2023年黑龙江农业经济职业学院高职单招(数学)试题库含答案解析_第1页
2023年黑龙江农业经济职业学院高职单招(数学)试题库含答案解析_第2页
2023年黑龙江农业经济职业学院高职单招(数学)试题库含答案解析_第3页
2023年黑龙江农业经济职业学院高职单招(数学)试题库含答案解析_第4页
2023年黑龙江农业经济职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年黑龙江农业经济职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人,为了解职工收入情况,决定采用分层抽样的方法从中抽取样本.若样本中具有初级职称的职工为10人,则样本容量为()

A.10

B.20

C.40

D.50答案:C2.设平面α内两个向量的坐标分别为(1,2,1)、(-1,1,2),则下列向量中是平面的法向量的是()

A.(-1,-2,5)

B.(-1,1,-1)

C.(1,1,1)

D.(1,-1,-1)答案:B3.选修4-1:几何证明选讲

如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2-14x+mn=0的两个根.

(Ⅰ)证明:C,B,D,E四点共圆;

(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.

答案:(I)连接DE,根据题意在△ADE和△ACB中,AD×AB=mn=AE×AC,即ADAC=AEAB又∠DAE=∠CAB,从而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四点共圆.(Ⅱ)m=4,n=6时,方程x2-14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.∵C,B,D,E四点共圆,∴C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=12(12-2)=5.故C,B,D,E四点所在圆的半径为524.已知sint+cost=1,设s=cost+isint,求f(s)=1+s+s2+…sn.答案:sint+cost=1∴(sint+cost)2=1+2sint?cost=1∴2sint?cost=sin2t=0则cost=0,sint=1或cost=1,sint=0,当cost=0,sint=1时,s=cost+isint=i则f(s)=1+s+s2+…sn=1+i,n=4k+1i,n=4k+20,n=4k+31,n=4(k+1)(k∈N+)当cost=1,sint=0时,s=cost+isint=1则f(s)=1+s+s2+…sn=n+15.已知a=(1,-2,1),a+b=(3,-6,3),则b等于()A.(2,-4,2)B.(-2,4,-2)C.(-2,0,-2)D.(2,1,-3)答案:∵a+b=(3,-6,3),∴b=a+b-a=(3,-6,3)-(1,-2,1)=(2,-4,2).故选A.6.

若平面向量,,两两所成的角相等,||=||=1,||=3,则|++|=()

A.2

B.4

C.2或5

D.4或5答案:C7.一支田径队有男运动员112人,女运动员84人,用分层抽样的方法从全体男运动员中抽出了32人,则应该从女运动员中抽出的人数为()

A.12

B.13

C.24

D.28答案:C8.某商人将彩电先按原价提高40%,然后在广告中写上“大酬宾,八折优惠”,结果是每台彩电比原价多赚了270元,则每台彩电原价是______元.答案:设每台彩电的原价是x元,则有:(1+40%)x×0.8-x=270,解得:x=2250,故为:2250.9.在Rt△ABC中,∠A=90°,AB=1,BC=2.在BC边上任取一点M,则∠AMB≥90°的概率为______.答案:过A点做BC的垂线,垂足为M',当M点落在线段BM'(含M'点不含B点)上时∠AMB≥90由∠A=90°,AB=1,BC=2解得BM'=12,则∠AMB≥90°的概率p=122=14.故为:1410.过点A(0,2),且与抛物线C:y2=6x只有一个公共点的直线l有()条.A.1B.2C.3D.4答案:∵点A(0,2)在抛物线y2=6x的外部,∴与抛物线C:y2=6x只有一个公共点的直线l有三条,有两条直线与抛物线相切,有一条直线与抛物线的对称轴平行,故选C.11.已知平面上直线l的方向向量=(-,),点O(0,0)和A(1,-2)在l上的射影分别是O'和A′,则=λ,其中λ等于()

A.

B.-

C.2

D.-2答案:D12.如图是从甲、乙两个班级各随机选出9名同学进行测验成绩的茎叶图,从图中看,平均成绩较高的是______班.答案:∵茎叶图的数据得到甲同学成绩:46,58,61,64,71,74,75,84,87;茎叶图的数据得到乙同学成绩:57,62,65,75,79,81,84,87,89.∴甲平均成绩为69;乙平均成绩为75;故为:乙.13.命题“12既是4的倍数,又是3的倍数”的形式是()A.p∨qB.p∧qC.¬pD.简单命题答案:命题“12既是4的倍数,又是3的倍数”可转化成“12是4的倍数且12是3的倍数”故是p且q的形式;故选B.14.函数f(x)=x2+(a+1)x+2是定义在[a,b]上的偶函数,则a+b=______.答案:∵函数f(x)=x2+(a+1)x+2是定义在[a,b]上的偶函数,∴其定义域关于原点对称,既[a,b]关于原点对称.所以a与b互为相反数即a+b=0.故为:0.15.柱坐标(2,,5)对应的点的直角坐标是

。答案:()解析:∵柱坐标(2,,5),且,2,∴对应直角坐标是()16.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为()

A.35

B.25

C.15

D.7答案:C17.已知点A(1,2),直线l1:x=1+3ty=2-4t(t为参数)与直线l2:2x-4y=5相交于点B,则A、B两点之间的距离|AB|=______.答案:将x=1+3t,y=2-4t代入2x-4y=5,得t=12,所以两直线的交点坐标为(52,0)所以|AB|=(1-52)2+(2-0)2

=52.故为:5218.O、B、C为空间四个点,又、、为空间的一个基底,则()

A.O、A、B、C四点不共线

B.O、A、B、C四点共面,但不共线

C.O、A、B、C四点中任意三点不共线

D.O、A、B、C四点不共面答案:D19.某简单几何体的三视图如图所示,其正视图.侧视图.俯视图均为直角三角形,面积分别是1,2,4,则这个几何体的体积为()A.83B.43C.8D.4答案:由三视图知几何体是一个三棱锥,设出三棱锥的三条两两垂直的棱分别是x,y,z∴xy=2

①xz=4

②yz=8

③由①②得z=2y

④∴y=2∴以y为高的底面面积是2,∴三棱锥的体积是13×2×2=43故选B.20.若a>0,b>0,则不等式-b<aA.<x<0或0<x<

答案:D解析:试题分析:21.给出以下命题:(1)若非零向量a与b互为负向量,则a∥b;(2)|a|=0是a=0的充要条件;(3)若|a|=|b|,则a=±b;(4)物理学中的作用力和反作用力互为负向量.其中为真命题的是______.答案:(1)若非零向量a与b互为负向量,根据相反向量的定义可知a∥b,故正确;(2)|a|=0则a=0,a=0则|a|=0,故|a|=0是a=0的充要条件,故正确;(3)若|a|=|b|,则两向量模等,方向任意,故不正确;(4)物理学中的作用力和反作用力大小相等,方向相反,故互为负向量,故正确故为:(1)(2)(4)22.设双曲线的两条渐近线为y=±x,则该双曲线的离心率e为()

A.5

B.或

C.或

D.答案:C23.已知随机变量ξ服从正态分布N(1,δ2)(δ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为(

A.

B.

C.

D.答案:D24.若f(x)是定义在R上的函数,满足对任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,且f(2)=3,则f(8)=______.答案:由题意可知:对任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,所以x=y=2,可知f(4)=f(2+2)=f(2)?f(2),所以f(4)=9;令x=y=4,可知f(8)=f(4+4)=f(4)?f(4)=92=81.故为:81.25.若3π2<α<2π,则直线xcosα+ysinα=1必不经过()A.第一象限B.第二象限C.第三象限D.第四象限答案:令x=0,得y=sinα<0,令y=0,得x=cosα>0,直线过(0,sinα),(cosα,0)两点,因而直线不过第二象限.故选B26.已知全集U=R,A⊆U,B⊆U,如果命题P:2∈A∪B,则命题非P是()A.2∉AB.2∈(CUA)C.2∈(CUA)∩(CUB)D.2∈(CUA)∪(CUB)答案:命题P:2∈A∪B,∴┐p为2∈(CUA)∩(CUB)故选C27.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱.这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为h1,h2,h,则h1:h2:h3=()

A.:1:1

B.:2:2

C.:2:

D.:2:答案:B28.若直线l过抛物线y=ax2(a>0)的焦点,并且与y轴垂直,若l被抛物线截得的线段长为4,则a=______.答案:抛物线方程整理得x2=1ay,焦点(0,14a)l被抛物线截得的线段长即为通径长1a,故1a=4,a=14;故为14.29.某校高三有1000个学生,高二有1200个学生,高一有1500个学生.现按年级分层抽样,调查学生的视力情况,若高一抽取了75人,则全校共抽取了

______人.答案:∵高三有1000个学生,高二有1200个学生,高一有1500个学生.∴本校共有学生1000+1200+1500=3700,∵按年级分层抽,高一抽取了75人,∴每个个体被抽到的概率是751500=120,∴全校要抽取120×3700=185,故为:185.30.从甲、乙、丙、丁四人中任选两名代表,甲被选中的概率为

______.答案:由题意:甲、乙、丙、丁四人中任选两名代表,共有六种情况:甲和乙、甲和丙、甲和丁、乙和丙、乙和丁、丙和丁,因每种情况出现的可能性相等,所以甲被选中的概率为12.故为:12.31.如图,△ABC中,AD=2DB,AE=3EC,CD与BE交于F,若AF=xAB+yAC,则()A.x=13,y=12B.x=14,y=13C.x=37,y=37D.x=25,y=920答案:过点F作FM∥AC、FN∥AB,分别交AB、AC于点M、N∵FM∥AC,∴FMAC=DMAD且FMAE=BMAB∵AD=2DB,AE=3EC,∴AD=23AB,AE=34AC.由此可得AM=13AB同理可得AN=12AC∵四边形AMFN是平行四边形∴由向量加法法则,得AF=13AB+12AC∵AF=xAB+yAC,∴根据平面向量基本定理,可得x=13,y=12故选:A32.不等式log2(x+1)<1的解集为()

A.{x|0<x<1}

B.{x|-1<x≤0}

C.{x|-1<x<1}

D.{x|x>-1}答案:C33.若a>0,使不等式|x-4|+|x-3|<a在R上的解集不是空集的a的取值是()

A.0<a<1

B.a=1

C.a>1

D.以上均不对答案:C34.已知x1、x2是关于x1的方程x2-(k-2)x+k2+3k+5=0的两个实根,那么x12+x22的最大值是[

]

A.19

B.17

C.

D.18答案:D35.抛物线y2=4x的焦点坐标为()

A.(0,1)

B.(1,0)

C.(0,2)

D.(2,0)答案:B36.已知圆x2+y2=r2在曲线|x|+|y|=4的内部,则半径r的范围是()A.0<r<22B.0<r<2C.0<r<2D.0<r<4答案:根据题意画出图形,如图所示:可得曲线|x|+|y|=4表示边长为42的正方形,如图ABCD为正方形,x2+y2=r2表示以原点为圆心的圆,过O作OE⊥AB,∵边AB所在直线的方程为x+y=4,∴|OE|=42=22,则满足题意的r的范围是0<r<22.故选A37.如图所示,以直角三角形ABC的直角边AC为直径作⊙O,交斜边AB于点D,过点D作⊙O的切线,交BC边于点E.则BEBC=______.答案:连接CD,∵AC是⊙O的直径,∴CD⊥AB.∵BC经过半径OC的端点C且BC⊥AC,∴BC是⊙O的切线,而DE是⊙O的切线,∴EC=ED.∴∠ECD=∠CDE,∴∠B=∠BDE,∴DE=BE.∴BE=CE=12BC.∴BEBC=12.故为12.38.下列点在x轴上的是()

A.(0.1,0.2,0.3)

B.(0,0,0.001)

C.(5,0,0)

D.(0,0.01,0)答案:C39.已知随机变量x服从二项分布x~B(6,),则P(x=2)=()

A.

B.

C.

D.答案:D40.(Ⅰ)已知z∈C,且|z|-i=.z+2+3i(i为虚数单位),求复数z2+i的虚部.

(Ⅱ)已知z1=a+2i,z2=3-4i(i为虚数单位),且z1z2为纯虚数,求实数a的值.答案:(Ⅰ)设z=x+yi,代入方程|z|-i=.z+2+3i,得出x2+y2-i=x-yi+2+3i=(x+2)+(3-y)i,故有x2+y2=x+23-y=-1,解得x=3y=4,∴z=3+4i,复数z2+i=3+4i2+i=2+i,虚部为1(Ⅱ)z1z2=a+2i3-4i=3a-8+(4a+6)i25,且z1z2为纯虚数则3a-8=0,且4a+6≠0,解得a=8341.已知a=log132,b=(13)12,c=(23)12,则a,b,c大小关系为______.答案:∵a=log132<log131=0,又∵函数y=x12在(0,+∞)是增函数,∴(23)12>(13)12>0.所以,c>b>a.故为c>b>a.42.OA、OB(O为原点)是圆x2+y2=2的两条互相垂直的半径,C是该圆上任一点,且OC=λOA+μOB,则λ2+μ2=______.答案:∵OC=λOA+μOB,OA⊥OB∴OA?OB=0∴OA2=OB2=OC2=2∴OC2=(λOA+μOB)2=λ2OA2+μ2OB2=2(λ2+μ2)=2∴λ2+μ2=1故为:143.已知x1>0,x1≠1,且xn+1=xn(x2n+3)3x2n+1,(n=1,2,…).试证:数列{xn}或者对任意自然数n都满足xn<xn+1,或者对任意自然数n都满足xn>xn+1.答案:证:首先,xn+1-xn=xn(x2n+3)3x2n+1-xn=2xn(1-x2n)3x2n+1,由于x1>0,由数列{xn}的定义可知xn>0,(n=1,2,…)所以,xn+1-xn与1-xn2的符号相同.①假定x1<1,我们用数学归纳法证明1-xn2>0(n∈N)显然,n=1时,1-x12>0设n=k时1-xk2>0,那么当n=k+1时1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2>0,因此,对一切自然数n都有1-xn2>0,从而对一切自然数n都有xn<xn+1②若x1>1,当n=1时,1-x12<0;设n=k时1-xk2<0,那么当n=k+1时1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2<0,因此,对一切自然数n都有1-xn2<0,从而对一切自然数n都有xn>xn+144.安排6名演员的演出顺序时,要求演员甲不第一个出场,也不最后一个出场,则不同的安排方法种数是()

A.120

B.240

C.480

D.720答案:C45.圆x2+y2-4x=0在点P(1,)处的切线方程为()

A.x+y-2=0

B.x+y-4=0

C.x-y+4=0

D.x-y+2=0答案:D46.已知抛物线C的参数方程为x=8t2y=8t(t为参数),设抛物线C的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足,如果直线AF的斜率为-3,那么|PF|=______.答案:把抛物线C的参数方程x=8t2y=8t(t为参数),消去参数化为普通方程为y2=8x.故焦点F(2,0),准线方程为x=-2,再由直线FA的斜率是-3,可得直线FA的倾斜角为120°,设准线和x轴的交点为M,则∠AFM=60°,且MF=p=4,∴∠PAF=180°-120°=60°.∴AM=MF•tan60°=43,故点A(0,43),把y=43代入抛物线求得x=6,∴点P(6,43),故|PF|=(6-2)2+(43-0)2=8,故为8.47.已知△ABC的三个顶点A(-2,-1)、B(1,3)、C(2,2),则△ABC的重心坐标为______.答案:设△ABC的重心坐标为(x,y),则有三角形的重心坐标公式可得x=-2+1+23=13,y=-1+3+23=43,故△ABC的重心坐标为(13,43),故为(13,43).48.已知函数f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=sinx.当x1>x2>π时,使f(x1)+f(x2)2<f(x1+x22)恒成立的函数是()A.f1(x)=x2B.f2(x)=2xC.f3(x)=log2xD.f4(x)=sinx答案:由题意,当x1>x2>π时,使f(x1)+f(x2)2<f(x1+x22)恒成立,图象呈上凸趋势由于f1(x)=x2,f2(x)=2x,f4(x)=sinx在x1>x2>π上的图象为图象呈下凹趋势,故f(x1)+f(x2)2<f(x1+x22)不成立故选C.49.双曲线x225-y29=1的两个焦点分别是F1,F2,双曲线上一点P到F1的距离是12,则P到F2的距离是()A.17B.7C.7或17D.2或22答案:由题意,a=5,则由双曲线的定义可知PF1-PF2=±10,∴PF2=2或22,故选D.50.在同一个坐标系中画出函数y=ax,y=sinax的部分图象,其中a>0且a≠1,则下列所给图象中可能正确的是()

A.

B.

C.

D.

答案:D第2卷一.综合题(共50题)1.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是(

A.0.216

B.0.36

C.0.432

D.0.648答案:D2.(坐标系与参数方程选做题)点P(-3,0)到曲线x=t2y=2t(其中参数t∈R)上的点的最短距离为______.答案:设点Q(t2,2t)为曲线上的任意一点,则|PQ|=(t2+3)2+(2t)2=(t2+5)2-16≥52-16=3,当且仅当t=0取等号,此时Q(0,0).故点P(-3,0)到曲线x=t2y=2t(其中参数t∈R)上的点的最短距离为3.故为3.3.在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为()

A.0.9

B.0.5

C.0.6

D.0.8答案:D4.已知点(3,1)和(-4,6)在直线3x-2y+a=0的两侧,则实数a的取值范围是(

A.a<-7或a>24

B.a=7或a=24

C.-7<a<24

D.-24<a<7答案:C5.制作一个面积为1

m2,形状为直角三角形的铁架框,有下列四种长度的铁管供选择,较经济的(既够用又耗材量少)是().A.5.2mB.5mC.4.8mD.4.6m答案:设一条直角边为x,则另一条直角边是2x,斜边长为x2+4x2故周长

l=x+2x+x2+4x2≥22+2≈4.82当且仅当x=2时等号成立,故较经济的(既够用又耗材量少)是5m故应选B.6.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()

A.若K2的观测值为k=6.635,而p(K2≥6.635)=0.010,故我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病

B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病

C.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推判出现错误

D.以上三种说法都不正确答案:C7.如图P为空间中任意一点,动点Q在△ABC所在平面内运动,且,则实数m=()

A.0

B.2

C.-2

D.1

答案:C8.某研究小组在一项实验中获得一组数据,将其整理得到如图所示的散点图,下列函数中,最能近似刻画y与t之间关系的是()

A.y=2t

B.y=2t2

C.y=t3

D.y=log2t

答案:D9.已知||=2,||=,∠AOB=150°,点C在∠AOB内,且∠AOC=30°,设(m,n∈R),则=()

A.

B.

C.

D.答案:B10.已知点G是△ABC的重心,过G作直线与AB,AC两边分别交于M,N两点,且,则的值()

A.3

B.

C.2

D.答案:B11.中,是边上的中线(如图).

求证:.

答案:证明见解析解析:取线段所在的直线为轴,点为原点建立直角坐标系.设点的坐标为,点的坐标为,则点的坐标为.可得,,,.,..12.一个水平放置的平面图形,其斜二测直观图是一个等腰三角形,腰AB=AC=1,如图,则平面图形的实际面积为()

A.1

B.2

C.

D.

答案:A13.若三角形的内切圆半径为r,三边的长分别为a,b,c,则三角形的面积S=12r(a+b+c),根据类比思想,若四面体的内切球半径为R,四个面的面积分别为S1、S2、S3、S4,则此四面体的体积V=______.答案:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.故为:13R(S1+S2+S3+S4).14.引入复数后,数系的结构图为()

A.

B.

C.

D.

答案:A15.两条平行直线3x+4y-12=0与ax+8y+11=0之间的距离为(

A.

B.

C.7

D.答案:D16.等腰梯形ABCD,上底边CD=1,腰AD=CB=2,下底AB=3,按平行于上、下底边取x轴,则直观图A′B′C′D′的面积为

______.答案:等腰梯形ABCD,上底边CD=1,腰AD=CB=2,下底AB=3,所以梯形的高为:1,按平行于上、下底边取x轴,则直观图A′B′C′D′的高为:12sin45°=24所以直观图的面积为:12×(1+3)×24=22故为:2217.“a2+b2≠0”的含义为()A.a和b都不为0B.a和b至少有一个为0C.a和b至少有一个不为0D.a不为0且b为0,或b不为0且a为0答案:a2+b2≠0的等价条件是a≠0或b≠0,即两者中至少有一个不为0,对照四个选项,只有C与此意思同,C正确;A中a和b都不为0,是a2+b2≠0充分不必要条件;B中a和b至少有一个为0包括了两个数都是0,故不对;D中只是两个数仅有一个为0,概括不全面,故不对;故选C18.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的一个焦点是F2(2,0),且b=3a.

(1)求双曲线C的方程;

(2)设经过焦点F2的直线l的一个法向量为(m,1),当直线l与双曲线C的右支相交于A,B不同的两点时,求实数m的取值范围;并证明AB中点M在曲线3(x-1)2-y2=3上.

(3)设(2)中直线l与双曲线C的右支相交于A,B两点,问是否存在实数m,使得∠AOB为锐角?若存在,请求出m的范围;若不存在,请说明理由.答案:(1)c=2c2=a2+b2∴4=a2+3a2∴a2=1,b2=3,∴双曲线为x2-y23=1.(2)l:m(x-2)+y=0由y=-mx+2mx2-y23=1得(3-m2)x2+4m2x-4m2-3=0由△>0得4m4+(3-m2)(4m2+3)>012m2+9-3m2>0即m2+1>0恒成立又x1+x2>0x1•x2>04m2m2-3>04m2+3m2-3>0∴m2>3∴m∈(-∞,-3)∪(3,+∞)设A(x1,y1),B(x2,y2),则x1+x22=2m2m2-3y1+y22=-2m3m2-3+2m=-6mm2-3∴AB中点M(2m2m2-3,-6mm2-3)∵3(2m2m2-3-1)2-36m2(m2-3)2=3×(m2+3)2(m2-3)2-36m2(m2-3)2=3•m4+6m2+9-12m2(m2-3)2=3∴M在曲线3(x-1)2-y2=3上.(3)A(x1,y1),B(x2,y2),设存在实数m,使∠AOB为锐角,则OA•OB>0∴x1x2+y1y2>0因为y1y2=(-mx1+2m)(-mx2+2m)=m2x1x2-2m2(x1+x2)+4m2∴(1+m2)x1x2-2m2(x1+x2)+4m2>0∴(1+m2)(4m2+3)-8m4+4m2(m2-3)>0即7m2+3-12m2>0∴m2<35,与m2>3矛盾∴不存在19.将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体是(

)答案:B20.条件语句的一般形式如图所示,其中B表示的是()

A.条件

B.条件语句

C.满足条件时执行的内容

D.不满足条件时执行的内容

答案:C21.考虑坐标平面上以O(0,0),A(3,0),B(0,4)为顶点的三角形,令C1,C2分别为△OAB的外接圆、内切圆.请问下列哪些选项是正确的?

(1)C1的半径为2

(2)C1的圆心在直线y=x上

(3)C1的圆心在直线4x+3y=12上

(4)C2的圆心在直线y=x上

(5)C2的圆心在直线4x+3y=6上.答案:O,A,B三点的位置如右图所示,C1,C2为△OAB的外接圆与内切圆,∵△OAB为直角三角形,∴C1为以线段AB为直径的圆,故半径为12|AB|=52,所以(1)选项错误;又C1的圆心为线段AB的中点(32,2),此点在直线4x+3y=12上,所以选项(2)错误,选项(3)正确;如图,P为△OAB的内切圆C2的圆心,故P到△OAB的三边距离相等均为圆C2的半径r.连接PA,PB,PC,可得:S△OAB=S△POA+S△PAB+S△POB?12×3×4=12×3×r+12×5×r+12×4×r?r=1故P的坐标为(1,1),此点在y=x上.所以选项(4)正确,选项(5)错误,综上,正确的选项有(3)、(4).22.圆ρ=5cosθ-5sinθ的圆心的极坐标是()

A.(-5,-)

B.(-5,)

C.(5,)

D.(-5,)答案:A23.以下四组向量中,互相平行的是.()

(1)=(1,2,1),=(1,-2,3);

(2)=(8,4,-6),=(4,2,-3);

(3)=(0,1,-1),=(0,-3,3);

(4)=(-3,2,0),=(4,-3,3).

A.(1)(2)

B.(2)(3)

C.(2)(4)

D.(1)(3)答案:B24.已知直线a、b、c,其中a、b是异面直线,c∥a,b与c不相交.用反证法证明b、c是异面直线.答案:证明:假设b、c不是异面直线,则b、c共面.∵b与c不相交,∴b∥c.又∵c∥a,∴根据公理4可知b∥a.这与已知a、b是异面直线相矛盾.故b、c是异面直线.25.已知空间四边形ABCD中,M、G分别为BC、CD的中点,则等于()

A.

B.

C.

D.

答案:A26.已知A(1,0).B(7,8),若点A和点B到直线l的距离都为5,且满足上述条件的直线l共有n条,则n的值是()A.1B.2C.3D.4答案:与直线AB平行且到直线l的距离都为5的直线共有两条,分别位于直线AB的两侧,由线段AB的长度等于10,还有一条直线是线段AB的中垂线,故满足上述条件的直线l共有3条,故选C.27.已知在平面直角坐标系xOy中,圆C的参数方程为x=3+3cosθy=1+3sinθ,(θ为参数),以Ox为极轴建立极坐标系,直线l的极坐标方程为pcos(θ+π6)=0.

(1)写出直线l的直角坐标方程和圆C的普通方程;

(2)求圆C截直线l所得的弦长.答案:(1)消去参数θ,得圆C的普通方程为(x-3)2+(y-1)2=9.(2分)由ρcos(θ+π6)=0,得32ρcosθ-12ρsinθ=0,∴直线l的直角坐标方程为3x-y=0.(5分)(2)圆心(3,1)到直线l的距离为d=|3×3-1|(3)2+12=1.(7分)设圆C直线l所得弦长为m,则m2=r2-d2=9-1=22,∴m=42.(10分)28.已知0≤θ<2π,复数icosθ+isinθ>0,则θ的值是()A.π2B.3π2C.(0,π)内的任意值D.(0,π2)∪(3π2,2π)内的任意值答案:复数icosθ+isinθ>0,可得icosθ+sinθ>0,因为0≤θ<2π,所以θ=π2.故选A.29.已知点A(3,0),B(0,3),C(cosα,sinα),O(0,0),若,α∈(0,π),则与的夹角为()

A.

B.

C.

D.答案:D30.长为3的线段AB的端点A、B分别在x轴、y轴上移动,,则点C的轨迹是()

A.线段

B.圆

C.椭圆

D.双曲线答案:C31.分析法是从要证明的结论出发,逐步寻求使结论成立的()

A.充分条件

B.必要条件

C.充要条件

D.等价条件答案:A32.如图,⊙O是Rt△ABC的外接圆,点O在AB上,BD⊥AB,点B是垂足,OD∥AC,连接CD.

求证:CD是⊙O的切线.答案:证明:连接CO,(1分)∵OD∥AC,∴∠COD=∠ACO,∠CAO=∠DOB.(3分)∵∠ACO=∠CAO,∴∠COD=∠DOB.(6分)∵OD=OD,OC=OB,∴△COD≌△BOD.(8分)∴∠OCD=∠OBD=90°.∴OC⊥CD,即CD是⊙O的切线.(10分)33.已知正方形ABCD的边长为1,=,=,=,则的模等于(

A.0

B.2+

C.

D.2答案:D34.设椭圆=1(a>b>0)的离心率为,右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)()

A.必在圆x2+y2=2内

B.必在圆x2+y2=2上

C.必在圆x2+y2=2外

D.以上三种情形都有可能答案:A35.设a=20.3,b=0.32,c=log20.3,则用“>”表示a,b,c的大小关系式是______.答案:∵0<0.32<1,log20.3<0,20.3>1∴0.32<20.3<log20.3故为:a>b>c36.给出命题:

①线性回归分析就是由样本点去寻找一条贴近这些点的直线;

②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;

③通过回归方程=bx+a及其回归系数b可以估计和预测变量的取值和变化趋势;

④线性相关关系就是两个变量间的函数关系.其中正确的命题是(

A.①②

B.①④

C.①②③

D.①②③④答案:D37.若方程Ax+By+C=0表示与两条坐标轴都相交的直线,则()

A.A≠0B≠0C≠0

B.A≠0B≠0

C.B≠0C≠0

D.A≠0C≠0答案:B38.已知直线l1:(k-3)x+(4-k)y+1=0,与l2:2(k-3)x-2y+3=0,平行,则k的值是______.答案:当k=3时两条直线平行,当k≠3时有2=-24-k≠3

所以

k=5故为:3或5.39.某校现有高一学生210人,高二学生270人,高三学生300人,学校学生会用分层抽样的方法从这三个年级的学生中随机抽取n名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为()

A.10

B.9

C.8

D.7答案:A40.如图给出了一个算法程序框图,该算法程序框图的功能是()A.求a,b,c三数的最大数B.求a,b,c三数的最小数C.将a,b,c按从小到大排列D.将a,b,c按从大到小排列答案:逐步分析框图中的各框语句的功能,第一个条件结构是比较a,b的大小,并将a,b中的较小值保存在变量a中,第二个条件结构是比较a,c的大小,并将a,c中的较小值保存在变量a中,故变量a的值最终为a,b,c中的最小值.由此程序的功能为求a,b,c三个数的最小数.故选B41.已知M(-2,7)、N(10,-2),点P是线段MN上的点,且PN=-2PM,则P点的坐标为______.答案:设P(x,y),则PN=(10-x,-2-y),PM=(-2-x,7-y),∵PN=-2PM,∴10-x=-2(-2-x)-2-y=-2(7-y),∴x=2y=4∴P点的坐标为(2,4).故为:(2,4)42.已知直线的斜率为3,则此直线的倾斜角为()A.30°B.60°C.45°D.120°答案:∵直线的斜率为3,∴直线倾斜角α满足tanα=3结合α∈[0°,180°),可得α=60°故选:B43.把函数y=sin(x-)-2的图象经过按平移得到y=sinx的图象,则=(

A.

B.

C.

D.答案:A44.已知△ABC的顶点B、C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()

A.2

B.6

C.4

D.12答案:C45.求证:答案:证明见解析解析:证:∴46.如图,⊙O与⊙O′交于

A,B,⊙O的弦AC与⊙O′相切于点A,⊙O′的弦AD与⊙O相切于A点,则下列结论中正确的是()

A.∠1>∠2

B.∠1=∠2

C.∠1<∠2

D.无法确定

答案:B47.已知点E在△ABC所在的平面且满足AB+AC=λAE(λ≠0),则点E一定落在()A.BC边的垂直平分线上B.BC边的中线所在的直线上C.BC边的高线所在的直线上D.BC边所在的直线上答案:因为点E在△ABC所在的平面且满足AB+AC=λAE(λ≠0)所以,根据平行四边形法则,E一定落在这个平行四边形的起点为A的对角线上,又平行四边形对角线互相平分,所以E一定落在BC边的中线所在的直线上,故选B.48.某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行.那么安排这6项工程的不同排法种数是______.(用数字作答)答案:依题意,乙必须在甲后,丙必须在乙后,丙丁必相邻,且丁在丙后,只需将剩余两个工程依次插在由甲、乙、丙丁四个工程之间即可,第一个插入时有4种,第二个插入时共5个空,有5种方法;可得有5×4=20种不同排法.故为:2049.定义xn+1yn+1=1011xnyn,n∈N*为向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一个矩阵变换,其中O是坐标原点.已知OP1=(1,0),则OP2010的坐标为______.答案:由题意,xn+1=xnyn+1=xn+yn∴向量的横坐标不变,纵坐标构成以0为首项,1为公差的等差数列∴OP2010的坐标为(1,2009)故为(1,2009)50.如图所示,圆的内接三角形ABC的角平分线BD与AC交于点D,与圆交于点E,连接AE,已知ED=3,BD=6,则线段AE的长=______.答案:∵BD平分角∠CBA,∴∠CBE=∠EBA又∵∠CBE=∠EAD在△EDA和△EAB中,∠E=∠E,∠EAD=∠EBA∴△EDA∽△EAB∴AE:BE=ED:AE∴AE2=ED?BE又∵ED=3,BD=6,∴BE=9∴AE2=27∴AE=33故为:33第3卷一.综合题(共50题)1.过抛物线y2=2px(p>0)的焦点F的直线与抛物线相交于M,N两点,自M,N向准线l作垂线,垂足分别为M1,N1,则∠M1FN1等于()

A.45°

B.60°

C.90°

D.120°答案:C2.|a|=4,|b|=5,|a+b|=8,则a与b的夹角为______.答案:设a与b的夹角为θ因为|a|=4,|b|=5,|a+b|=8,所以a2+2a?b+b2=64即16+2×4×5cosθ+25=64解得cosθ=2340所以θ=arccos2340故为arccos23403.向量a=i+

2j在向量b=3i+4j上的投影是______.答案:根据投影的定义可得:a在b方向上的投影为:|a|cos<a,b>=a?b|b|=1×3+2×452=115.故为:115.4.l1,l2,l3是空间三条不同的直线,则下列命题正确的是[

]A.l1⊥l2,l2⊥l3l1∥l3

B.l1⊥l2,l2∥l3l1⊥l3

C.l1∥l2∥l3l1,l2,l3共面

D.l1,l2,l3共点l1,l2,l3共面答案:B5.阅读下面的程序框图,该程序运行后输出的结果为______.答案:循环前,S=0,A=1,第1次判断后循环,S=1,A=2,第2次判断并循环,S=3,A=3,第3次判断并循环,S=6,A=4,第4次判断并循环,S=10,A=5,第5次判断并循环,S=15,A=6,第6次判断并退出循环,输出S=15.故为:15.6.已知焦点在x轴上的双曲线渐近线方程是y=±4x,则该双曲线的离心率是()

A.

B.

C.

D.答案:A7.若向量=(2,-3,1),=(2,0,3),=(0,2,2),则(+)=()

A.4

B.15

C.7

D.3答案:D8.(Ⅰ)解关于x的不等式(lgx)2-lgx-2>0;

(Ⅱ)若不等式(lgx)2-(2+m)lgx+m-1>0对于|m|≤1恒成立,求x的取值范围.答案:(Ⅰ)∵(lgx)2-lgx-2>0,∴(lgx+1)(lgx-2)>0.∴lgx<-1或lgx>2.∴0<x<110或x>102.(Ⅱ)设y=lgx,则原不等式可化为y2-(2+m)y+m-1>0,∴y2-2y-my+m-1>0.∴(1-y)m+(y2-2y-1)>0.当y=1时,不等式不成立.设f(m)=(1-y)m+(y2-2y-1),则f(x)是m的一次函数,且一次函数为单调函数.当-1≤m≤1时,若要f(m)>0⇔f(1)>0f(-1)>0.⇔y2-2y-1+1-y>0y2-2y-1+y-1>0.⇔y2-3y>0y2-y-2>0.⇔y<0或y>3y<-1或y>2.则y<-1或y>3.∴lgx<-1或lgx>3.∴0<x<110或x>103.∴x的取值范围是(0,110)∪(103,+∞).9.假设两圆互相外切,求证:用连心线做直径的圆,必与前两圆的外公切线相切.答案:证明:设⊙O1及⊙O2为互相外切的两个圆,其一外公切线为A1A2,切点为A1及A2令点O为连心线O1O2的中点,过O作OA⊥A1A2,由直角梯形的中位线性质得:OA=12(O1A1+O2A2)=12O1O2,∴以O1O2为直径,即以O为圆心,OA为半径的圆必与直线A1A2相切,同理可证,此圆必切于⊙O1及⊙O2的另一条外公切线.10.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:

第一步:取A=89,B=96,C=99;

第二步:______;

第三步:______;

第四步:输出计算的结果.答案:由题意,第二步,求和S=A+B+C,第三步,计算平均成绩.x=A+B+C3.故为:S=A+B+C;.x=A+B+C3.11.已知M(x0,y0)是圆x2+y2=r2(r>0)内异于圆心的一点,则直线x0x+y0y=r2与此圆有何种位置关系?答案:圆心O(0,0)到直线x0x+y0y=r2的距离为d=r2x20+y20.∵P(x0,y0)在圆内,∴x20+y20<r.则有d>r,故直线和圆相离.12.设抛物线y2=2px(p>0)上一点A(1,2)到点B(x0,0)的距离等于到直线x=-1的距离,则实数x0的值是______.答案:∵点A(1,2)在抛物线y2=2px(p>0)上,∴4=2p,p=2,故抛物线方程为y2=4x,准线方程为x=1.由点A(1,2)到点B(x0,0)的距离等于到直线x=-1的距离,故点B(x0,0)为抛物线y2=4x的焦点,故x0=1.故为1.13.如图程序输出的结果是()

a=3,

b=4,

a=b,

b=a,

PRINTa,b

END

A.3,4

B.4,4

C.3,3

D.4,3答案:B14.已知a=(2,3),b=(1,2),(a+λb)⊥(a-b),则λ=______.答案:∵a=(2,3),b=(1,2),∴a2=(2,3)•(2,3)=4+9=13,b2=(1,2)•(1,2)=1+4=5∵(a+λb)⊥(a-b)∴(a+λb)•(a-b)=a2-λb2=13-5λ=0∴λ=135故为:13515.若随机变量ξ~N(2,9),则随机变量ξ的数学期望c=()

A.4

B.3

C.2

D.1答案:C16.AB是圆O的直径,EF切圆O于C,AD⊥EF于D,AD=2,AB=6,则AC长为()

A.

B.3

C.2

D.2答案:A17.为了让学生更多地了解“数学史”知识,某中学高二年级举办了一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动,共有800名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据下面的频率分布表,解答下列问题:

序号

(i)分组

(分数)本组中间值

(Gi)频数

(人数)频率

(Fi)1(60,70)65①0.122[70,80)7520②3[80,90)85③0.244[90,100]95④⑤合

计501(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);

(2)为鼓励更多的学生了解“数学史”知识,成绩不低于85分的同学能获奖,请估计在参赛的800名学生中大概有多少同学获奖?

(3)请根据频率分布表估计该校高二年级参赛的800名同学的平均成绩.答案:(1)①为6,②为0.4,③为12,④为12⑤为0.24.(5分)(2)(12×0.24+0.24)×800=288,即在参加的800名学生中大概有288名同学获奖.(9分)(3)65×0.12+75×0.4+85×0.24+95×0.24=81(4)估计平均成绩为81分.(12分)18.刻画数据的离散程度的度量,下列说法正确的是()

(1)应充分利用所得的数据,以便提供更确切的信息;

(2)可以用多个数值来刻画数据的离散程度;

(3)对于不同的数据集,其离散程度大时,该数值应越小.

A.(1)和(3)

B.(2)和(3)

C.(1)和(2)

D.都正确答案:C19.某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定位3500元;若4杯选对3杯,则月工资定为2800元,否则月工资定为2100元,今X表示此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力.

(1)求X的分布列;

(2)求此员工月工资的期望.答案:(1)X的所有可能取值为0,1,2,3,4,P(X=0)=1C48=170P(X=1)=C14C34C48=1670P(X=2)=C24C24C48=3670P(X=3)=C14C34C48=1670P(X=4)=1C48=170(2)此员工月工资Y的所有可能取值有3500、2800、2100,P(Y=3500)=P(X=4)=1C48=170P(Y=2800)=P(X=3)=C14C34C48=1670P(Y=2100)=P(X=0)+P(X=1)+P(X=2)=5370EY=3500×170+2800×1670+2100×5370=228020.在画两个变量的散点图时,下面哪个叙述是正确的()

A.预报变量x轴上,解释变量y轴上

B.解释变量x轴上,预报变量y轴上

C.可以选择两个变量中任意一个变量x轴上

D.可以选择两个变量中任意一个变量y轴上答案:B21.若点P分向量AB的比为34,则点A分向量BP的比为()A.-34B.34C.-73D.73答案:由题意可得APPB=|AP||PB|=34,故

A分BP的比为BAAP=-|BA||AP|=-4+33=-73,故选C.22.若命题p:2是偶数;命题q:2是5的约数,则下列命题中为真命题的是()A.p∧qB.(¬p)∧(¬q)C.¬pD.p∨q答案:∵2是偶数,∴命题p为真命题∵2不是5的约数,∴命题q为假命题∴p或q为真命题故选D23.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()

A.内切

B.相交

C.外切

D.相离答案:B24.求证:若圆内接四边形的两条对角线互相垂直,则从对角线交点到一边中点的线段长等于圆心到该边对边的距离.答案:以两条对角线的交点为原点O、对角线所在直线为坐标轴建立直角坐标系,(如图所示)

设A(-a,0),B(0,-b),C(c,0),D(0,d),则CD的中点E(c2,d2),AB的中点H(-a2,-b2).又圆心G到四个顶点的距离相等,故圆心G的横坐标等于AC中点的横坐标,等于c-a2,圆心G的纵坐标等于BD中点的纵坐标,等于d-b2.即圆心G(c-a2,d-b2),∴|OE|2=c2+d24,|GH|2=(c-a2+a2)2+(d-b2+b2)2=c2+d24,∴|OE|=|GH|,故要证的结论成立.25.已知点A(3,0),B(0,3),C(cosα,sinα),O(0,0),若,α∈(0,π),则与的夹角为()

A.

B.

C.

D.答案:D26.如图,△ABC是圆的内接三角形,PA切圆于点A,PB交圆于点D.若∠ABC=60°,PD=1,BD=8,则∠PAC=______°,PA=______.答案:∵PD=1,BD=8,∴PB=PD+BD=9由切割线定理得PA2=PD?PB=9∴PA=3又∵PE=PA∴PE=3又∠PAC=∠ABC=60°故:60,327.在△ABC中,AB=2,BC=3,∠ABC=60°,AD为BC边上的高,O为AD的中点,若

=λ+μ,则λ+μ=()

A.1

B.

C.

D.答案:D28.把38化为二进制数为()A.101010(2)B.100110(2)C.110100(2)D.110010(2)答案:可以验证所给的四个选项,在A中,2+8+32=42,在B中,2+4+32=38经过验证知道,B中的二进制表示的数字换成十进制以后得到38,故选B.29.设向量a,b,c满足a+b+c=0,a⊥b,且a,b的模分别为s,t,其中s=a1=1,t=a3,an+1=nan,则c的模为______.答案:∵向量a,b,c满足a+b+c=0,a⊥b,∴向量a,b,c构成一个直角三角形,如图∵s=a1=1,t=a3,an+1=nan,∴a21=1,即a2=1,∴a31=2,t=a3=2.∴|c|=1+4=5.故为:5.30.如图是一个正三棱柱体的三视图,该柱体的体积等于()A.3B.23C.2D.33答案:根据长对正,宽相等,高平齐,可得底面正三角形高为3,三棱柱高为1所以正三角形边长为3sin60°=2,所以V=12×2×3×1=3,故选A.31.气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22

(℃)”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):

①甲地:5个数据的中位数为24,众数为22;

②乙地:5个数据的中位数为27,总体均值为24;

③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8;

则肯定进入夏季的地区有()A.0个B.1个C.2个D.3个答案:①甲地:5个数据的中位数为24,众数为22,根据数据得出:甲地连续5天的日平均温度的记录数据可能为:22,22,24,25,26.其连续5天的日平均温度均不低于22.

②乙地:5个数据的中位数为27,总体均值为24.根据其总体均值为24可知其连续5天的日平均温度均不低于22.③丙地:5个数据中有一个数据是32,总体均值为26,根据其总体均值为24可知其连续5天的日平均温度均不低于22.则肯定进入夏季的地区有甲、乙、丙三地.故选D.32.设抛物线C:y2=3px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()

A.y2=4x或y2=8x

B.y2=2x或y2=8x

C.y2=4x或y2=16x

D.y2=2x或y2=16x答案:C33.△OAB中,OA=a,OB=b,OP=p,若p=t(a|a|+b|b|),t∈R,则点P一定在()A.∠AOB平分线所在直线上B.线段AB中垂线上C.AB边所在直线上D.AB边的中线上答案:∵△OAB中,OA=a,OB=b,OP=p,p=t(a|a|+b|b|),t∈R,∵a|a|

和b|b|

是△OAB中边OA、OB上的单位向量,∴(a|a|+b|b|

)在∠AOB平分线线上,∴t(a|a|+b|b|

)在∠AOB平分线线上,∴则点P一定在∠AOB平分线线上,故选A.34.4位学生与2位教师并坐合影留念,针对下列各种坐法,试问:各有多少种不同的坐法?(用数字作答)

(1)教师必须坐在中间;

(2)教师不能坐在两端,但要坐在一起;

(3)教师不能坐在两端,且不能相邻.答案:(1)先排4位学生,有A44种坐法,2位教师坐在中间,可以交换位置,有A22种坐法,则共有A22A44=48种坐法;(2)先排4位学生,有A44种坐法,2位教师坐在一起,将其看成一个整体,可以交换位置,有2种坐法,将这个“整体”插在4个学生的空位中,又由教师不能坐在两端,则有3个空位可选,则共有2A44A31=144种坐法;(3)先排4位学生,有A44种坐法,教师不能相邻,将其依次插在4个学生的空位中,又由教师不能坐在两端,则有3个空位可选,有A32种坐法,则共有A44A32=144种坐法..35.

008年北京成功举办了第29届奥运会,中国取得了51金、21银、28铜的骄人成绩.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷赛前准备用12000元预定15张下表中球类比赛的门票:

比赛项目

票价(元/场)

篮球

1000

足球

800

乒乓球

500

若在准备资金允许的范围内和总票数不变的前提下,这个球迷

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论