2023年广东农工商职业技术学院高职单招(数学)试题库含答案解析_第1页
2023年广东农工商职业技术学院高职单招(数学)试题库含答案解析_第2页
2023年广东农工商职业技术学院高职单招(数学)试题库含答案解析_第3页
2023年广东农工商职业技术学院高职单招(数学)试题库含答案解析_第4页
2023年广东农工商职业技术学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年广东农工商职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.向量在基底{,,}下的坐标为(1,2,3),则向量在基底{}下的坐标为()

A.(3,4,5)

B.(0,1,2)

C.(1,0,2)

D.(0,2,1)答案:D2.已知命题p、q,若命题“p∨q”与命题“¬p”都是真命题,则()A.命题q一定是真命题B.命题q不一定是真命题C.命题p不一定是假命题D.命题p与命题q的真值相等答案:∵命题“¬p”与命题“p∨q”都是真命题,∴命题p为假命题,q为真命题.故选A.3.实数系的结构图如图所示,其中1、2、3三个方格中的内容分别为()

A.有理数、零、整数

B.有理数、整数、零

C.零、有理数、整数

D.整数、有理数、零

答案:B4.在空间中,有如下命题:

①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线;

②若平面α∥平面β,则平面α内任意一条直线m∥平面β;

③若平面α与平面β的交线为m,平面α内的直线n⊥直线m,则直线n⊥平面β.

其中正确命题的个数为()个.

A.0

B.1

C.2

D.3答案:B5.过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是(

A.4x+3y-13=0

B.4x-3y-19=0

C.3x-4y-16=0

D.3x+4y-8=0答案:A6.请输入一个奇数n的BASIC语句为______.答案:INPUT表示输入语句,输入一个奇数n的BASIC语句为:INPUT“输入一个奇数n”;n.故为:INPUT“输入一个奇数n”;n.7.若集合A={x|x2-4x-5<0,x∈Z},B={x|y=log0.5x>-3,x∈Z},记x0为抛掷一枚骰子出现的点数,则x0∈A∩B的概率等于______.答案:由x2-4x-5<0,x∈Z,解得:-1<x<5,x∈Z,∴x=0,1,2,3,4.即A={0,1,2,3,4},B={x|y=log0.5x>-3,x∈Z}={1,2,3,4,5,6,7},∴A∩B={1,2,3,4},而x0为抛掷一枚骰子出现的点数可能有6种,∴P=46=23,故为:23.8.已知a=(1,-2,1),a+b=(3,-6,3),则b等于()A.(2,-4,2)B.(-2,4,-2)C.(-2,0,-2)D.(2,1,-3)答案:∵a+b=(3,-6,3),∴b=a+b-a=(3,-6,3)-(1,-2,1)=(2,-4,2).故选A.9.如图,AB是⊙O的直径,点D在AB的延长线上,BD=OB,CD与⊙O切于C,那么∠CAB═______.答案:连接OC,BC.∵CD是切线,∴OC⊥CD.∵BD=OB,∴BC=OB=OC.∴∠ABC=60°.∵AB是直径,∴∠ACB=90°,∴∠CAB=30°故为:30°10.如图,AB是⊙O的直径,AD是⊙O的切线,点C在⊙O上,BC∥OD,AB=2,OD=3,则BC的长为______.答案:∵OD∥BC,∴∠AOD=∠B;∵AD是⊙O的切线,∴BA⊥AD,即∠OAD=∠ACB=90°,∴Rt△AOD∽Rt△CBA,∴BCOA=ABOD,即BC1=23,故BC=23.11.某学校为了解高一男生的百米成绩,随机抽取了50人进行调查,如图是这50名学生百米成绩的频率分布直方图.根据该图可以估计出全校高一男生中百米成绩在[13,14]内的人数大约是140人,则高一共有男生______人.

答案:第三和第四个小矩形面积之和为(0.72+0.68)×0.5=0.7,即百米成绩在[13,14]内的频率为:0.7,因为根据该图可以估计出全校高一男生中百米成绩在[13,14]内的人数大约是140人,则高一共有男生1400.7=200人.故为:200.12.将参数方程化为普通方程为(

A.y=x-2

B.y=x+2

C.y=x-2(2≤x≤3)

D.y=x+2(0≤y≤1)答案:C13.倾斜角为60°的直线的斜率为______.答案:因为直线的倾斜角为60°,所以直线的斜率k=tan60°=3.故为:3.14.抛物线y=4x2的焦点坐标是()

A.(0,1)

B.(0,)

C.(1,0)

D.(,0)答案:B15.椭圆焦点在x轴,离心率为32,直线y=1-x与椭圆交于M,N两点,满足OM⊥ON,求椭圆方程.答案:设椭圆方程x2a2+y2b2=1(a>b>0),∵e=32,∴a2=4b2,即a=2b.∴椭圆方程为x24b2+y2b2=1.把直线方程代入化简得5x2-8x+4-4b2=0.设M(x1,y1)、N(x2,y2),则x1+x2=85,x1x2=15(4-4b2).∴y1y2=(1-x1)(1-x2)=1-(x1+x2)+x1x2=15(1-4b2).由于OM⊥ON,∴x1x2+y1y2=0.解得b2=58,a2=52.∴椭圆方程为25x2+85y2=1.16.下列四个函数中,与y=x表示同一函数的是()A.y=(x)2B.y=3x3C.y=x2D.y=x2x答案:选项A中的函数的定义域与已知函数不同,故排除选项A.选项B中的函数与已知函数具有相同的定义域、值域和对应关系,故是同一个函数,故选项B满足条件.选项C中的函数与已知函数的值域不同,故不是同一个函数,故排除选项C.选项D中的函数与与已知函数的定义域不同,故不是同一个函数,故排除选项D,故选B.17.长方体的长、宽、高之比是1:2:3,对角线长是214,则长方体的体积是

______.答案:长方体的长、宽、高之比是1:2:3,所以长方体的长、宽、高是x:2x:3x,对角线长是214,所以,x2+(2x)2+(3x)2=(214)2,x=2,长方体的长、宽、高是2,4,6;长方体的体积是:2×4×6=48故为:4818.已知P(B|A)=,P(A)=,则P(AB)等于()

A.

B.

C.

D.答案:C19.已知sint+cost=1,设s=cost+isint,求f(s)=1+s+s2+…sn.答案:sint+cost=1∴(sint+cost)2=1+2sint?cost=1∴2sint?cost=sin2t=0则cost=0,sint=1或cost=1,sint=0,当cost=0,sint=1时,s=cost+isint=i则f(s)=1+s+s2+…sn=1+i,n=4k+1i,n=4k+20,n=4k+31,n=4(k+1)(k∈N+)当cost=1,sint=0时,s=cost+isint=1则f(s)=1+s+s2+…sn=n+120.如图,花园中间是喷水池,喷水池周围的A、B、C、D区域种植草皮,要求相邻的区域种不同颜色的草皮,现有4种不同颜色的草皮可供选用,则共有______种不同的种植方法(以数字作答).答案:若AD相同,有4×(3+3×2)种种植方法,若AD不同,有4×3×(2+2×1)种种植方法∴共有4×(3+3×2)+4×3×(2+2×1)=36+48=84种不同方法.故为84.21.已知圆锥的母线长与底面半径长之比为3:1,一个正方体有四个顶点在圆锥的底面内,另外的四个顶点在圆锥的侧面上(如图),则圆锥与正方体的表面积之比为(

A.π:1

B.3π:1

C.3π:2

D.3π:4

答案:D22.若直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则点P(a,b)与圆C的位置关系是(

A.点在圆上

B.点在圆内

C.点在圆外

D.不能确定答案:C23.已知复数z0=1-mi(m>0),z=x+yi和w=x'+y'i,其中x,y,x',y'均为实数,i为虚数单位,且对于任意复数z,有w=.z0•.z,|w|=2|z|.

(Ⅰ)试求m的值,并分别写出x'和y'用x、y表示的关系式;

(Ⅱ)将(x、y)作为点P的坐标,(x'、y')作为点Q的坐标,上述关系可以看作是坐标平面上点的一个变换:它将平面上的点P变到这一平面上的点Q,当点P在直线y=x+1上移动时,试求点P经该变换后得到的点Q的轨迹方程;

(Ⅲ)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由.答案:(Ⅰ)由题设,|w|=|.z0•.z|=|z0||z|=2|z|,∴|z0|=2,于是由1+m2=4,且m>0,得m=3,…(3分)因此由x′+y′i=.(1-3i)•.(x+yi)=x+3y+(3x-y)i,得关系式x′=x+3yy′=3x-y…(5分)(Ⅱ)设点P(x,y)在直线y=x+1上,则其经变换后的点Q(x',y')满足x′=(1+3)x+3y′=(3x-1)x-1,…(7分)消去x,得y′=(2-3)x′-23+2,故点Q的轨迹方程为y=(2-3)x-23+2…(10分)(3)假设存在这样的直线,∵平行坐标轴的直线显然不满足条件,∴所求直线可设为y=kx+b(k≠0),…(12分)[解法一]∵该直线上的任一点P(x,y),其经变换后得到的点Q(x+3y,3x-y)仍在该直线上,∴3x-y=k(x+3y)+b,即-(3k+1)y=(k-3)x+b,当b≠0时,方程组-(3k+1)=1k-3=k无解,故这样的直线不存在.

…(16分)当b=0时,由-(3k+1)1=k-3k,得3k2+2k-3=0,解得k=33或k=-3,故这样的直线存在,其方程为y=33x或y=-3x,…(18分)[解法二]取直线上一点P(-bk,0),其经变换后的点Q(-bk,-3bk)仍在该直线上,∴-3bk=k(-bk)+b,得b=0,…(14分)故所求直线为y=kx,取直线上一点P(0,k),其经变换后得到的点Q(1+3k,3-k)仍在该直线上.∴3-k=k(1+3k),…(16分)即3k2+2k-3=0,得k=33或k=-3,故这样的直线存在,其方程为y=33x或y=-3x,…(18分)24.某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得间隔数k==16,即每16人抽取一个人.在1~16中随机抽取一个数,如果抽到的是7,则从33~48这16个数中应取的数是(

A.40

B.39

C.38

D.37答案:B25.如图所示,O点在△ABC内部,D、E分别是AC,BC边的中点,且有OA+2OB+3OC=O,则△AEC的面积与△AOC的面积的比为()

A.2

B.

C.3

D.

答案:B26.与

向量

=(2,-1,2)共线且满足方程=-18的向量为()

A.不存在

B.-2

C.(-4,2,-4)

D.(4,-2,4)答案:D27.某个命题与自然数n有关,若n=k(k∈N*)时命题成立,那么可推得当n=k+1时该命题也成立.现已知当n=5时,该命题不成立,那么可推得()

A.当n=6时,该命题不成立

B.当n=6时,该命题成立

C.当n=4时,该命题不成立

D.当n=4时,该命题成立答案:C28.命题“所以奇数的立方是奇数”的否定是()

A.所有奇数的立方不是奇数

B.不存在一个奇数,它的立方不是奇数

C.存在一个奇数,它的立方不是奇数

D.不存在一个奇数,它的立方是奇数答案:C29.半径为R的球内接一个正方体,则该正方体的体积为()A.22RB.4π3R3C.893R3D.193R3答案:∵半径为R的球内接一个正方体,设正方体棱长为a,正方体的对角线过球心,可得正方体对角线长为:a2+a2+a2=2R,可得a=2R3,∴正方体的体积为a3=(2R3)3=83R39,故选C;30.列举两种证明两个三角形相似的方法.答案:三边对应成比例,两个三角形相似,两边对应成比例且夹角相等,两个三角形相似.31.已知a为常数,a>0且a≠1,指数函数f(x)=ax和对数函数g(x)=logax的图象分别为C1与C2,点M在曲线C1上,线段OM(O为坐标原点)与曲线C1的另一个交点为N,若曲线C2上存在一点P,且点P的横坐标与点M的纵坐标相等,点P的纵坐标是点N的横坐标2倍,则点P的坐标为______.答案:设点M的坐标为(m,am),点N的坐标为(n,an)∵点P的横坐标与点M的纵坐标相等∴点P的坐标为(am,m)∵点P的纵坐标是点N的横坐标2倍,∴m=2n而O、M、N三点共线则amm=ann=

am2m2解得:am=4即m=loga4∴点P的坐标为(4,loga4)故为:(4,loga4)32.在极坐标系中,直线l经过圆ρ=2cosθ的圆心且与直线ρcosθ=3平行,则直线l与极轴的交点的极坐标为______.答案:由ρ=2cosθ可知此圆的圆心为(1,0),直线ρcosθ=3是与极轴垂直的直线,所以所求直线的极坐标方程为ρcosθ=1,所以直线l与极轴的交点的极坐标为(1,0).故为:(1,0).33.已知空间四点A(4,1,3),B(2,3,1),C(3,7,-5),D(x,-1,3)共面,则x的值为[

]A

.4

B.1

C.10

D.11答案:D34.已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则下列命题中为真命题的是()A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)答案:不难判断命题p为真命题,命题q为假命题,从而?p为假命题,?q为真命题,所以A、B、C均为假命题,故选D.35.行驶中的汽车,在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离s(m)与汽车的车速v(km/h)满足下列关系:s=(n为常数,且n∈N),做了两次刹车试验,有关试验数据如图所示,其中,

(1)求n的值;

(2)要使刹车距离不超过12.6m,则行驶的最大速度是多少?答案:解:(1)依题意得,解得,又n∈N,所以n=6;(2)s=,因为v≥0,所以0≤v≤60,即行驶的最大速度为60km/h。36.给定两个长度为1且互相垂直的平面向量OA和OB,点C在以O为圆心的圆弧AB上变动.若OC=2xOA+yOB,其中x,y∈R,则x+y的最大值是______.答案:由题意|OC|=1,即4x2+y2=1,令x=12cosθ,y=sinθ则x+y=12cosθ+sinθ=(12)2+1sin(θ+φ)≤52故x+y的最大值是52故为:5237.如图,O是正方形ABCD对角线的交点,四边形OAED,OCFB都是正方形,在图中所示的向量中:

(1)与AO相等的向量有

______;

(2)写出与AO共线的向量有

______;

(3)写出与AO的模相等的向量有

______;

(4)向量AO与CO是否相等?答

______.答案:(1)与AO相等的向量有BF(2)与AO共线的向量有DE,CO,BF(3)与AO的模相等的向量有DE,

DO,AE,CO,CF,BF,BO(4)模相等,方向相反故AO与CO不相等38.下列给变量赋值的语句正确的是()

A.5=a

B.a+2=a

C.a=b=4

D.a=2*a答案:D39.已知|a|<1,|b|<1,求证:<1.答案:证明略解析:∵<1<1a2+b2+2ab<1+2ab+a2b2a2b2-a2-b2+1>0

(a2-1)(b2-1)>0又|a|<1,|b|<1,∴(a2-1)(b2-1)>0.∴原不等式成立.40.若事件与相互独立,且,则的值等于A.B.C.D.答案:B解析:事件“”表示的意义是事件与同时发生,因为二者相互独立,根据相互独立事件同时发生的概率公式得:.41.若点M,A,B,C对空间任意一点O都满足则这四个点()

A.不共线

B.不共面

C.共线

D.共面答案:D42.为研究变量x和y的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归直线方程l1和l2,两人计算知.x相同,.y也相同,下列正确的是()A.l1与l2一定重合B.l1与l2一定平行C.l1与l2相交于点(.x,.y)D.无法判断l1和l2是否相交答案:∵两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,∴两组数据的样本中心点是(.x,.y)∵回归直线经过样本的中心点,∴l1和l2都过(.x,.y).故选C.43.半径分别为1和2的两圆外切,作半径为3的圆与这两圆均相切,一共可作()个.

A.2

B.3

C.4

D.5答案:D44.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是(

A.

B.

C.

D.答案:B45.与原数据单位不一样的是()

A.众数

B.平均数

C.标准差

D.方差答案:D46.已知点A(1-t,1-t,t),B(2,t,t),则A、B两点距离的最小值为()

A.

B.

C.

D.2答案:A47.直线kx-y+1=3k,当k变动时,所有直线都通过定点[

]

A.(3,1)

B.(0,1)

C.(0,0)

D.(2,1)答案:A48.下列物理量中,不能称为向量的是()A.质量B.速度C.位移D.力答案:既有大小,又有方向的量叫做向量;质量只有大小没有方向,因此质量不是向量.而速度、位移、力既有大小,又有方向,因此它们都是向量.故选A.49.已知直线l1,l2的夹角平分线所在直线方程为y=x,如果l1的方程是ax+by+c=0(ab>0),那么l2的方程是()

A.bx+ay+c=0

B.ax-by+c=0

C.bx+ay-c=0

D.bx-ay+c=0答案:A50.命题“正数的绝对值等于它本身”的逆命题是______.答案:将命题“正数的绝对值等于它本身”改写为“若一个数是正数,则其绝对值等于它本身”,所以逆命题是“若一个数的绝对值等于它本身,则这个数是正数”,即“绝对值等于它本身的数是正数”.故为:“绝对值等于它本身的数是正数”.第2卷一.综合题(共50题)1.已知M(-2,7)、N(10,-2),点P是线段MN上的点,且PN=-2PM,则P点的坐标为______.答案:设P(x,y),则PN=(10-x,-2-y),PM=(-2-x,7-y),∵PN=-2PM,∴10-x=-2(-2-x)-2-y=-2(7-y),∴x=2y=4∴P点的坐标为(2,4).故为:(2,4)2.平面上一动点到两定点距离差为常数2a(a>0)的轨迹是否是双曲线,若a>c是否为双曲线?答案:由题意,设两定点间的距离为2c,则2a<2c时,轨迹为双曲线的一支2a=2c时,轨迹为一条射线2a>2c时,无轨迹.3.若点(a,9)在函数y=3x的图象上,则tanaπ6=______.答案:将(a,9)代入到y=3x中,得3a=9,解得a=2.∴tanaπ6=tanπ3=3故为:34.某校对文明班的评选设计了a,b,c,d,e五个方面的多元评价指标,并通过经验公式样S=ab+cd+1e来计算各班的综合得分,S的值越高则评价效果越好,若某班在自测过程中各项指标显示出0<c<d<e<b<a,则下阶段要把其中一个指标的值增加1个单位,而使得S的值增加最多,那么该指标应为()A.aB.bC.cD.d答案:因a,b,cde都为正数,故分子越大或分母越小时,S的值越大,而在分子都增加1的前提下,分母越小时,S的值增长越多,由于0<c<d<e<b<a,分母中d最小,所以c增大1个单位会使得S的值增加最多.故选C.5.命题“若a,b都是奇数,则a+b是偶数”的逆否命题是()A.若a+b不是偶数,则a,b都不是奇数B.若a+b不是偶数,则a,b不都是奇数C.若a+b是偶数,则a,b都是奇数D.若a+b是偶数,则a,b不都是奇数答案:“a,b都是奇数”的否定是“a,b不都是奇数”,“a+b是偶数”的否定是“a+b不是偶数”,故命题“若a,b都是奇数,则a+b是偶数”的逆否命题是“若a+b不是偶数,则a,b不都是奇数”.故选B.6.若a=0.30.2,b=20.4,c=0.30.3,则a,b,c三个数的大小关系是:______(用符号“>”连接这三个字母)答案:∵1=0.30>0.30.2>0.30.3,又∵20.4>20=1,∴b>a>c.故为:b>a>c.7.设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是()A.4B.6C.8D.12答案:抛物线y2=8x的准线为x=-2,∵点P到y轴的距离是4,∴到准线的距离是4+2=6,根据抛物线的定义可知点P到该抛物线焦点的距离是6故选B8.如图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,中间的数字表示得分的十位数,下列对乙运动员的判断错误的是()A.乙运动员得分的中位数是28B.乙运动员得分的众数为31C.乙运动员的场均得分高于甲运动员D.乙运动员的最低得分为0分答案:根据题意,可得甲的得分数据:8,14,16,13,23,26,28,30,30,39可得甲得分的平均数是22.7乙的得分数据:12,15,25,24,21,31,36,31,37,44可得乙得分的平均数是27.6,31出现了两次,可得乙得分的众数是1将乙得分数据按从小到大的顺序排列,位于中间的两个数是25和31,故中位数是12(25+31)=28由以上的数据,可得:乙运动员得分的中位数是28,A项是正确的;乙运动员得分的众数为31,B项是正确的;乙运动员的场均得分高于甲运动员,C各项是正确的.而D项因为乙运动员的得分没有0分,故D项错误故选:D9.在7块并排、形状大小相同的试验田上进行施化肥量对水稻产量影响的试验,得到如下表所示的一组数据(单位:kg).

(1)画出散点图;

(2)求y关于x的线性回归方程;

(3)若施化肥量为38kg,其他情况不变,请预测水稻的产量.答案:(1)根据题表中数据可得散点图如下:(2)∵.x=15+20+25+30+35+40+457=30,.y=330+345+365+405+445+450+4557=399.3∴利用最小二乘法得到b=4.75,a=257∴根据回归直线方程系数的公式计算可得回归直线方程是?y=4.75x+257.(3)把x=38代入回归直线方程得y=438,可以预测,施化肥量为38kg,其他情况不变时,水稻的产量是438kg.10.若图中直线l1,l2,l3的斜率分别为k1,k2,k3,则()A.k2<k1<k3B.k3<k2<k1C.k2<k3<k1D.k1<k3<k2答案:∵直线l2的倾斜角为钝角,∴k2<0.直线l1,l3的倾斜角为锐角,且直线l1的倾斜角小于l3的倾斜角,∴0<k1<k3.故选A.11.若A(-2,3),B(3,-2),C(,m)三点共线

则m的值为()

A.

B.-

C.-2

D.2答案:A12.一个试验要求的温度在69℃~90℃之间,用分数法安排试验进行优选,则第一个试点安排在(

)。(取整数值)答案:82°13.已知a,b,c∈R+,且a+b+c=1,求3a+1+3b+1+3c+1的最大值.答案:根据柯西不等式,可得(3a+1+3b+1+3c+1)2=(1?3a+1+1?3b+1+1?3c+1)2≤(12+12+12)[(3a+1)2+(3b+1)2+(3c+1)2]=3[3(a+b+c)+3]=18当且仅当3a+1=3b+1=3c+1,即a=b=c=13时,(3a+1+3b+1+3c+1)2的最大值为18因此,3a+1+3b+1+3c+1的最大值为18=3214.一位母亲记录了她的儿子3~9岁的身高数据,并由此建立身高与年龄的回归模型为y=7.19x+73.93,用这个模型预测她的儿子10岁时的身高,则正确的叙述是()A.身高一定是145.83

cmB.身高在145.83

cm以上C.身高在145.83

cm左右D.身高在145.83

cm以下答案:∵身高与年龄的回归模型为y=7.19x+73.93.∴可以预报孩子10岁时的身高是y=7.19x+73.93.=7.19×10+73.93=145.83则她儿子10岁时的身高在145.83cm左右.故选C.15.椭圆x225+y29=1的两焦点为F1,F2,一直线过F1交椭圆于P、Q,则△PQF2的周长为______.答案:∵a=5,由椭圆第一定义可知△PQF2的周长=4a.∴△PQF2的周长=20.,故为20.16.点B是点A(1,2,3)在坐标平面yOz内的正投影,则|OB|等于()

A.

B.

C.

D.答案:B17.椭圆x216+y27=1上的点M到左准线的距离为53,则点M到左焦点的距离为()A.8B.5C.274D.54答案:根据椭圆的第二定义可知M到左焦点F1的距离与其到左准线的距离之比为离心率,依题意可知a=4,b=7∴c=3∴e=ca=34,∴根据椭圆的第二定义有:MF

1d=34∴M到左焦点的距离为MF1=53×34=54故选D.18.附加题选做题B.(矩阵与变换)

设矩阵A=m00n,若矩阵A的属于特征值1的一个特征向量为10,属于特征值2的一个特征向量为01,求实数m,n的值.答案:由题意得m00n10=110,m00n01=201,…6分化简得m=10?n=00?m=0n=2所以m=1n=2.…10分19.过点A(a,4)和B(-1,a)的直线的倾斜角等于45°,则a的值是______.答案:∵过点A(a,4)和B(-1,a)的直线的倾斜角等于45°,∴kAB=a-4-1-a=tan45°=1,∴a=32.故为:32.20.棱长为1的正方体ABCD-A1B1C1D1的8个顶点都在球O的表面上,E,F分别是棱AA1,DD1的中点,则直线EF被球O截得的线段长为()

A.

B.1

C.1+

D.答案:D21.平面向量a与b的夹角为60°,a=(2,0),|b|=1

则|a+2b|=______.答案:∵平面向量a与b的夹角为60°,a=(2,0),|b|=1

∴|a+2b|=(a+2b)2=a2+4×a?b+4b2=4+4×2×1×cos60°+4=23.故为:23.22.某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为()A.12B.16C.24D.32答案:将空位插到三个人中间,三个人有两个中间位置和两个两边位置就是将空位分为四部分,五个空位四分只有1,1,1,2空位五差别,只需要空位2分别占在四个位置就可以有四种方法,另外三个人排列A33=6根据分步计数可得共有4×6=24故选C.23.如图所示,已知点P在正方体ABCD—A′B′C′D′的对角线

BD′上,∠PDA=60°.

(1)求DP与CC′所成角的大小;

(2)求DP与平面AA′D′D所成角的大小.答案:(1)DP与CC′所成的角为45°(2)DP与平面AA′D′D所成的角为30°解析:如图所示,以D为原点,DA为单位长度建立空间直角坐标系D—xyz.则=(1,0,0),=(0,0,1).连接BD,B′D′.在平面BB′D′D中,延长DP交B′D′于H.设="(m,m,1)"(m>0),由已知〈,〉=60°,由·=||||cos〈,〉,可得2m=.解得m=,所以=(,,1).(1)因为cos〈,〉==,所以〈,〉=45°,即DP与CC′所成的角为45°.(2)平面AA′D′D的一个法向量是=(0,1,0).因为cos〈,〉==,所以〈,〉=60°,可得DP与平面AA′D′D所成的角为30°.24.

008年北京成功举办了第29届奥运会,中国取得了51金、21银、28铜的骄人成绩.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷赛前准备用12000元预定15张下表中球类比赛的门票:

比赛项目

票价(元/场)

篮球

1000

足球

800

乒乓球

500

若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票数与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,则可以预订男篮门票数为

A.2

B.3

C.4

D.5

答案:D25.已知向量,,,则(

)A.B.C.5D.25答案:C解析:将平方即可求得C.26.在平行四边形ABCD中,对角线AC与BD交于点O,AB+AD=λAO,则λ=______.答案:∵四边形ABCD为平行四边形,对角线AC与BD交于点O,∴AB+AD=AC,又O为AC的中点,∴AC=2AO,∴AB+AD=2AO,∵AB+AD=λAO,∴λ=2.故为:2.27.已知△ABC和点M满足.若存在实数使得成立,则m=()

A.2

B.3

C.4

D.5答案:B28.种植两株不同的花卉,它们的存活率分别为p和q,则恰有一株存活的概率为(

)A.p+q-2pqB.p+q-pqC.p+qD.pq答案:A解析:恰有一株存活的概率为p(1-q)+(1-p)q=p+q-2pq。29.已知点A(1,3),B(4,-1),则与向量同方向的单位向量为()

A.(,-)

B.(,-)

C.(-,)

D.(-,)答案:A30.参数方程中当t为参数时,化为普通方程为(

)。答案:x2-y2=131.已知△ABC,D为AB边上一点,若AD=2DB,CD=13CA+λCB,则λ=

.答案:∵AD=2DB,CD=13CA+λCB,CD=CA+AD=CA+23AB=CA+23(

CB-CA)=13CA+23CB,∴λ=23,故为:23.32.曲线的极坐标方程ρ=4sinθ化为直角坐标方程为______.答案:将原极坐标方程ρ=4sinθ,化为:ρ2=4ρsinθ,化成直角坐标方程为:x2+y2-4y=0,即x2+(y-2)2=4.故为:x2+(y-2)2=4.33.以抛物线y2=2px(p>0)的焦半径|PF|为直径的圆与y轴位置关系是______.答案:根据抛物线定义可知|PF|=p2,而圆的半径为p2,圆心为(p2,0),|PF|正好等于所求圆的半径,进而可推断圆与y轴位置关系是相切.34.用反证法证明:“a>b”,应假设为()

A.a>b

B.a<b

C.a=b

D.a≤b答案:D35.已知方程x2+y2+4x-2y-4=0,则x2+y2的最大值是()A.95B.45C.14-65D.14+65答案:由方程x2+y2+4x-2y-4=0得到圆心为(-2,1),半径为3,设圆上一点为(x,y)圆心到原点的距离是(-2)2+1

2=5圆上的点到原点的最大距离是5+3故x2+y2的最大值是为(5+3)2=14+65故选D36.方程2x2+ky2=1表示的曲线是长轴在y轴的椭圆,则实数k的范围是()A.(0,+∞)B.(2,+∞)C.(0,2)D.(2,0)答案:椭圆方程化为x212+y21k=1.焦点在y轴上,则1k>12,即k<2.又k>0,∴0<k<2.故选C.37.若向量a、b的夹角为150°,|a|=3,|b|=4,则|2a+b|=______.答案:|2a+b|=(2a+b)2=4a2+b2+4a?b=12+16+4×3×4×cos150°=2.故为:238.从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为()

A.432

B.288

C.216

D.108答案:C39.为提高广东中小学生的健康素质和体能水平,广东省教育厅要求广东各级各类中小学每年都要在体育教学中实施“体能素质测试”,测试总成绩满分为100分.根据广东省标准,体能素质测试成绩在[85,100]之间为优秀;在[75,85]之间为良好;在[65,75]之间为合格;在(0,60)之间,体能素质为不合格.

现从佛山市某校高一年级的900名学生中随机抽取30名学生的测试成绩如下:

65,84,76,70,56,81,87,83,91,75,81,88,80,82,93,85,90,77,86,81,83,82,82,64,79,86,68,71,89,96.

(1)在答题卷上完成频率分布表和频率分布直方图,并估计该校高一年级体能素质为优秀的学生人数;

(2)在上述抽取的30名学生中任取2名,设ξ为体能素质为优秀的学生人数,求ξ的分布列和数学期望(结果用分数表示);

(3)请你依据所给数据和上述广东省标准,对该校高一学生的体能素质给出一个简短评价.答案:(1)由已知的数据可得频率分布表和频率分布直方图如下:

分组

频数

频率[55,60)

1

130[60,65)

1

130[65,70)

2

230[70,75)

2

230[75,80)

4

430[80,85)

10

1030[85,90)

6

630[90,95)

3

330[95,100)

1

130根据抽样,估计该校高一学生中体能素质为优秀的有1030×900=300人

…(5分)(2)ξ的可能取值为0,1,2.…(6分)P(ξ=0)=C220C230=3887,P(ξ=1)=C120C110C230=4087,P(ξ=2)=C210C230=987

…(8分)∴ξ分布列为:ξ012P38874087987…(9分)所以,数学期望Eξ=0×3887+1×4087+2×987=5887=23.…(10分)(3)根据抽样,估计该校高一学生中体能素质为优秀有1030×900=300人,占总人数的13,体能素质为良好的有1430×900=420人,占总人数的715,体能素质为优秀或良好的共有2430×900=720人,占总人数的45,但体能素质为不合格或仅为合格的共有630×900=180人,占总人数的15,说明该校高一学生体能素质良好,但仍有待进一步提高,还需积极参加体育锻炼.40.设A、B为两个事件,若事件A和B同时发生的概率为310,在事件A发生的条件下,事件B发生的概率为12,则事件A发生的概率为______.答案:根据题意,得∵P(A|B)=P(AB)P(B),P(AB)=310,P(A|B)=12∴12=310P(B),解得P(B)=31012=35故为:3541.直线(3+4)x+(4-6)y-14-2=0(∈R)恒过定点A,则点A的坐标为(

)。答案:(2,-1)42.定义:若函数f(x)对于其定义域内的某一数x0,有f(x0)=x0,则称x0是f(x)的一个不动点。

已知函数f(x)=ax2+(b+1)x+b-1(a≠0)。

(1)当a=1,b=-2时,求函数f(x)的不动点;

(2)若对任意的实数b,函数f(x)恒有两个不动点,求a的取值范围;

(3)在(2)的条件下,若y=f(x)图象上两个点A、B的横坐标是函数f(x)的不动点,且A、B的中点C在函数g(x)=-x+的图象上,求b的最小值。

(参考公式:A(x1,y1),B(x2,y2)的中点坐标为)

答案:解:(1)f(x)=x2-x-3,由x2-x-3=0,解得x=3或x=-1,所以所求的不动点为-1或3。(2)令ax2+(b+1)x+b+1=x,则ax2+bx+b-1=0,①由题意,方程①恒由两个不等实根,所以△=b2-4a(b-1)>0,即b2-4ab+4a>0对任意的b∈R恒成立,则△′=16a2-16a<0,故0(3)依题意,设,则AB中点C的坐标为,又AB的中点在直线上,∴,∴,又x1,x2是方程①的两个根,∴,∴,,∴,∴当时,bmin=-1。</a<1。43.如图,已知PA是圆O的切线,切点为A,PO交圆O于B、C两点,PA=3,PB=1,则∠C=______.答案:∵PA切圆O于A点,PBC是圆O的割线∴PA2=PB?PC,可得(3)2=1×PC,得PC=3∵点O在BC上,即BC是圆O的直径,∴∠ABC=90°,由弦切角定理,得∠PAB=∠C,∠PAC=90°+∠C∴△PAC中,根据正弦定理,得PAsinC=PCsin∠PAC即3sinC=3sin(90°+C),整理得tanC=33∵∠C是锐角,∴∠C=30°.故为:30°44.已知x,y的取值如下表:

x0134y2.24.34.86.7从散点图分析,y与x线性相关,则回归方程为.y=bx+a必过点______.答案:.X=0+1+3+44=2,.Y=2.2+4.3+4.8+6.74=92,故样本中心点的坐标为(2,92).故为:(2,92).45.过点A(-1,4)作圆C:(x-2)2+(y-3)2=1的切线l,求切线l的方程.答案:设方程为y-4=k(x+1),即kx-y+k+4=0∴d=|2k-3+k+4|k2+1=1∴4k2+3k=0∴k=0或k=-34∴切线l的方程为y=4或3x+4y-13=046.己知△ABC的外心、重心、垂心分别为O,G,H,若,则λ=()

A.3

B.2

C.

D.答案:A47.若A=1324,B=-123-3,则3A-B=______.答案:∵A=1324,B=-123-3,则3A-B=31324--123-3=39612--123-3=47315.故为:47315.48.过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是(

A.4x+3y-13=0

B.4x-3y-19=0

C.3x-4y-16=0

D.3x+4y-8=0答案:A49.(坐标系与参数方程选做题)过点(2,π3)且平行于极轴的直线的极坐标方程为______.答案:法一:先将极坐标化成直角坐标表示,(2,π3)化为(1,3),过(1,3)且平行于x轴的直线为y=3,再化成极坐标表示,即ρsinθ=3.法二:在极坐标系中,直接构造直角三角形由其边角关系得方程ρsinθ=3.设A(ρ,θ)是直线上的任一点,A到极轴的距离AH=2sinπ3=3,直接构造直角三角形由其边角关系得方程ρsinθ=3.故为:ρsinθ=350.已知抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l,过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p=(

)。答案:2第3卷一.综合题(共50题)1.已知△ABC和点M满足.若存在实数使得成立,则m=()

A.2

B.3

C.4

D.5答案:B2.已知m,n为正整数.

(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;

(Ⅱ)对于n≥6,已知(1-1n+3)n<12,求证(1-mn+3)n<(12)m,m=1,2…,n;

(Ⅲ)求出满足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整数n.答案:解法1:(Ⅰ)证:用数学归纳法证明:当x=0时,(1+x)m≥1+mx;即1≥1成立,x≠0时,证:用数学归纳法证明:(ⅰ)当m=1时,原不等式成立;当m=2时,左边=1+2x+x2,右边=1+2x,因为x2≥0,所以左边≥右边,原不等式成立;(ⅱ)假设当m=k时,不等式成立,即(1+x)k≥1+kx,则当m=k+1时,∵x>-1,∴1+x>0,于是在不等式(1+x)k≥1+kx两边同乘以1+x得(1+x)k•(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2≥1+(k+1)x,所以(1+x)k+1≥1+(k+1)x.即当m=k+1时,不等式也成立.综合(ⅰ)(ⅱ)知,对一切正整数m,不等式都成立.(Ⅱ)证:当n≥6,m≤n时,由(Ⅰ)得(1-1n+3)m≥1-mn+3>0,于是(1-mn+3)n≤(1-1n+3)nm=[(1-1n+3)n]m<(12)m,m=1,2,n.(Ⅲ)由(Ⅱ)知,当n≥6时,(1-1n+3)n+(1-2n+3)n++(1-nn+3)n<12+(12)^++(12)n=1-12n<1,∴(n+2n+3)n+(n+1n+3)n++(3n+3)n<1.即3n+4n+…+(n+2)n<(n+3)n.即当n≥6时,不存在满足该等式的正整数n.故只需要讨论n=1,2,3,4,5的情形:当n=1时,3≠4,等式不成立;当n=2时,32+42=52,等式成立;当n=3时,33+43+53=63,等式成立;当n=4时,34+44+54+64为偶数,而74为奇数,故34+44+54+64≠74,等式不成立;当n=5时,同n=4的情形可分析出,等式不成立.综上,所求的n只有n=2,3.解法2:(Ⅰ)证:当x=0或m=1时,原不等式中等号显然成立,下用数学归纳法证明:当x>-1,且x≠0时,m≥2,(1+x)m>1+mx.①(ⅰ)当m=2时,左边=1+2x+x2,右边=1+2x,因为x≠0,所以x2>0,即左边>右边,不等式①成立;(ⅱ)假设当m=k(k≥2)时,不等式①成立,即(1+x)k>1+kx,则当m=k+1时,因为x>-1,所以1+x>0.又因为x≠0,k≥2,所以kx2>0.于是在不等式(1+x)k>1+kx两边同乘以1+x得(1+x)k•(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,所以(1+x)k+1>1+(k+1)x.即当m=k+1时,不等式①也成立.综上所述,所证不等式成立.(Ⅱ)证:当n≥6,m≤n时,∵(1-1n+3)n<12,∴[(1-1n+3)m]n<(12)m,而由(Ⅰ),(1-1n+3)m≥1-mn+3>0,∴(1-mn+3)n≤[(1-1n+3)m]n<(12)m.(Ⅲ)假设存在正整数n0≥6使等式3n0+4n0++(n0+2)n0=(n0+3)n0成立,即有(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=1.②又由(Ⅱ)可得(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=(1-n0n0+3)n0+(1-n0-1n0+3)n0++(1-1n0+3)n0<(12)n0+(12)n0-1++12=1-12n0<1,与②式矛盾.故当n≥6时,不存在满足该等式的正整数n.下同解法1.3.以下命题:

①两个共线向量是指在同一直线上的两个向量;

②共线的两个向量互相平行;

③共面的三个向量是指在同一平面内的三个向量;

④共面的三个向量是指平行于同一平面的三个向量.

其中正确命题的序号是______.答案:解①根据共面与共线向量的定义可知①错误.②根据共线向量的定义可知②正确.③根据共面向量的定义可知③错误.④根据共面向量的定义可知④正确.故为:②④.4.已知:如图,⊙O1与⊙O2外切于C点,AB一条外公切线,A、B分别为切点,连接AC、BC.设⊙O1的半径为R,⊙O2的半径为r,若tan∠ABC=,则的值为()

A.

B.

C.2

D.3

答案:C5.在极坐标系下,圆C:ρ2+4ρsinθ+3=0的圆心坐标为()

A.(2,0)

B.

C.(2,π)

D.答案:D6.若圆台的上下底面半径分别是1和3,它的侧面积是两底面面积和的2倍,则圆台的母线长是()A.2B.2.5C.5D.10答案:设母线长为l,则S侧=π(1+3)l=4πl.S上底+S下底=π?12+π?32=10π.据题意4πl=20π即l=5,故选C.7.已知直线的倾斜角为α,且cosα=45,则此直线的斜率是______.答案:∵直线l的倾斜角为α,cosα=45,∴α的终边在第一象限,故sinα=35故l的斜率为tanα=sinαcosα=34故为:348.已知随机变量X满足D(X)=2,则D(3X+2)=()

A.2

B.8

C.18

D.20答案:C9.圆x2+y2-4x=0,在点P(1,)处的切线方程为()

A.x+y-2=0

B.x+y-4=0

C.x-y+4=0

D.x-y+2=0答案:D10.“所有10的倍数都是5的倍数,某数是10的倍数,则该数是5的倍数,”上述推理()

A.完全正确

B.推理形式不正确

C.错误,因为大小前提不一致

D.错误,因为大前提错误答案:A11.如图,平行四边形ABCD中,AE:EB=1:2,若△AEF的面积等于1cm2,则△CDF的面积等于______cm2.答案:平行四边形ABCD中,有△AEF~△CDF∴△AEF与△CDF的面积之比等于对应边长之比的平方,∵AE:EB=1:2,∴AE:CD=1:3∵△AEF的面积等于1cm2,∴∵△CDF的面积等于9cm2故为:912.若方程x2+y2+kx+2y+k2-11=0表示的曲线是圆,则实数k的取值范围是______.如果过点(1,2)总可以作两条直线和圆x2+y2+kx+2y+k2-11=0相切,则实数k的取值范围是______.答案:方程x2+y2+kx+2y+k2-11=0即(x+k2)2+(y+1)2=48-3k24,由于它表示的曲线是圆,∴48-3k24>0,解得-4<k<4.圆x2+y2+kx+2y+k2-11=0即(x+k2)2+(y+1)2=48-3k24.如果过点(1,2)总可以作两条直线和圆x2+y2+kx+2y+k2-11=0相切,则点(1,2)一定在圆x2+y2+kx+2y+k2-11=0的外部,∴48-3k24>0,且(1+k2)2+(2+1)2>48-3k24.解得-4<k<-2,或1<k<4.故为:(-4,4),(-4,-2)∪(1,4).13.在极坐标系中,曲线p=4cos(θ-π3)上任意两点间的距离的最大值为______.答案:将原极坐标方程p=4cos(θ-π3),化为:ρ=2cosθ+23sinθ,∴ρ2=2ρcosθ+23ρsinθ,化成直角坐标方程为:x2+y2-2x-23y=0,是一个半径为2圆.圆上两点间的距离的最大值即为圆的直径,故填:4.14.已知函数f(x)=(12)x

x≥4

f(x+1)

x<4

则f(2+log23)的值为______.答案:∵2+log23∈(2,3),∴f(2+log23)=f(2+log23+1)=f(3+log23)=(12)3+log23=(12)3(12)log23=18×13=124故为12415.一个凸多面体的各个面都是四边形,它的顶点数是16,则它的面数为()

A.14

B.7

C.15

D.不能确定答案:A16.设a=log132,b=log1213,c=(12)0.3,则()A.a<b<cB.a<c<bC.b<c<aD.b<a<c答案:解;∵a=log132<log131=0,b=log1213>log1212=1,c=(12)0.3∈(0,1)∴b>c>a.故选B.17.设A、B、C表示△ABC的三个内角的弧度数,a,b,c表示其对边,求证:aA+bB+cCa+b+c≥π3.答案:证明:法一、不妨设A>B>C,则有a>b>c由排序原理:顺序和≥乱序和∴aA+bB+cC≥aB+bC+cAaA+bB+cC≥aC+bA+cBaA+bB+cC=aA+bB+cC上述三式相加得3(aA+bB+cC)≥(A+B+C)(a+b+c)=π(a+b+c)∴aA+bB+cCa+b+c≥π3.法二、不妨设A>B>C,则有a>b>c,由排序不等式aA+bB+cC3≥A+B+C3?a+b+c3,即aA+bB+cC≥π3(a+b+c),∴aA+bB+cCa+b+c≥π3.18.若不等式(﹣1)na<2+对任意n∈N*恒成立,则实数a的取值范围是

[

]A.[﹣2,)

B.(﹣2,)

C.[﹣3,)

D.(﹣3,)答案:A19.两条平行直线3x+4y-12=0与ax+8y+11=0之间的距离为(

A.

B.

C.7

D.答案:D20.已知当抛物线型拱桥的顶点距水面2米时,量得水面宽8米.当水面升高1米后,水面宽度是______米.答案:由题意,建立如图所示的坐标系,抛物线的开口向下,设抛物线的标准方程为x2=-2py(p>0)∵顶点距水面2米时,量得水面宽8米∴点(4,-2)在抛物线上,代入方程得,p=4∴x2=-8y当水面升高1米后,y=-1代入方程得:x=±22∴水面宽度是42米故为:4221.已知平面内的向量a,b,c两两所成的角相等,且|a|=2,|b|=3,|c|=5,则|a+b+c|的值的集合为______.答案:设平面内的向量a,b,c两两所成的角为α,|a+b+c|2=4+9+25+12cosα+20cosα+30cosα=38+62cosα,当α=0°时,|a+b+c|2=100,|a+b+c|=10,当α=120°时,|a+b+c|2=7,|a+b+c|=7.所以,|a+b+c|的值的集合为{7,10}.故为:{7,10}.22.平面向量与的夹角为60°,=(1,0),||=1,则|+2|=(

A.7

B.

C.4

D.12答案:B23.已知一直线的斜率为3,则这条直线的倾斜角是()A.30°B.45°C.60°D.90°答案:设直线的倾斜角为α,由直线的斜率为3,得到:tanα=3,又α∈(0,180°),所以α=60°.故选C24.(选做题)(几何证明选讲选做题)如图,直角三角形ABC中,∠B=90°,AB=4,以BC为直径的圆交AC边于点D,AD=2,则∠C的大小为______.答案:∵∠B=90°,AB=4,BC为圆的直径∴AB与圆相切,由切割线定理得,AB2=AD?AC∴AC=8故∠C=30°故为:30°25.已知大于1的正数x,y,z满足x+y+z=33.

(1)求证:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32.

(2)求1log3x+log3y+1log3y+log3z+1log3z+log3x的最小值.答案:(1)由柯西不等式得,(x2x+2y+3z+y2y+2z+3z+z2z+2x+3y)[(x+2y+3z)+(y+2z+3x)+(z+2x+3y)]≥(x+y+z)2=27得:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32;(2)∵1log3x+log3y+1log3y+log3z+1log3z+log3x=1log3(xy)+1log3(yz)+1log3(zx),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx)),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx))≥9所以,(1log3(xy)+1log3(yz)+1log3(zx))≥9(log3(xy)+log3(yz)+log3(zx))=92log3(xyz),又∵33=x+y+z≥33xyz.∴xyz≤33.∴log3xyz≤32.得92log3xyz≥92×23=3所以,1log3x+log3y+1log3y+log3z+1log3z+log3x≥3当且仅当x=y=z=3时,等号成立.故所求的最小值是3.26.|a|=4,a与b的夹角为30°,则a在b方向上的投影为______.答案:a在b方向上的投影为|a|cos30°=4×32=23故为:2327.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有()A.1条B.2条C.3条D.4条答案:分别以A、B为圆心,以1、2为半径作圆,两圆的公切线有两条,即为所求.故选B.28.某学校为了解该校1200名男生的百米成绩(单位:秒),随机选择了50名学生进行调查.如图是这50名学生百米成绩的频率分布直方图.根据样本的频率分布,估计这1200名学生中成绩在[13,15](单位:秒)内的人数大约是______.答案:∵由图知,前面两个小矩形的面积=0.02×1+0.18×1=0.2,即频率,∴1200名学生中成绩在[13,15](单位:s)内的人数大约是0.2×1200=240.故为240.29.设双曲线的焦点在x轴上,两条渐近线为y=±12x,则双曲线的离心率e=______.答案:依题意可知ba=12,求得a=2b∴c=a2+b2=5b∴e=ca=52故为52.30.“a=0”是“复数z=a+bi(a,b∈R)为纯虚数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:依题意,复数z=a+bi(a,b∈R)为纯虚数,?a=0且b≠0,∴“a=0”是“复数z=a+bi(a,b∈R)为纯虚数”的必要不充分条件,故选B.31.已知直线l1:(k-3)x+(4-k)y+1=0,与l2:2(k-3)x-2y+3=0,平行,则k的值是______.答案:当k=3时两条直线平行,当k≠3时有2=-24-k≠3

所以

k=5故为:3或5.32.已知f(x)=2x,g(x)=3x.

(1)当x为何值时,f(x)=g(x)?

(2)当x为何值时,f(x)>1?f(x)=1?f(x)<1?

(3)当x为何值时,g(x)>3?g(x)=3?g(x)<3?答案:(1)作出函数f(x),g(x)的图象,如图所示.∵f(x),g(x)的图象都过点(0,1),且这两个图象只有一个公共点,∴当x=0时,f(x)=g(x)=1.(2)由图可知,当x>0时,f(x)>1;当x=0时,f(x)=1;当x<0时,f(x)<1.(3)由图可知:当x>1时,g(x)>3;当x=1时,g(x)=3;当x<1时,g(x)<3.33.口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以ξ表示取出的球的最大号码,则Eξ的值是()A.4B.4.5C.4.75D.5答案:由题意,ξ的取值可以是3,4,5ξ=3时,概率是1C35=110ξ=4时,概率是C23C35=310(最大的是4其它两个从1、2、3里面随机取)ξ=5时,概率是C24C35=610(最大的是5,其它两个从1、2、3、4里面随机取)∴期望Eξ=3×110+4×310+5×610=4.5故选B.34.方程y=ax+b和a2x2+y2=b2(a>b>1)在同一坐标系中的图形可能是()A.

B.

C.

D.

答案:∵a>b>1,∴方程y=ax+b的图象与y轴交于y轴的正半轴,且函数是增函数,由此排除选项B和D,∵a>b>1,a2x2+y2=b2?x2(ba)2+y2b2=1,∴椭圆焦点在y轴,由此排除A.故选C.35.设复数z=lg(m2-2m-2)+(m2+3m+2)i,试求实数m的取值范围,使得:

(1)z是纯虚数;

(2)z是实数;

(3)z对应的点位于复平面的第二象限.答案:(1)若z=lg(m2-2m-2)+(m2+3m+2)i是纯虚数,则可得lg(m2-2m-2)=0m2+3m+2≠0,即m2-2m-2=1m2+3m+2≠0,解之得m=3(舍去-1);…(3分)(2)若z=lg(m2-2m-2)+(m2+3m+2)i是实数,则可得m2+3m+2=0,解之得m=-1或m=-2…(6分)(3)∵z=lg(m2-2m-2)+(m2+3m+2)i对应的点坐标为(lg(m2-2m-2),m2+3m+2)∴若该对应点位于复平面的第二象限,则可得lg(m2-2m-2)<0m2+3m+2>0,即0<m2-2m-2<1m2+3m+2>0,解之得-1<m<1-3或1+3<m<3.…(10分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论