2022届山西省临汾一中、翼城中学高考考前提分数学仿真卷含解析_第1页
2022届山西省临汾一中、翼城中学高考考前提分数学仿真卷含解析_第2页
2022届山西省临汾一中、翼城中学高考考前提分数学仿真卷含解析_第3页
2022届山西省临汾一中、翼城中学高考考前提分数学仿真卷含解析_第4页
2022届山西省临汾一中、翼城中学高考考前提分数学仿真卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有()A.12种 B.18种 C.24种 D.64种2.若执行如图所示的程序框图,则输出的值是()A. B. C. D.43.若,则,,,的大小关系为()A. B.C. D.4.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}时,A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.∅5.某几何体的三视图如右图所示,则该几何体的外接球表面积为()A. B.C. D.6.已知数列是公比为的正项等比数列,若、满足,则的最小值为()A. B. C. D.7.在复平面内,复数z=i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复数是()A. B. C. D.8.已知实数,满足约束条件,则的取值范围是()A. B. C. D.9.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有()A.2对 B.3对C.4对 D.5对10.记个两两无交集的区间的并集为阶区间如为2阶区间,设函数,则不等式的解集为()A.2阶区间 B.3阶区间 C.4阶区间 D.5阶区间11.函数图像可能是()A. B. C. D.12.复数的虚部为()A.—1 B.—3 C.1 D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆与双曲线有相同的焦点、,其中为左焦点.点为两曲线在第一象限的交点,、分别为曲线、的离心率,若是以为底边的等腰三角形,则的取值范围为________.14.已知函数是偶函数,直线与函数的图象自左向右依次交于四个不同点A,B,C,D.若AB=BC,则实数t的值为_________.15.若,则_________.16.的展开式中的系数为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,,为正数,且,证明:(1);(2).18.(12分)在平面直角坐标系中,直线的参数方程为(为参数).在以原点为极点,轴正半轴为极轴的极坐标系中,圆的方程为.(1)写出直线的普通方程和圆的直角坐标方程;(2)若点坐标为,圆与直线交于两点,求的值.19.(12分)如图,在四面体中,.(1)求证:平面平面;(2)若,二面角为,求异面直线与所成角的余弦值.20.(12分)某中学准备组建“文科”兴趣特长社团,由课外活动小组对高一学生文科、理科进行了问卷调查,问卷共100道题,每题1分,总分100分,该课外活动小组随机抽取了200名学生的问卷成绩(单位:分)进行统计,将数据按照,,,,分成5组,绘制的频率分布直方图如图所示,若将不低于60分的称为“文科方向”学生,低于60分的称为“理科方向”学生.理科方向文科方向总计男110女50总计(1)根据已知条件完成下面列联表,并据此判断是否有99%的把握认为是否为“文科方向”与性别有关?(2)将频率视为概率,现在从该校高一学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中“文科方向”的人数为,若每次抽取的结果是相互独立的,求的分布列、期望和方差.参考公式:,其中.参考临界值:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82821.(12分)在平面直角坐标系中,点是直线上的动点,为定点,点为的中点,动点满足,且,设点的轨迹为曲线.(1)求曲线的方程;(2)过点的直线交曲线于,两点,为曲线上异于,的任意一点,直线,分别交直线于,两点.问是否为定值?若是,求的值;若不是,请说明理由.22.(10分)已知函数.(1)若在处导数相等,证明:;(2)若对于任意,直线与曲线都有唯一公共点,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

根据题意,分2步进行分析:①,将4人分成3组,②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,将剩下的2组全排列,安排其他的2项工作,由分步计数原理计算可得答案.【详解】解:根据题意,分2步进行分析:①,将4人分成3组,有种分法;②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,有2种情况,将剩下的2组全排列,安排其他的2项工作,有种情况,此时有种情况,则有种不同的安排方法;故选:C.【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.2.D【解析】

模拟程序运行,观察变量值的变化,得出的变化以4为周期出现,由此可得结论.【详解】;如此循环下去,当时,,此时不满足,循环结束,输出的值是4.故选:D.【点睛】本题考查程序框图,考查循环结构.解题时模拟程序运行,观察变量值的变化,确定程序功能,可得结论.3.D【解析】因为,所以,因为,,所以,.综上;故选D.4.B【解析】试题分析:由集合A中的函数y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函数考点:交集及其运算.5.A【解析】

由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,结合直观图判断外接球球心的位置,求出半径,代入求得表面积公式计算.【详解】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,高为2,底面为等腰直角三角形,斜边长为,如图:的外接圆的圆心为斜边的中点,,且平面,,的中点为外接球的球心,半径,外接球表面积.故选:A【点睛】本题考查了由三视图求几何体的外接球的表面积,根据三视图判断几何体的结构特征,利用几何体的结构特征与数据求得外接球的半径是解答本题的关键.6.B【解析】

利用等比数列的通项公式和指数幂的运算法则、指数函数的单调性求得再根据此范围求的最小值.【详解】数列是公比为的正项等比数列,、满足,由等比数列的通项公式得,即,,可得,且、都是正整数,求的最小值即求在,且、都是正整数范围下求最小值和的最小值,讨论、取值.当且时,的最小值为.故选:B.【点睛】本题考查等比数列的通项公式和指数幂的运算法则、指数函数性质等基础知识,考查数学运算求解能力和分类讨论思想,是中等题.7.A【解析】

由复数z求得点Z的坐标,得到向量的坐标,逆时针旋转,得到向量的坐标,则对应的复数可求.【详解】解:∵复数z=i(i为虚数单位)在复平面中对应点Z(0,1),

∴=(0,1),将绕原点O逆时针旋转得到,

设=(a,b),,则,即,

又,解得:,∴,对应复数为.故选:A.【点睛】本题考查复数的代数表示法及其几何意义,是基础题.8.B【解析】

画出可行域,根据可行域上的点到原点距离,求得的取值范围.【详解】由约束条件作出可行域是由,,三点所围成的三角形及其内部,如图中阴影部分,而可理解为可行域内的点到原点距离的平方,显然原点到所在的直线的距离是可行域内的点到原点距离的最小值,此时,点到原点的距离是可行域内的点到原点距离的最大值,此时.所以的取值范围是.故选:B【点睛】本小题考查线性规划,两点间距离公式等基础知识;考查运算求解能力,数形结合思想,应用意识.9.C【解析】

画出该几何体的直观图,易证平面平面,平面平面,平面平面,平面平面,从而可选出答案.【详解】该几何体是一个四棱锥,直观图如下图所示,易知平面平面,作PO⊥AD于O,则有PO⊥平面ABCD,PO⊥CD,又AD⊥CD,所以,CD⊥平面PAD,所以平面平面,同理可证:平面平面,由三视图可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,所以,AP⊥平面PCD,所以,平面平面,所以该多面体各表面所在平面互相垂直的有4对.【点睛】本题考查了空间几何体的三视图,考查了四棱锥的结构特征,考查了面面垂直的证明,属于中档题.10.D【解析】

可判断函数为奇函数,先讨论当且时的导数情况,再画出函数大致图形,将所求区间端点值分别看作对应常函数,再由图形确定具体自变量范围即可求解【详解】当且时,.令得.可得和的变化情况如下表:令,则原不等式变为,由图像知的解集为,再次由图像得到的解集由5段分离的部分组成,所以解集为5阶区间.故选:D【点睛】本题考查由函数的奇偶性,单调性求解对应自变量范围,导数法研究函数增减性,数形结合思想,转化与化归思想,属于难题11.D【解析】

先判断函数的奇偶性可排除选项A,C,当时,可分析函数值为正,即可判断选项.【详解】,,即函数为偶函数,故排除选项A,C,当正数越来越小,趋近于0时,,所以函数,故排除选项B,故选:D【点睛】本题主要考查了函数的奇偶性,识别函数的图象,属于中档题.12.B【解析】

对复数进行化简计算,得到答案.【详解】所以的虚部为故选B项.【点睛】本题考查复数的计算,虚部的概念,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

设,由椭圆和双曲线的定义得到,根据是以为底边的等腰三角形,得到,从而有,根据,得到,再利用导数法求的范围.【详解】设,由椭圆的定义得,由双曲线的定义得,所以,因为是以为底边的等腰三角形,所以,即,因为,所以,因为,所以,所以,即,而,因为,所以在上递增,所以.故答案为:【点睛】本题主要考查椭圆,双曲线的定义和几何性质,还考查了运算求解的能力,属于中档题.14.【解析】

由是偶函数可得时恒有,根据该恒等式即可求得,,的值,从而得到,令,可解得,,三点的横坐标,根据可列关于的方程,解出即可.【详解】解:因为是偶函数,所以时恒有,即,所以,所以,解得,,;所以;由,即,解得;故,.由,即,解得.故,.因为,所以,即,解得,故答案为:.【点睛】本题考查函数奇偶性的性质及二次函数的图象、性质,考查学生的计算能力,属中档题.15.【解析】

因为,所以.因为,所以,又,所以,所以..16.28【解析】

将已知式转化为,则的展开式中的系数中的系数,根据二项式展开式可求得其值.【详解】,所以的展开式中的系数就是中的系数,而中的系数为,展开式中的系数为故答案为:28.【点睛】本题考查二项式展开式中的某特定项的系数,关键在于将原表达式化简将三项的幂的形式转化为可求的二项式的形式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析;(2)证明见解析.【解析】

(1)利用均值不等式即可求证;(2)利用,结合,即可证明.【详解】(1)∵,同理有,,∴.(2)∵,∴.同理有,.∴.【点睛】本题考查利用均值不等式证明不等式,涉及的妙用,属综合性中档题.18.(1)(2)【解析】试题分析:(1)由加减消元得直线的普通方程,由得圆的直角坐标方程;(2)把直线l的参数方程代入圆C的直角坐标方程,由直线参数方程几何意义得|PA|+|PB|=|t1|+|t2|=t1+t2,再根据韦达定理可得结果试题解析:解:(Ⅰ)由得直线l的普通方程为x+y﹣3﹣=0又由得ρ2=2ρsinθ,化为直角坐标方程为x2+(y﹣)2=5;(Ⅱ)把直线l的参数方程代入圆C的直角坐标方程,得(3﹣t)2+(t)2=5,即t2﹣3t+4=0设t1,t2是上述方程的两实数根,所以t1+t2=3又直线l过点P,A、B两点对应的参数分别为t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.19.(1)证明见解析(2)【解析】

(1)取中点连接,得,可得,可证,可得,进而平面,即可证明结论;(2)设分别为边的中点,连,可得,,可得(或补角)是异面直线与所成的角,,可得,为二面角的平面角,即,设,求解,即可得出结论.【详解】(1)证明:取中点连接,由则,则,故,,平面,又平面,故平面平面(2)解法一:设分别为边的中点,则,(或补角)是异面直线与所成的角.设为边的中点,则,由知.又由(1)有平面,平面,所以为二面角的平面角,,设则在中,从而在中,,又,从而在中,因,,因此,异面直线与所成角的余弦值为.解法二:过点作交于点由(1)易知两两垂直,以为原点,射线分别为轴,轴,轴的正半轴,建立空间直角坐标系.不妨设,由,易知点的坐标分别为则显然向量是平面的法向量已知二面角为,设,则设平面的法向量为,则令,则由由上式整理得,解之得(舍)或,因此,异面直线与所成角的余弦值为.【点睛】本题考查空间点、线、面位置关系,证明平面与平面垂直,考查空间角,涉及到二面角、异面直线所成的角,做出空间角对应的平面角是解题的关键,或用空间向量法求角,意在考查直观想象、逻辑推理、数学计算能力,属于中档题.20.(1)列联表见解析,有;(2)分布列见解析,,.【解析】

(1)由频率分布直方图可得分数在、之间的学生人数,可得列联表.根据列联表计算的值,结合参考临界值表可得到结论;(2)从该校高一学生中随机抽取1人,求出该人为“文科方向”的概率.由题意,求出分布列,根据公式求出期望和方差.【详解】(1)由频率分布直方图可得分数在之间的学生人数为,在之间的学生人数为,所以低于60分的学生人数为120.因此列联表为理科方向文科方向总计男8030110女405090总计12080200又,所以有99%的把握认为是否为“文科方向”与性别有关.(2)易知从该校高一学生中随机抽取1人,则该人为“文科方向”的概率为.依题意知,所以(),所以的分布列为0123P所以期望,方差.【点睛】本题考查独立性检验,考查离散型随机变量的分布列

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论