23、33、43、53

C.1、2、3、4、5、6

D.2、4、8、16、32、48答案:B40.已知曲线C的方程是x2+y2+6ax-8ay=0,那么下列各点中不在曲线C上的是()

A.(0,0)

B.(2a,4a)

C.(3a,3a)

D.(-3a,-a)答案:B41.参数方程(0<θ<2π)表示()

A.双曲线的一支,这支过点(1,)

B.抛物线的一部分,这部分过(1,)

C.双曲线的一支,这支过点(-1,)

D.抛物线的一部分,这部分过(-1,)答案:B42.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是(

A.

B.

C.

D.答案:B43.已知圆C:x2+y2-4x-5=0.

(1)过点(5,1)作圆C的切线,求切线的方程;

(2)若圆C的弦AB的中点P(3,1),求AB所在直线方程.答案:由C:x2+y2-4x-5=0得圆的标准方程为(x-2)2+y2=9-----------(2分)(1)显然x=5为圆的切线.------------------------(4分)另一方面,设过(5,1)的圆的切线方程为y-1=k(x-5),即kx-y+1-5k=0;所以d=|2k-5k+1|k2+1=3,解得k=-43于是切线方程为4x+3y-23=0和x=5.------------------------(7分)(2)设所求直线与圆交于A,B两点,其坐标分别为(x1,y1)B(x2,y2)则有(x1-2)2+y21=9(x2-2)2+y22=9两式作差得(x1+x2-4)(x2-x1)+(y2+y1)(y2-y1)=0--------------(10分)因为圆C的弦AB的中点P(3,1),所以(x2+x1)=6,(y2+y1)=2

所以y2-y1x2-x1=-1,故所求直线方程为

x+y-4=0-----------------(14分)44.已知一种材料的最佳加入量在l000g到2000g之间,若用0.618法安排试验,则第一次试点的加入量可以是(

)g。答案:1618或138245.已知原命题“两个无理数的积仍是无理数”,则:

(1)逆命题是“乘积为无理数的两数都是无理数”;

(2)否命题是“两个不都是无理数的积也不是无理数”;

(3)逆否命题是“乘积不是无理数的两个数都不是无理数”;

其中所有正确叙述的序号是______.答案:(1)交换原命题的条件和结论得到逆命题:“乘积为无理数的两数都是无理数”,正确.(2)同时否定原命题的条件和结论得到否命题:“两个不都是无理数的积也不是无理数”,正确.(3)同时否定原命题的条件和结论,然后在交换条件和结论得到逆否命题:“乘积不是无理数的两个数不都是无理数”.所以逆否命题错误.故为:(1)(2).46.盒子中有10张奖券,其中3张有奖,甲、乙先后从中各抽取1张(不放回),记“甲中奖”为A,“乙中奖”为B.

(1)求P(A),P(B),P(AB),P(A|B);

(2)A与B是否相互独立,说明理由.答案:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因为P(A)≠P(A|B),所以A与B不相互独立.解析:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因为P(A)≠P(A|B),所以A与B不相互独立.47.同时掷两颗骰子,得到的点数和为4的概率是______.答案:同时掷两颗骰子得到的点数共有36种情况,即(1,1)(1,2)(1,3)(1,4)(1,5)(1,6),(2,1)(2,2)(2,3)(2,4)(2,5)(2,6),(3,1)(3,2)(3,3)(3,4)(3,5)(3,6),(4,1)(4,2)(4,3)(4,4)(4,5)(4,6),(5,1)(5,2)(5,3)(5,4)(5,5)(5,6),(6,1)(6,2)(6,3)(6,4)(6,5)(6,6),而和为4的情况数有3种,即(1,3)(2,2)(3,1)所以所求概率为336=112,故为:11248.已知a>b>0,则3a,3b,4a由小到大的顺序是______.答案:由于指数函数y=3x在R上是增函数,且a>b>0,可得3a>3b.由于幂函数y=xa在(0,+∞)上是增函数,故有3a<4a,故3a,3b,4a由小到大的顺序是3b<3a<4a.,故为3b<3a<4a.49.圆x2+y2-6x+4y+12=0与圆x2+y2-14x-2y+14=0的位置关系是______.答案:∵圆x2+y2-6x+4y+12=0化成标准形式,得(x-3)2+(y+2)2=1∴圆x2+y2-6x+4y+12=0的圆心为C1(3,-2),半径r1=1同理可得圆x2+y2-14x-2y+14=0的C2(7,1),半径r2=6∵两圆的圆心距|C1C2|=(7-3)2+(1+2)2=5∴|C1C2|=r2-r1=5,可得两圆的位置关系是内切故为:内切50.已知直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则A1B1=A2B2是l1∥l2的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件答案:当A1B1=A2B2

时,两直线可能平行,也可能重合,故充分性不成立.当l1∥l2时,B1与B2可能都等于0,故A1B1=A2B2

不一定成立,故必要性不成立.综上,A1B1=A2B2是l1∥l2的既非充分又非必要条件,故选D.第3卷一.综合题(共50题)1.命题:“方程x2-1=0的解是x=±1”,其使用逻辑联结词的情况是()A.使用了逻辑联结词“且”B.使用了逻辑联结词“或”C.使用了逻辑联结词“非”D.没有使用逻辑联结词答案:“x=±1”可以写成“x=1或x=-1”,故选B.2.设函数f(x)是定义在[a,b]上的奇函数,则f(a+b)=______.答案:因为函数f(x)是定义在[a,b]上的奇函数,所以定义域关于原点对称,所以a+b=0,且f(0)=0.所以f(a+b)=f(0)=0.故为:0.3.若椭圆长轴长与短轴长之比为2,它的一个焦点是(215,0),则椭圆的标准方程是______.答案:由题设条件知a=2b,c=215,∴4b2=b2+60,∴b2=20,a2=80,∴椭圆的标准方程是x280+y220=1.故为:x280+y220=1.4.求下列函数的定义域及值域.

(1)y=234x+1;

(2)y=4-8x.答案:(1)要使函数y=234x+1有意义,只需4x+1≠0,即x≠-14,所以,函数的定义域为{x|x≠-14}.设y=2u,u=34x+1≠0,则u>0,由函数y=2u,得y≠20=1,所以函数的值域为{y|0<y且y≠1}.(2)由4-8x≥0,得x≤23,所以函数的定义域为{x|x≤23}.因0≤4-8x<4,所以0≤y<2,所以函数的值域为[0,2).5.从甲、乙、丙、丁四人中任选两名代表,甲被选中的概率为

______.答案:由题意:甲、乙、丙、丁四人中任选两名代表,共有六种情况:甲和乙、甲和丙、甲和丁、乙和丙、乙和丁、丙和丁,因每种情况出现的可能性相等,所以甲被选中的概率为12.故为:12.6.如图,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为()A.π4B.5π4C.πD.3π2答案:此几何体是一个底面直径为1,高为1的圆柱底面周长是2π×12=π故侧面积为1×π=π故选C7.若以连续掷两次骰子分别得到的点数m、n作为点P的坐标,则点P落在圆x2+y2=16内的概率是______.答案:由题意知,本题是一个古典概型,试验发生包含的事件是连续掷两次骰子分别得到的点数m、n作为点P的坐标,共有6×6=36种结果,而满足条件的事件是点P落在圆x2+y2=16内,列举出落在圆内的情况:(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2),共有8种结果,根据古典概型概率公式得到P=836=29,故为:298.已知向量a与向量b,|a|=2,|b|=3,a、b的夹角为60°,当1≤m≤2,0≤n≤2时,|ma+nb|的最大值为______.答案:∵|a|=2,|b|=3,a、b的夹角为60°,∴|ma+nb|2=m2a2+2mna?b+n2b2=4m2+2mn×2×3×cos60°+9n2=4m2+6mn+9n2,∵1≤m≤2,0≤n≤2,∴当m=2且n=2时,|ma+nb|2取到最大值,即|ma+nb|2max=100,∴,|ma+nb|的最大值为10.故为:10.9.已知点P(x,y)在曲线x=2+cosθy=2sinθ(θ为参数),则ω=3x+2y的最大值为______.答案:由题意,ω=3x+2y=3cosθ+4sinθ+6=5sin(θ+?)+6∴当sin(θ+?)=1时,ω=3x+2y的最大值为

11故为11.10.列举两种证明两个三角形相似的方法.答案:三边对应成比例,两个三角形相似,两边对应成比例且夹角相等,两个三角形相似.11.不等式0.52x>0.5x-1的解集为______.答案:由于函数y=0.5x

是R上的减函数,故由0.52x>0.5x-1可得2x<x-1,解得x<-1.故不等式0.52x>0.5x-1的解集为(-∞,-1),故为(-∞,-1).12.下面对算法描述正确的一项是:()A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同答案:算法的特点:有穷性,确定性,顺序性与正确性,不唯一性,普遍性算法可以用自然语言、图形语言,程序语言来表示,故A、B不对同一问题可以用不同的算法来描述,但结果一定相同,故D不对.C对.故应选C.13.用反证法证明命题“若a、b∈N,ab能被2整除,则a,b中至少有一个能被2整除”,那么反设的内容是______.答案:根据用反证法证明数学命题的步骤,应先假设要证命题的否定成立,而要证命题的否定为:“a,b都不能被2整除”,故为:a、b都不能被2整除.14.如图所示,面积为S的平面凸四边形的第i条边的边长记为ai(i=1,2,3,4),此四边形内任一点P到第i条边的距离记为hi(i=1,2,3,4),若a11=a22=a33=a44=k,则4

i=1(ihi)=2Sk.类比以上性质,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为Hi(i=1,2,3,4),若S11=S22=S33=S44=K,则4

i=1(iHi)=()A.4VKB.3VKC.2VKD.VK答案:根据三棱锥的体积公式V=13Sh得:13S1H1+13S2H2+13S3H3+13S4H4=V,即S1H1+2S2H2+3S3H3+4S4H4=3V,∴H1+2H2+3H3+4H4=3VK,即4i=1(iHi)=3VK.故选B.15.若不共线的平面向量,,两两所成角相等,且||=1,||=1,||=3,则|++|等于(

A.2

B.5

C.2或5

D.或答案:A16.将直线y=x绕原点逆时针旋转60°,所得直线的方程为()

A.y=-x

B.

C.y=-3x

D.答案:A17.若根据10名儿童的年龄

x(岁)和体重

y(㎏)数据用最小二乘法得到用年龄预报体重的回归方程是

y=2x+7,已知这10名儿童的年龄分别是

2、3、3、5、2、6、7、3、4、5,则这10名儿童的平均体重是()

A.17㎏

B.16㎏

C.15㎏

D.14㎏答案:C18.如果双曲线的焦距为6,两条准线间的距离为4,那么该双曲线的离心率为()

A.

B.

C.

D.2答案:C19.设集合A={l,2},B={2,4),则A∪B=()A.{1}B.{4}C.{l,4}D.{1,2,4}答案:∵集合A={1,2},集合B={2,4},∴集合A∪B={1,2,4}.故选D.20.在某电视歌曲大奖赛中,最有六位选手争夺一个特别奖,观众A,B,C,D猜测如下:A说:获奖的不是1号就是2号;A说:获奖的不可能是3号;C说:4号、5号、6号都不可能获奖;D说:获奖的是4号、5号、6号中的一个.比赛结果表明,四个人中恰好有一个人猜对,则猜对者一定是观众

获特别奖的是

号选手.答案:C,3.解析:推理如下:因为只有一人猜对,而C与D互相否定,故C、D中一人猜对。假设D对,则推出B也对,与题设矛盾,故D猜错,所以猜对者一定是C;于是B一定猜错,故获奖者是3号选手(此时A错).21.(文)对于任意的平面向量a=(x1,y1),b=(x2,y2),定义新运算⊕:a⊕b=(x1+x2,y1y2).若a,b,c为平面向量,k∈R,则下列运算性质一定成立的所有序号是______.

①a⊕b=b⊕a;

②(ka)⊕b=a⊕(kb);

③a⊕(b⊕c)=(a⊕b)⊕c;

④a⊕(b+c)=a⊕b+a⊕c.答案:①a⊕b=(x1+x2,y1y2)=(x2+x1,y2y1)=b⊕a,故正确;②∵(ka)⊕b=(kx1+x2,ky1y2),a⊕(kb)=(x1+kx2,y1ky2),∴(ka)⊕b≠a⊕(kb),故不正确;③设c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),(a⊕b)⊕c=(x1+x2,y1y2)⊕c=(x1+x2+x3,y1y2y3),∴a⊕(b⊕c)=(a⊕b)⊕c,故正确;④设c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),a⊕b+a⊕c=(x1+x2,y1y2)+(x1+x3,y1y3)=(2x1+x2+x3,y1(y2+y3)),∴a⊕(b⊕c)≠a⊕b+a⊕c,故不正确.综上可知:只有①③正确.故为①③.22.用数学归纳法证明1+2+3+…+n2=,则当n=k+1时左端应在n=k的基础上加上()

A.k2+1

B.(k+1)2

C.

D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2答案:D23.已知直线l过点P(2,1)且与x轴、y轴的正半轴分别交于A、B两点,O为坐标原点,则三角形OAB面积的最小值为______.答案:设A(a,0)、B(0,b),a>0,b>0,AB方程为xa+

yb=1,点P(2,1)代入得2a+1b=1≥22ab,∴ab≥8

(当且仅当a=4,b=2时,等号成立),故三角形OAB面积S=12

ab≥4,故为4.24.已知均为单位向量,且=,则,的夹角为()

A.

B.

C.

D.答案:C25.

已知向量

=(4,3),=(1,2),若向量

+k

-

垂直,则k的值为(

)A.

233B.7C.-

115D.-

233答案:考点:数量积判断两个平面向量的垂直关系.26.在某次数学考试中,考生的成绩X~N(90,100),则考试成绩X位于区间(80,90)上的概率为______.答案:∵考生的成绩X~N(90,100),∴正弦曲线关于x=90对称,根据3?原则知P(80<x<100)=0.6829,∴考试成绩X位于区间(80,90)上的概率为0.3413,故为:0.341327.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.

(Ⅰ)求证:AC是△BDE的外接圆的切线;

(Ⅱ)若AD=23,AE=6,求EC的长.答案:证明:(Ⅰ)取BD的中点O,连接OE.∵BE平分∠ABC,∴∠CBE=∠OBE.又∵OB=OE,∴∠OBE=∠BEO,∴∠CBE=∠BEO,∴BC∥OE.…(3分)∵∠C=90°,∴OE⊥AC,∴AC是△BDE的外接圆的切线.

…(5分)(Ⅱ)设⊙O的半径为r,则在△AOE中,OA2=OE2+AE2,即(r+23)2=r2+62,解得r=23,…(7分)∴OA=2OE,∴∠A=30°,∠AOE=60°.∴∠CBE=∠OBE=30°.∴在Rt△BCE中,可得EC=12BE=12×3r=12×3×23=3.

…(10分)28.为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00-10:00间各自的点击量,得如下所示的统计图,根据统计图:

(1)甲、乙两个网站点击量的极差,中位数分别是多少?

(2)甲网站点击量在[10,40]间的频率是多少?(结果用分数表示)

(3)甲、乙两个网站哪个更受欢迎?并说明理由。答案:解:(1)甲网站的极差为73-8=65,乙网站的极差为71-5=66;甲网站的中位数是56.5,乙网站的中位数是36.5。(2)甲网站点击量在[10,40]间的频率是;(3)甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方,从数据的分布情况来看,甲网站更受欢迎。29.已知某种从太空飞船中带回的植物种子每粒成功发芽的概率都为,某植物研究所分两个小组分别独立开展该种子的发芽试验,每次试验种一粒种子,假定某次试验种子发芽,则称该次试验是成功的,如果种子没有发芽,则称该次试验是失败的.

(1)第一个小组做了三次试验,求至少两次试验成功的概率;

(2)第二个小组进行试验,到成功了4次为止,求在第四次成功之前共有三次失败,且恰有两次连续失败的概率.答案:(1)(2)解析:(1)第一个小组做了三次试验,至少两次试验成功的概率是P(A)=·+=.(2)第二个小组在第4次成功前,共进行了6次试验,其中三次成功三次失败,且恰有两次连续失败,其中各种可能的情况种数为=12.因此所求的概率为P(B)=12×·=.30.选修4-2:矩阵与变换

已知矩阵M=0110,N=0-110.在平面直角坐标系中,设直线2x-y+1=0在矩阵MN对应的变换作用下得到曲线F,求曲线F的方程.答案:由题设得MN=01100-111=100-1.…(3分)设(x,y)是直线2x-y+1=0上任意一点,点(x,y)在矩阵MN对应的变换作用下变为(x′,y′),则有1001xy=x′y′,即x-y=x′y′,所以x=x′y=-y′…(7分)因为点(x,y)在直线2x-y+1=0上,从而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲线F的方程为2x+y+1=0.

…(10分)31.|a|=4,a与b的夹角为30°,则a在b方向上的投影为______.答案:a在b方向上的投影为|a|cos30°=4×32=23故为:2332.下列函数中,与函数y=x相等的是()A.y=(x)4B.y=5x5C.y=x2D.y=x2x答案:函数y=x的定义域为R,选项中A,D定义域不是R,是A、D不正确.选项C的对应法则不同,C不正确.故选B.33.集合A={1,2}的子集有几个()A.2B.4C.3D.1答案:集合A={1,2}的子集有:?,{2},{1},{2,1}共4个.故选B.34.用反证法证明命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”则假设的内容是()

A.a,b都能被5整除

B.a,b都不能被5整除

C.a,b不能被5整除

D.a,b有1个不能被5整除答案:B35.若一辆汽车每天行驶的路程比原来多19km,则该汽车在8天内行驶的路程s(km)就超

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论