版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年重庆城市职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.口袋内有100个大小相同的红球、白球和黑球,其中有45个红球,从中摸出1个球,摸出白球的概率为0.23,则摸出黑球的概率为______.答案:∵口袋内有100个大小相同的红球、白球和黑球从中摸出1个球,摸出白球的概率为0.23,∴口袋内白球数为32个,又∵有45个红球,∴为32个.从中摸出1个球,摸出黑球的概率为32100=0.32故为0.322.“所有9的倍数(M)都是3的倍数(P),某奇数(S)是9的倍数(M),故此奇数(S)是3的倍数(P)”,上述推理是()
A.小前提错
B.结论错
C.正确的
D.大前提错答案:C3.随机变量X的概率分布规律为P(X=n)=(n=1,2,3,4),其中a是常数,则P()的值为()
A.
B.
C.
D.
答案:D4.(本题满分12分)已知对任意的平面向量,把绕其起点沿逆时针方向旋转角,得到向量,叫做把点B绕点A逆时针方向旋转角得到点P
①已知平面内的点A(1,2),B,把点B绕点A沿逆时针方向旋转后得到点P,求点P的坐标
②设平面内曲线C上的每一点绕逆时针方向旋转后得到的点的轨迹是曲线,求原来曲线C的方程.答案:解:
……2分
……6分
解得x="0,y="-1
……7分②
…………10分
即…………11分又x’2-y’2="1
"……12分
……13分
化简得:
……14分解析:略5.圆x2+y2=1在矩阵10012对应的变换作用下的结果为______.答案:设P(x,y)是圆C:x2+y2=1上的任一点,P1(x′,y′)是P(x,y)在矩阵A=10012对应变换作用下新曲线上的对应点,则x′y′=10012xy=1x12y即x′=xy′=12y,所以x=x′y=2y′,将x=x′y=2y′代入x2+y2=1,得x2+4y2=1,(8分)故为:x2+4y2=1.6.一段双行道隧道的横截面边界由椭圆的上半部分和矩形的三边组成,如图所示.一辆卡车运载一个长方形的集装箱,此箱平放在车上与车同宽,车与箱的高度共计4.2米,箱宽3米,若要求通过隧道时,车体不得超过中线.试问这辆卡车是否能通过此隧道,请说明理由.答案:建立如图所示的坐标系,则此隧道横截面的椭圆上半部分方程为:x225+y24=1,y≥0.令x=3,则代入椭圆方程,解得y=1.6,因为1.6+3=4.6>4.2,所以,卡车能够通过此隧道.7.下列说法正确的是()
A.互斥事件一定是对立事件,对立事件不一定是互斥事件
B.互斥事件不一定是对立事件,对立事件一定是互斥事件
C.事件A,B中至少有一个发生的概率一定比A,B中恰有一个发生的概率大
D.事件A,B同时发生的概率一定比A,B中恰有一个发生的概率小答案:B8.已知x、y的取值如下表所示:
x0134y2.24.34.86.7若从散点图分析,y与x线性相关,且
y=0.95x+
a,则
a的值等于()A.2.6B.6.3C.2D.4.5答案:∵.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5,∴这组数据的样本中心点是(2,4.5)∵y与x线性相关,且y=0.95x+a,∴4.5=0.95×2+a,∴a=2.6,故选A.9.有一段“三段论”推理是这样的:对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点,因为函数f(x)=x3在x=0处的导数值f'(0)=0,所以,x=0是函数f(x)=x3的极值点.以上推理中()
A.大前提错误
B.小前提错误
C.推理形式错误
D.结论正确答案:A10.某校为提高教学质量进行教改实验,设有试验班和对照班.经过两个月的教学试验,进行了一次检测,试验班与对照班成绩统计如下的2×2列联表所示(单位:人),则其中m=______,n=______.
80及80分以下80分以上合计试验班321850对照班12m50合计4456n答案:由题意,18+m=56,50+50=n,∴m=38.n=100,故为38,010.11.求圆Cx=3+4cosθy=-2+4sinθ(θ为参数)的圆心坐标,和圆C关于直线x-y=0对称的圆C′的普通方程.答案:圆Cx=3+4cosθy=-2+4sinθ(θ为参数)
即
(x-3)2+(y+2)2=16,表示圆心坐标(3,-2),半径等于4的圆.C(3,-2)关于直线x-y=0对称的点C′(-2,3),半径还是4,故圆C′的普通方程(x+2)2+(y-3)2=16.12.已知a,b,c是正实数,且a+b+c=1,则的最小值为(
)A.3B.6C.9D.12答案:C解析:本题考查均值不等式等知识。将1代入中,得,当且仅当,又,故时不等式取,选C。13.点B是点A(1,2,3)在坐标平面yOz内的正投影,则|OB|等于()
A.
B.
C.
D.答案:B14.若以(y+2)2=4(x-1)上任一点P为圆心作与y轴相切的圆,那么这些圆必定过平面内的点()
A.(1,-2)
B.(3,-2)
C.(2,-2)
D.不存在这样的点答案:C15.现有编号分别为1,2,3,4,5,6,7,8,9的九道不同的数学题,某同学从这九道题中一次随机抽取两道题,每题被抽到的概率是相等的,用符号(x,y)表示事件“抽到两题的编号分别为x,y,且x<y”.
(1)共有多少个基本事件?并列举出来.
(2)求该同学所抽取的两道题的编号之和小于17但不小于11的概率.答案:(1)共有36种基本事件,列举如下:(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9);(2)设事件A=“两道题的编号之和小于17但不小于11”则事件A包含事件有:(2,9),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9)共15种.∴P(A)=1536=512.16.设椭圆=1(a>b>0)的离心率为,右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)()
A.必在圆x2+y2=2内
B.必在圆x2+y2=2上
C.必在圆x2+y2=2外
D.以上三种情形都有可能答案:A17.定义直线关于圆的圆心距单位λ为圆心到直线的距离与圆的半径之比.若圆C满足:①与x轴相切于点A(3,0);②直线y=x关于圆C的圆心距单位λ=2,试写出一个满足条件的圆C的方程______.答案:由题意可得圆心的横坐标为3,设圆心的纵坐标为r,则半径为|r|>0,则圆心的坐标为(3,r).设圆心到直线y=x的距离为d,d=|3-r|2,则由题意可得λ=d|r|=2,求得r=1,或r=-3,故一个满足条件的圆C的方程是(x-3)2+(y-1)2=1,故为(x-3)2+(y-1)2=118.圆x2+y2=1和圆x2+y2-6y+5=0的位置关系是()
A.外切
B.内切
C.外离
D.内含答案:A19.如图,D、E分别在AB、AC上,下列条件不能判定△ADE与△ABC相似的有()
A.∠AED=∠B
B.
C.
D.DE∥BC
答案:C20.已知回归直线的斜率的估计值是1.23,样本中心点为(4,5),若解释变量的值为10,则预报变量的值约为()A.16.3B.17.3C.12.38D.2.03答案:设回归方程为y=1.23x+b,∵样本中心点为(4,5),∴5=4.92+b∴b=0.08∴y=1.23x+0.08x=10时,y=12.38故选C.21.如果关于x的不等式组有解,那么实数a的取值范围(
)
A.(-∞,-3)∪(1,+∞)
B.(-∞,-1)∪(3,+∞)
C.(-1,3)
D.(-3,1)答案:C22.若命题p:2是偶数;命题q:2是5的约数,则下列命题中为真命题的是()A.p∧qB.(¬p)∧(¬q)C.¬pD.p∨q答案:∵2是偶数,∴命题p为真命题∵2不是5的约数,∴命题q为假命题∴p或q为真命题故选D23.已知=(3,4),=(5,12),与则夹角的余弦为()
A.
B.
C.
D.答案:A24.过抛物线y2=4x的焦点作一条直线与抛物线相交于A、B两点,它们的横坐标之和等于5,则这样的直线()
A.有且仅有一条
B.有且仅有两条
C.有无穷多条
D.不存在答案:B25.设a∈(0,1)∪(1,+∞),对任意的x∈(0,12],总有4x≤logax恒成立,则实数a的取值范围是______.答案:∵a∈(0,1)∪(1,+∞),当0<x≤12时,函数y=4x的图象如下图所示:∵对任意的x∈(0,12],总有4x≤logax恒成立,若不等式4x<logax恒成立,则y=logax的图象恒在y=4x的图象的上方(如图中虚线所示)∵y=logax的图象与y=4x的图象交于(12,2)点时,a=22,故虚线所示的y=logax的图象对应的底数a应满足22<a<1.故为:(22,1).26.α为第一象限角是sinαcosα>0的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:若α为第一象限角,则sinα>0,cosα>0,所以sinαcosα>0,成立.若sinαcosα>0,则①sinα>0,cosα>0,此时α为第一象限角.或②sinα<0,cosα<0,此时α为第三象限角.所以α为第一象限角是sinαcosα>0的充分不必要条件.故选A.27.满足{1,2}∪A={1,2,3}的集合A的个数为______.答案:由{1,2}∪A={1,2,3},所以A={3},或{1,3},或{2,3},或{1,2,3}.所以集合A的个数为4.28.以原点为圆心,且截直线3x+4y+15=0所得弦长为8的圆的方程是()A.x2+y2=5B.x2+y2=16C.x2+y2=4D.x2+y2=25答案:弦心距是:1525=3,弦长为8,所以半径是5所求圆的方程是:x2+y2=25故选D.29.”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的()
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件答案:C30.每一吨铸铁成本y
(元)与铸件废品率x%建立的回归方程y=56+8x,下列说法正确的是()A.废品率每增加1%,成本每吨增加64元B.废品率每增加1%,成本每吨增加8%C.废品率每增加1%,成本每吨增加8元D.如果废品率增加1%,则每吨成本为56元答案:∵回归方程y=56+8x,∴当x增加一个单位时,对应的y要增加8个单位,这里是平均增加8个单位,故选C.31.过点(-1,3)且垂直于直线x-2y+3=0的直线方程为(
)
A.2x+y-1=0
B.2x+y-5=0
C.x+2y-5=0
D.x-2y+7=0答案:A32.已知三个数a=60.7,b=0.76,c=log0.76,则a,b,c从小到大的顺序为______.答案:因为a=60.7>60=1,b=0.76<0.70=1,且b>0,c=log0.76<0,所以c<b<a.故为c<b<a.33.已知M(x0,y0)是圆x2+y2=r2(r>0)内异于圆心的一点,则直线x0x+y0y=r2与此圆有何种位置关系?答案:圆心O(0,0)到直线x0x+y0y=r2的距离为d=r2x20+y20.∵P(x0,y0)在圆内,∴x20+y20<r.则有d>r,故直线和圆相离.34.已知实数x、y、z满足x+2y+3z=1,则x2+y2+z2的最小值为______.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2+)(12+22+32)故x2+y2+z2≥114,当且仅当x1=y2=z3,即:x2+y2+z2的最小值为114.故为:11435.下列叙述中:
①变量间关系有函数关系,还有相关关系;②回归函数即用函数关系近似地描述相关关系;③=x1+x2+…+xn;④线性回归方程一定可以近似地表示所有相关关系.其中正确的有()
A.①②③
B.①②④
C.①③
D.③④答案:A36.棱长为2的正方体ABCD-A1B1C1D1中,=(
)
A.
B.4
C.
D.-4答案:D37.已知向量a=2e1-3e2,b=2e1+3e2,其中e1、e2不共线,向量c=2e1-9e2.问是否存在这样的实数λ、μ,使向量d=λa+μb与c共线?答案:∵d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,若d与c共线,则存在实数k≠0,使d=kc,即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,由2λ+2μ=2k-3λ+3μ=-9k得λ=-2μ.故存在这样的实数λ、μ,只要λ=-2μ,就能使d与c共线.38.试指出函数y=3x的图象经过怎样的变换,可以得到函数y=(13)x+1+2的图象.答案:把函数y=3x的图象经过3次变换,可得函数y=(13)x+1+2的图象,步骤如下:y=3x沿y轴对称y=(13)x左移一个单位y=(13)x+1上移2个单位y=(13)x+1+2.39.若直线过点(1,2),(),则此直线的倾斜角是()
A.60°
B.45°
C.30°
D.90°答案:C40.已知x∈R,a=x2+12,b=2-x,c=x2-x+1,试证明a,b,c至少有一个不小于1.答案:证明:假设a,b,c均小于1,即a<1,b<1,c<1,则有a+b+c<3而a+b+c=2x2-2x+12+3=2(x-12)2+3≥3,两者矛盾;故a,b,c至少有一个不小于1.41.已知向量a、b的夹角为60°,且|a|=2,|b|=1,则|a+2b|=______;向量a与向量a+2b的夹角的大小为______.答案:∵a?b=|a|?|b|cos60°=1,∴|a+2b|=(a+2b)2=4+4+4a?b=23,设向量a与向量a+2b的夹角的大小为θ,∵a?(a+2b)=2×23cosθ=43cosθ,a?(a+2b)=a2+2a?b=4+2=6,∴43cosθ=6,cosθ=32,∴θ=30°,故为23,30°.42.由数字0、1、2、3、4可组成不同的三位数的个数是()
A.100
B.125
C.64
D.80答案:A43.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的一个焦点是F2(2,0),且b=3a.
(1)求双曲线C的方程;
(2)设经过焦点F2的直线l的一个法向量为(m,1),当直线l与双曲线C的右支相交于A,B不同的两点时,求实数m的取值范围;并证明AB中点M在曲线3(x-1)2-y2=3上.
(3)设(2)中直线l与双曲线C的右支相交于A,B两点,问是否存在实数m,使得∠AOB为锐角?若存在,请求出m的范围;若不存在,请说明理由.答案:(1)c=2c2=a2+b2∴4=a2+3a2∴a2=1,b2=3,∴双曲线为x2-y23=1.(2)l:m(x-2)+y=0由y=-mx+2mx2-y23=1得(3-m2)x2+4m2x-4m2-3=0由△>0得4m4+(3-m2)(4m2+3)>012m2+9-3m2>0即m2+1>0恒成立又x1+x2>0x1•x2>04m2m2-3>04m2+3m2-3>0∴m2>3∴m∈(-∞,-3)∪(3,+∞)设A(x1,y1),B(x2,y2),则x1+x22=2m2m2-3y1+y22=-2m3m2-3+2m=-6mm2-3∴AB中点M(2m2m2-3,-6mm2-3)∵3(2m2m2-3-1)2-36m2(m2-3)2=3×(m2+3)2(m2-3)2-36m2(m2-3)2=3•m4+6m2+9-12m2(m2-3)2=3∴M在曲线3(x-1)2-y2=3上.(3)A(x1,y1),B(x2,y2),设存在实数m,使∠AOB为锐角,则OA•OB>0∴x1x2+y1y2>0因为y1y2=(-mx1+2m)(-mx2+2m)=m2x1x2-2m2(x1+x2)+4m2∴(1+m2)x1x2-2m2(x1+x2)+4m2>0∴(1+m2)(4m2+3)-8m4+4m2(m2-3)>0即7m2+3-12m2>0∴m2<35,与m2>3矛盾∴不存在44.已知正方体ABCD-A1B1C1D1中,M、N分别为BB1、C1D1的中点,建立适当的坐标系,求平面AMN的法向量.答案:(-3,2,-4)为平面AMN的一个法向量.解析:以D为原点,DA、DC、DD1所在直线为坐标轴建立空间直角坐标系.(如图所示).设棱长为1,则A(1,0,0),M(1,1,),N(0,,1).∴=(0,1,),=(-1,,1).设平面AMN的法向量n=(x,y,z)∴令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).∴(-3,2,-4)为平面AMN的一个法向量.45.不等式-x≤1的解集是(
)。答案:{x|0≤x≤2}46.已知圆C:x2+y2-4y-6y+12=0,求:
(1)过点A(3,5)的圆的切线方程;
(2)在两条坐标轴上截距相等的圆的切线方程.答案:(l)设过点A(3,5)的直线ɭ的方程为y-5=k(x-3).因为直线ɭ与⊙C相切,而圆心为C(2,3),则|2k-3-3k+5|k2+1=1,解得k=34所以切线方程为y-5=34(x-3),即3x-4y+11=0.由于过圆外一点A与圆相切的直线有两条,因此另一条切线方程为x=3.(2)因为原点在圆外,所以设在两坐标轴上截距相等的直线方程x+y=a或y=kx.由直线与圆相切得,|2+3-a|2=1或|2k-3|k2+1=1,解得a=5士2,k=6±223故所求的切线方程为x+y=5士2或y=6±223x.47.已知两个点M(-5,0)和N(5,0),若直线上存在点P,使|PM|-|PN|=6,则称该直线为“B型直线”给出下列直线①y=x+1;②y=2;③y=x④y=2x+1;其中为“B型直线”的是()
A.①③
B.①②
C.③④
D.①④答案:B48.由圆C:x=2+cosθy=3+sinθ(θ为参数)求圆的标准方程.答案:圆的参数方程x=2+cosθy=3+sinθ变形为:cosθ=2-xsinθ=3-y,根据同角的三角函数关系式cos2θ+sin2θ=1,可得到标准方程:(x-2)2+(y-3)2=1.所以为(x-2)2+(y-3)2=1.49.下列函数图象中,正确的是()
A.
B.
C.
D.
答案:C50.直线y=3x+1的斜率是()A.1B.2C.3D.4答案:因为直线y=3x+1是直线的斜截式方程,所以直线的斜率是3.故选C.第2卷一.综合题(共50题)1.“因为指数函数y=ax是增函数(大前提),而y=()x是指数函数(小前提),所以y=()x是增函数(结论)”,上面推理的错误是()
A.大前提错导致结论错
B.小前提错导致结论错
C.推理形式错导致结论错
D.大前提和小前提错都导致结论错答案:A2.化简的结果是()
A.a2
B.a
C.a
D.a答案:C3.双曲线(n>1)的两焦点为F1、、F2,P在双曲线上,且满足|PF1|+|PF2|=2,则△P
F1F2的面积为()
A.
B.1
C.2
D.4答案:B4.在直角梯形ABCD中,已知A(-5,-10),B(15,0),C(5,10),AD是腰且垂直两底,求顶点D的坐标.答案:设D(x,y),则∵DC∥AB,∴y-10x-5=0+1015+5,又∵DA⊥AB,∴y+10x+5•0+1015+5=-1.由以上方程组解得:x=-11,y=2.∴D(-11,2).5.因为样本是总体的一部分,是由某些个体所组成的,尽管对总体具有一定的代表性,但并不等于总体,为什么不把所有个体考查一遍,使样本就是总体?答案:如果样本就是总体,抽样调查就变成普查了,尽管这样确实反映了实际情况,但不是统计的基本思想,其操作性、可行性、人力、物力等方面,都会有制约因素存在,何况有些调查是破坏性的,如考查一批玻璃的抗碎能力,灯泡的使用寿命等,普查就全破坏了.6.叙述并证明勾股定理.答案:证明:如图左边的正方形是由1个边长为a的正方形和1个边长为b的正方形以及4个直角边分别为a、b,斜边为c的直角三角形拼成的.右边的正方形是由1个边长为c的正方形和4个直角边分别为a、b,斜边为c的直角三角形拼成的.因为这两个正方形的面积相等(边长都是a+b),所以可以列出等式a2+b2+4×12ab=c2+4×12ab,化简得a2+b2=c2.下面是一个错误证法:勾股定理:直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理证明:作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵∠BCA=90°,QP∥BC,∴∠MPC=90°,∵BM⊥PQ,∴∠BMP=90°,∴BCPM是一个矩形,即∠MBC=90°.∵∠QBM+∠MBA=∠QBA=90°,∠ABC+∠MBA=∠MBC=90°,∴∠QBM=∠ABC,又∵∠BMP=90°,∠BCA=90°,BQ=BA=c,∴Rt△BMQ≌Rt△BCA.同理可证Rt△QNF≌Rt△AEF.即a2+b2=c27.直线l1:x+3=0与直线l2:x+3y-1=0的夹角的大小为______.答案:由于直线l1:x+3=0的斜率不存在,故它的倾斜角为90°,直线l2:x+3y-1=0的斜率为-33,故它的倾斜角为150>,故这两条直线的夹角为60°,故为60°.8.
(理)
在长方体ABCD-A1B1C1D1中,以为基底表示,其结果是()
A.
B.
C.
D.答案:C9.如图,在空间直角坐标系中,已知直三棱柱的顶点A在x轴上,AB平行于y轴,侧棱AA1平行于z轴.当顶点C在y轴正半轴上运动时,以下关于此直三棱柱三视图的表述正确的是()
A.该三棱柱主视图的投影不发生变化
B.该三棱柱左视图的投影不发生变化
C.该三棱柱俯视图的投影不发生变化
D.该三棱柱三个视图的投影都不发生变化
答案:B10.已知、分别是的外接圆和内切圆;证明:过上的任意一点,都可作一个三角形,使得、分别是的外接圆和内切圆.答案:略解析:证:如图,设,分别是的外接圆和内切圆半径,延长交于,则,,延长交于;则,即;过分别作的切线,在上,连,则平分,只要证,也与相切;设,则是的中点,连,则,,,所以,由于在角的平分线上,因此点是的内心,(这是由于,,而,所以,点是的内心).即弦与相切.11.对于函数f(x),在使f(x)≤M成立的所有常数M中,我们把M的最小值称为函数f(x)的“上确界”则函数f(x)=(x+1)2x2+1的上确界为()A.14B.12C.2D.4答案:因为f(x)=(x+1)2x2+1=x2+2x+1x2+1=1+2xx2+1又因为x2+1=|x|2+1≥2|x|≥2x∴2xx2+1≤1.∴f(x)≤2.即在使f(x)≤M成立的所有常数M中,M的最小值为2.故选C.12.(选做题)参数方程中当t为参数时,化为普通方程为(
)。答案:x2-y2=113.已知f(1,1)=1,f(m,n)∈N*(m、n∈N*),且对任意m、n∈N*都有:
①f(m,n+1)=f(m,n)+2;②f(m+1,1)=2f(m,1).给出以下四个结论:
(1)f(1,2)=3;
(2)f(1,5)=9;
(3)f(5,1)=16;
(4)f(5,6)=26.其中正确的为______.答案:∵f(1,1)=1,f(m,n+1)=f(m,n)+2;f(m+1,1)=2f(m,1)(1)f(1,2)=f(1,1)+2=3;故(1)正确(2)f(1,5)=f(1,4)+2=f(1,3)+4=f(1,2)+6=f(1,1)+8=9;故(2)正确(3)f(5,1)=2f(4,1)=4f(3,1)=8f(2,1)=16f(1,1)=16;故(3)正确(4)f(5,6)=f(5,5)+2=f(5,4)+4=f(5,3)+6=f(5,2)=8=f(5,1)+10=16+10=26;故(4)正确故为(1)(2)(3)(4)14.若f(x)=ax(a>0且a≠1)的反函数g(x)满足:g()<0,则函数f(x)的图象向左平移一个单位后的图象大致是下图中的()
A.
B.
C.
D.
答案:B15.椭圆的两个焦点坐标是()
A.(-3,5),(-3,-3)
B.(3,3),(3,-5)
C.(1,1),(-7,1)
D.(7,-1),(-1,-1)答案:B16.已知圆O的两弦AB和CD延长相交于E,过E点引EF∥CB交AD的延长线于F,过F点作圆O的切线FG,求证:EF=FG.答案:证明:∵FG为⊙O的切线,而FDA为⊙O的割线,∴FG2=FD?FA①又∵EF∥CB,∴∠1=∠2.而∠2=∠3,∴∠1=∠3,∠EFD=∠AFE为公共角∴△EFD∽△AFE,FDEF=EFFA,即EF2=FD?FA②由①,②可得EF2=FG2∴EF=FG.17.若点A(1,2,3),B(-3,2,7),且AC+BC=0,则点C的坐标为______.答案:设C(x,y,z),则AC+BC=(2x+2,2y-4,2z-10)=0,∴x=-1,y=2,z=5.故为(-1,2,5)18.已知复数w满足w-4=(3-2w)i(i为虚数单位),z=5w+|w-2|,求一个以z为根的实系数一元二次方程.答案:[解法一]∵复数w满足w-4=(3-2w)i,∴w(1+2i)=4+3i,∴w(1+2i)(1-2i)=(4+3i)(1-2i),∴5w=10-5i,∴w=2-i.∴z=52-i+|2-i-2|=5(2+i)(2-i)(2+i)+1=2+i+1=3+i.若实系数一元二次方程有虚根z=3+i,则必有共轭虚根.z=3-i.∵z+.z=6,z•.z=10,∴所求的一个一元二次方程可以是x2-6x+10=0.[解法二]设w=a+b,(a,b∈Z),∴a+bi-4=3i-2ai+2b,得a-4=2bb=3-2a解得a=2b=-1,∴w=2-i,以下解法同[解法一].19.已知P:2+2=5,Q:3>2,则下列判断错误的是()A.“P或Q”为真,“非Q”为假B.“P且Q”为假,“非P”为真C.“P且Q”为假,“非P”为假D.“P且Q”为假,“P或Q”为真答案:∵P:2+2=5,假;Q:3>2,真;∴“非P”为真,“非Q”为假,∴“P或Q”为真,“P且Q”为假,∴A,B,D均正确;C错误.故选C.20.若函数f(x)=loga(x+b)的图象如图,其中a,b为常数.则函数g(x)=ax+b的大致图象是(
)
答案:D解析:试题分析:解:由函数f(x)=loga(x+b)的图象为减函数可知0<a<1,f(x)=loga(x+b)的图象由f(x)=logax向左平移可知0<b<1,故函数g(x)=ax+b的大致图象是D故选D.21.对任意的实数k,直线y=kx+1与圆x2+y2=2
的位置关系一定是()
A.相离
B.相切
C.相交但直线不过圆心
D.相交且直线过圆心答案:C22.函数f(x)的定义域为R+,若f(x+y)=f(x)+f(y),f(8)=3,则f(2)=()A.54B.34C.12D.14答案:∵f(x+y)=f(x)+f(y),f(8)=3,∴令x=y=4,则f(8)=2f(4)=3,∴f(4)=32,令x=y=2,f(4)=2f(2)=32,∴f(2)=34.故选B.23.若a>0,b<0,直线y=ax+b的图象可能是()
A.
B.
C.
D.
答案:C24.在直角坐标系中,画出下列向量:
(1)|a|=2,a的方向与x轴正方向的夹角为60°,与y轴正方向的夹角为30°;
(2)|a|=4,a的方向与x轴正方向的夹角为30°,与y轴正方向的夹角为120°;
(3)|a|=42,a的方向与x轴正方向的夹角为135°,与y轴正方向的夹角为135°.答案:由题意作出向量a如右图所示:(1)(2)(3)25.已知||=2,||=,∠AOB=150°,点C在∠AOB内,且∠AOC=30°,设(m,n∈R),则=()
A.
B.
C.
D.答案:B26.i为虚数单位,复数z=i(1-i),则.z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限答案:∵复数z=i(1-i)=1+i,则.z=1-i,它在复平面内的对应点的坐标为(1,-1),故.z在复平面内对应的点在第四象限,故选D.27.从集合M={1,2,3,…,10}选出5个数组成的子集,使得这5个数的任两个数之和都不等于11,则这样的子集有______个.答案:集合{1,2,…,10}中和是11的有:1+10,2+9,3+8,4+7,5+6,选出5个不同的数组成子集,就是从这5组中分别取一个数,而每组的取法有2种,所以这样的子集有:2×2×2×2×2=32故这样的子集有32个故为:3228.已知A(4,1,3),B(2,-5,1),C是线段AB上一点,且,则C点的坐标为()
A.
B.
C.
D.答案:C29.已知双曲线的a=5,c=7,则该双曲线的标准方程为()
A.-=1
B.-=1
C.-=1或-=1
D.-=0或-=0答案:C30.如图,半径为R的球O中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是______.
答案:设圆柱的上底面半径为r,球的半径与上底面夹角为α,则r=Rcosα,圆柱的高为2Rsinα,圆柱的侧面积为:2πR2sin2α,当且仅当α=π4时,sin2α=1,圆柱的侧面积最大,圆柱的侧面积为:2πR2,球的表面积为:4πR2,球的表面积与该圆柱的侧面积之差是:2πR2.故为:2πR231.指数函数y=ax的图象经过点(2,16)则a的值是()A.14B.12C.2D.4答案:设指数函数为y=ax(a>0且a≠1)将(2,16)代入得16=a2解得a=4所以y=4x故选D.32.在平面直角坐标中,h为坐标原点,设向量OA=a,OB=b,其中a=(3,1),b=(1,3),若OC=λa+μb,且0≤λ≤μ≤1,C点所有可能的位置区域用阴影表示正确的是()A.
B.
C.
D.
答案:∵向量OA=a,OB=b,a=(3,1),b=(1,3),OC=λa+μb,∴OC=(3λ,λ)+(μ,3μ)=(3λ+μ,λ+3μ),∵0≤λ≤μ≤1,∴0≤3λ+μ≤4,0≤λ+3μ≤4,且3λ+μ≤λ+3μ.故选A.33.设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若A1A3=λA1A2(λ∈R),A1A4=μA1A2(μ∈R),且1λ+1μ=2,则称A3,A4调和分割A1,A2,已知点C(c,0),D(d,O)(c,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是()A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上答案:由已知可得(c,0)=λ(1,0),(d,0)=μ(1,0),所以λ=c,μ=d,代入1λ+1μ=2得1c+1d=2(1)若C是线段AB的中点,则c=12,代入(1)d不存在,故C不可能是线段AB的中,A错误;同理B错误;若C,D同时在线段AB上,则0≤c≤1,0≤d≤1,代入(1)得c=d=1,此时C和D点重合,与条件矛盾,故C错误.故选D34.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱.这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为h1,h2,h,则h1:h2:h3=()
A.:1:1
B.:2:2
C.:2:
D.:2:答案:B35.将程序补充完整
INPUT
x
m=xMOD2
IF______THEN
PRINT“x是偶数”
ELSE
PRINT“x是奇数”
END
IF
END.答案:本程序的作用是判断出输入的数是奇数还是偶数,由其逻辑关系知,若逻辑是“是”则输出“x是偶数”,若逻辑是“否”,则输出“x是奇数”故判断条件应为m=0故为m=036.已知函数f(x)对其定义域内任意两个实数a,b,当a<b时,都有f(a)<f(b).试用反证法证明:函数f(x)的图象与x轴至多有一个交点.答案:证明:假设函数f(x)的图象与x轴至少有两个交点,…(2分)(1)若f(x)的图象与x轴有两个交点,不妨设两个交点的横坐标分别为x1,x2,且x1<x2,…(5分)由已知,函数f(x)对其定义域内任意实数x1,x2,当x1<x2时,有f(x1)<f(x2).…(7分)又根据假设,x1,x2是函数f(x)的两个零点,所以,f(x1)=f(x2)=0,…(9分)这与f(x1)<f(x2)矛盾,…(10分)所以,函数f(x)的图象不可能与x轴有两个交点.…(11分)(2)若f(x)的图象与x轴交点多于两个,可同理推出矛盾,…(12分)所以,函数f(x)的图象不可能与x轴有两个以上交点.综上,函数f(x)的图象与x轴至多有一个交点…(14分)37.如图程序输出的结果是()
a=3,
b=4,
a=b,
b=a,
PRINTa,b
END
A.3,4
B.4,4
C.3,3
D.4,3答案:B38.A、B、C、D、E五种不同的商品要在货架上排成一排,其中A、B两种商品必须排在一起,而C、D两种商品不能排在一起,则不同的排法共有______种.答案:先把A、B进行排列,有A22种排法,再把A、B看成一个元素,和E进行排列,有A22种排法,最后再把C、D插入进去,有A23种排法,根据分步计数原理可得A22A22A23=24种排法.故为:2439.若向量{}是空间的一个基底,则一定可以与向量构成空间的另一个基底的向量是()
A.
B.
C.
D.答案:C40.直线2x+y-3=0与直线3x+9y+1=0的夹角是()
A.
B.arctan2
C.
D.答案:C41.如图是一个空间几何体的三视图,试用斜二测画法画出它的直观图.(尺寸不作严格要求,但是凡是未用铅笔作图不得分,随手画图也不得分)答案:由题可知题目所述几何体是正六棱台,画法如下:画法:(1)、画轴画x轴、y轴、z轴,使∠x′O′y′=45°,∠x′O′z′=90°
(图1)(2)、画底面以O′为中心,在XOY坐标系内画正六棱台下底面正方形的直观图ABCDEF.在z′轴上取线段O′O1等于正六棱台的高;过O1
画O1M、O1N分别平行O’x′、O′y′,再以O1为中心,画正六棱台上底面正方形的直观图A′B′C′E′F′(3)、成图连接AA′、BB′、CC′、DD′、EE′、FF′,并且加以整理,就得到正六棱台的直观图
(如图2).42.直线y=2x+1的参数方程是()
A.(t为参数)
B.(t为参数)
C.(t为参数)
D.(θ为参数)
答案:B43.某电厂冷却塔的外形是如图所示双曲线的一部分绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A、A′是双曲线的顶点,C、C′是冷却塔上口直径的两个端点,B、B′是下底直径的两个端点,已知AA′=14m,CC′=18m,BB′=22m,塔高20m.
(Ⅰ)建立坐标系并写出该双曲线方程;
(Ⅱ)求冷却塔的容积(精确到10m3,塔壁厚度不计,π取3.14).答案:(I)如图建立直角坐标系xOy,AA′在x轴上,AA′的中点为坐标原点O,CC′与BB′平行于x轴.设双曲线方程为x2a2-y2b2=1(a>0,b>0),则a=12AA′=7.又设B(11,y1),C(9,y2),因为点B、C在双曲线上,所以有11272-y21b2=1,①9272-y22b2=1,②由题意知y2-y1=20.③由①、②、③得y1=-12,y2=8,b=72.故双曲线方程为x249-y298=1;(II)由双曲线方程得x2=12y2+49.设冷却塔的容积为V(m3),则V=π∫y2y1x2dy=π∫8-12(12y2+49)dy=π(16y3+49y)|8-12,∴V≈4.25×103(m3).答:冷却塔的容积为4.25×103(m3).44.某水产试验厂实行某种鱼的人工孵化,10000个卵能孵化出7645尾鱼苗.根据概率的统计定义解答下列问题:
(1)求这种鱼卵的孵化概率(孵化率);
(2)30000个鱼卵大约能孵化多少尾鱼苗?
(3)要孵化5000尾鱼苗,大概得准备多少鱼卵?(精确到百位)答案:(1)这种鱼卵的孵化概率为:764510000=0.7645(2)由(1)知,30000个鱼卵大约能孵化:30000×0.7645=22935尾鱼苗(3)要孵化5000尾鱼苗,需准备50000.7645=6500个鱼卵.45.“所有10的倍数都是5的倍数,某数是10的倍数,则该数是5的倍数,”上述推理()
A.完全正确
B.推理形式不正确
C.错误,因为大小前提不一致
D.错误,因为大前提错误答案:A46.已知直线的参数方程为x=1+ty=3+2t.(t为参数),圆的极坐标方程为ρ=2cosθ+4sinθ.
(I)求直线的普通方程和圆的直角坐标方程;
(II)求直线被圆截得的弦长.答案:(I)直线的普通方程为:2x-y+1=0;圆的直角坐标方程为:(x-1)2+(y-2)2=5(4分)(II)圆心到直线的距离d=55,直线被圆截得的弦长L=2r2-d2=4305(10分)47.在△ABC中,“A=45°”是“sinA=22”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:当A=45°时,sinA=22成立.若当A=135°时,满足sinA=22.所以,“A=45°”是“sinA=22”的充分不必要条件.故选A.48.已知=(1,2),=(-3,2),k+与-3垂直时,k的值为(
)
A.17
B.18
C.19
D.20答案:C49.在某路段检测点对200辆汽车的车速进行检测,检测结果表示为如图所示的频率分布直方图,则车速不小于90km/h的汽车有辆.()A.60B.90C.120D.150答案:频率=频率组距×组距=(0.02+0.01)×10=0.3,频数=频率×样本总数=200×0.3=60(辆).故选A.50.已知M和N分别是四面体OABC的边OA,BC的中点,且,若=a,=b,=c,则用a,b,c表示为()
A.
B.
C.
D.
答案:B第3卷一.综合题(共50题)1.用反证法证明“a+b=1”时的反设为()
A.a+b>1且a+b<1
B.a+b>1
C.a+b>1或a+b<1
D.a+b<1答案:C2.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标“△”的面的方位()
A.南
B.北
C.西
D.下
答案:B3.△ABC是边长为1的正三角形,那么△ABC的斜二测平面直观图△A′B′C′的面积为(
)
A.
B.
C.
D.答案:D4.已知l∥α,且l的方向向量为(2,-8,1),平面α的法向量为(1,y,2),则y=______.答案:∵l∥α,∴l的方向向量(2,-8,1)与平面α的法向量(1,y,2)垂直,∴2×1-8×y+2=0,解得y=12.故为12.5.某班有40名学生,其中有15人是共青团员.现将全班分成4个小组,第一组有学生10人,共青团员4人,从该班任选一个学生代表.在选到的学生代表是共青团员的条件下,他又是第一组学生的概率为()A.415B.514C.14D.34答案:由于所有的共青团员共有15人,而第一小组有4人是共青团员,故在选到的学生代表是共青团员的条件下,他又是第一组学生的概率为415,故选A.6.将椭圆x2+6y2-2x-12y-13=0按向量a平移,使中心与原点重合,则a的坐标是()A.(-1,1)B.(1,-1)C.(-1,-1)D.(1,1)答案:椭圆方程x2+6y2-2x-12y-13=0变形为:(x-1)2+6(y-1)2=20,则椭圆中心(1,1),即需按a=(-1,-1)平移,中心与原点重合.故选C.7.若点P(a,b)在圆C:x2+y2=1的外部,则直线ax+by+1=0与圆C的位置关系是()
A.相切
B.相离
C.相交
D.相交或相切答案:C8.已知直线ax+by+c=0(abc≠0)与圆x2+y2=1相切,则三条边长分别为|a|、|b|、|c|的三角形()
A.是锐角三角形
B.是直角三角形
C.是钝角三角形
D.不存在答案:B9.已知|a|=8,e是单位向量,当它们之间的夹角为π3时,a在e方向上的投影为
______.答案:a在e方向上的投影为a?e=|a||e|cosπ3=4故为:410.某年级共有210名同学参加数学期中考试,随机抽取10名同学成绩如下:
成绩(分)506173859094人数221212则总体标准差的点估计值为______(结果精确到0.01).答案:由题意知本题需要先做出这组数据的平均数50×2+61×2+73+2×85+90+2×9410=74.9,这组数据的总体方差是(2×24.92+1.92+2×13.92+15.12+2×19.12)÷10=309.76,∴总体标准差是309.76≈17.60,故为:17.60.11.已知直线ax+by+c=0(abc≠0)与圆x2+y2=1相离,则以三条边长分别为|a|,|b|,|c|所构成的三角形的形状是______.答案:直线ax+by+c=0(abc≠0)与圆x2+y2=1相离,即|c|a2+b2>
1即|c|2>a2+b2三角形是钝角三角形.故为:钝角三角形.12.mx+ny=1(mn≠0)与两坐标轴围成的三角形面积为______.答案:由mx+ny=1(mn≠0),得x1m+y1n=1,所以mx+ny=1(mn≠0)在两坐标轴上的截距分别为1m,1n.则mx+ny=1(mn≠0)与两坐标轴围成的三角形面积为12|mn|.故为12|mn|.13.一支田径队有男运动员112人,女运动员84人,用分层抽样的方法从全体男运动员中抽出了32人,则应该从女运动员中抽出的人数为()
A.12
B.13
C.24
D.28答案:C14.若图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则()
A.k1<k2<k3
B.k3<k1<k2
C.k3<k2<k1
D.k1<k3<k2
答案:D15.双曲线x2n-y2=1(n>1)的两个焦点为F1,F2,P在双曲线上,且满足|PF1|+|PF2|=2n+2,则△PF1F2的面积为______.答案:令|PF1|=x,|PF2|=y,依题意可知x+y=2n+2x-y=2n解得x=n+2+n,y=n+2-n,∴x2+y2=(2n+2+n)2+(2n+2-n)2=4n+4∵|F1F2|=2n+1∴|F1F2|2=4n+4∴x2+y2|F1F2|2∴△PF1F2为直角三角形∴△PF1F2的面积为12xy=(2n+2+n)(n+2-n)=1故为:1.16.命题“若a>3,则a>5”的逆命题是______.答案:∵原命题“若a>3,则a>5”的条件是a>3,结论是a>5∴逆命题是“若a>5,则a>3”故为:若a>5,则a>317.某学校为了解该校1200名男生的百米成绩(单位:秒),随机选择了50名学生进行调查.如图是这50名学生百米成绩的频率分布直方图.根据样本的频率分布,估计这1200名学生中成绩在[13,15](单位:秒)内的人数大约是______.答案:∵由图知,前面两个小矩形的面积=0.02×1+0.18×1=0.2,即频率,∴1200名学生中成绩在[13,15](单位:s)内的人数大约是0.2×1200=240.故为240.18.(坐标系与参数方程选做题)点P(-3,0)到曲线x=t2y=2t(其中参数t∈R)上的点的最短距离为______.答案:设点Q(t2,2t)为曲线上的任意一点,则|PQ|=(t2+3)2+(2t)2=(t2+5)2-16≥52-16=3,当且仅当t=0取等号,此时Q(0,0).故点P(-3,0)到曲线x=t2y=2t(其中参数t∈R)上的点的最短距离为3.故为3.19.(本小题满分12分)
如图,已知椭圆C1的中心在圆点O,长轴左、右端点M、N在x轴上,椭圆C1的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C1交于两点,这四点按纵坐标从大到小依次为A、B、C、D.
(I)设e=,求|BC|与|AD|的比值;
(II)当e变化时,是否存在直线l,使得BO//AN,并说明理由.答案:(II)t=0时的l不符合题意,t≠0时,BO//AN当且仅当BO的斜率kBO与AN的斜率kAN相等,即,解得。因为,又,所以,解得。所以当时,不存在直线l,使得BO//AN;当时,存在直线l使得BO//AN。解析:略20.有一个容量为66的样本,数据的分组及各组的频数如下:
[11.5,15.5)2[15.5,19.5)4[19.5,23.5)9[23.5,27.5)18
[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5)3
根据样本的频率分布估计,大于或等于31.5的数据约占()A.211B.13C.12D.23答案:根据所给的数据的分组和各组的频数知道,大于或等于31.5的数据有[31.5,35.5)12;[35.5,39.5)7;[39.5,43.5)3,可以得到共有12+7+3=22,∵本组数据共有66个,∴大于或等于31.5的数据约占2266=13,故选B21.直三棱柱ABC-A1B1C1中,若CA=a,CB=b,CC1=c,则A1B=()A.a+b-cB.a-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-c+b-a故选D.22.设椭圆C1的离心率为513,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为
______答案:根据题意可知椭圆方程中的a=13,∵ca=513∴c=5根据双曲线的定义可知曲线C2为双曲线,其中半焦距为5,实轴长为8∴虚轴长为225-16=6∴双曲线方程为x216-y29=1故为:x216-y29=123.求由曲线围成的图形的面积.答案:面积为解析:当,时,方程化成,即.上式表示圆心在,半径为的圆.所以,当,时,方程表示在第一象限的部分以及轴,轴负半轴上的点,.同理,当,时,方程表示在第四象限的部分以及轴负半轴上的点;当,时,方程表示圆在第二象限的部分以及轴负半轴上的点;当,时,方程表示圆在第三象限部分.以上合起来构成如图所示的图形,面积为.24.直线kx-y+1=3k,当k变动时,所有直线都通过定点
A.(0,0)
B.(0,1)
C.(3,1)
D.(2,1)答案:C25.平面α的一个法向量为v1=(1,2,1),平面β的一个法向量为为v2=(-2,-4,10),则平面α与平面β()A.平行B.垂直C.相交D.不确定答案:∵平面α的一个法向量为v1=(1,2,1),平面β的一个法向量为v2=(-2,-4,10),∵v1•v2=1×(-2)+2×(-4)+1×10=0∴v1⊥v2,∴平面α⊥平面β故选B26.选修4-2:矩阵与变换
已知矩阵A=33cd,若矩阵A属于特征值6的一个特征向量为α1=11,属于特征值1的一个特征向量为α2=3-2.求矩阵A的逆矩阵.答案:由矩阵A属于特征值6的一个特征向量为α1=11,可得33cd11=611,即c+d=6;由矩阵A属于特征值1的一个特征向量为α2=3-2可得,33cd3-2=3-2,即3c-2d=-2,解得c=2d=4,即A=3324,A逆矩阵是23-12-1312.27.抛掷3颗质地均匀的骰子,求点数和为8的概率______.答案:由题意总的基本事件数为6×6×6=216种点数和为8的事件包含了向上的点的情况有(1,1,6),(1,2,5),(2,2,4),(2,3,3)有四种情况向上点数分别为(1,1,6)的事件包含的基本事件数有3向上点数分别为(1,2,5)的事件包含的基本事件数有6向上点数分别为(2,2,4)的事件包含的基本事件数有3向上点数分别为(2,3,3)的事件包含的基本事件数有3所以点数和为8的事件包含基本事件数是3+6+3+3=15种点数和为8的事件的概率是15216=572故为:572.28.命题“若A∪B=A,则A∩B=B”的否命题是()A.若A∪B≠A,则A∩B≠BB.若A∩B=B,则A∪B=AC.若A∩B≠A,则A∪B≠BD.若A∪B=B,则A∩B=A答案:“若A∪B=A,则A∩B=B”的否命题:“若A∪B≠A则A∩B≠B”故选A.29.已知参数方程x=1+cosθy=sinθ,(参数θ∈[0,2π]),则该曲线上的点与定点A(-1,-1)的距离的最小值是
______.答案:∵参数方程x=1+cosθy=sinθ∴圆的方程为(x-1)2+y2=1∴定点A(-1,-1)到圆心的距离为5∴与定点A(-1,-1)的距离的最小值是d-r=5-1故为5-130.设求证答案:证明略解析:左边-右边===
=
∴原不等式成立。证法二:左边>0,右边>0。∴原不等式成立。31.以A(1,5)、B(5,1)、C(-9,-9)为顶点的三角形是()
A.等边三角形
B.等腰三角形
C.不等边三角形
D.直角三角形答案:B32.根据下面的要求,求满足1+2+3+…+n>500的最小的自然数n.
(1)画出执行该问题的程序框图;
(2)以下是解决该问题的一个程序,但有2处错误,请找出错误并予以更正.答案:(12分)(1)程序框图如图:(两者选其一即可,不唯一)(2)①直到型循环结构是直到满足条件退出循环,While错误,应改成LOOP
UNTIL;②根据循环次数可知输出n+1
应改为输出n;33.用反证法证明:已知x,y∈R,且x+y>2,则x,y中至少有一个大于1.答案:证明:用反证法,假设x,y均不大于1,即x≤1且y≤1,则x+y≤2,这与已知条件x+y>2矛盾,∴x,y中至少有一个大于1,即原命题得证.34.△OAB中,OA=a,OB=b,OP=p,若p=t(a|a|+b|b|),t∈R,则点P一定在()A.∠AOB平分线所在直线上B.线段AB中垂线上C.AB边所在直线上D.AB边的中线上答案:∵△OAB中,OA=a,OB=b,OP=p,p=t(a|a|+b|b|),t∈R,∵a|a|
和b|b|
是△OAB中边OA、OB上的单位向量,∴(a|a|+b|b|
)在∠AOB平分线线上,∴t(a|a|+b|b|
)在∠AOB平分线线上,∴则点P一定在∠AOB平分线线上,故选A.35.已知双曲线x2-y22=1,经过点M(1,1)能否作一条直线l,使直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东松山职业技术学院《文献检索与利用》2023-2024学年第一学期期末试卷
- 广东生态工程职业学院《海洋生物资源调查》2023-2024学年第一学期期末试卷
- 广东青年职业学院《基础医学概论Ⅱ3(病理学)》2023-2024学年第一学期期末试卷
- 七年级上册《5.2.1 解一元一次方程 合并同类项》课件与作业
- 广东南华工商职业学院《飞机装配技术》2023-2024学年第一学期期末试卷
- 广东岭南职业技术学院《素描(1)》2023-2024学年第一学期期末试卷
- 会计年终工作总结
- 2025年人教版七年级数学寒假复习 专题01 有理数(6重点串讲+15考点提升+过关检测)
- 【全程复习方略】2020年高考化学课时提升作业(三十一)-11.1-脂肪烃(人教版-四川专供)
- 【状元之路】2020-2021学年高中数学人教B版必修3双基限时练12
- 七年级上学期期末考试历史试卷及答案(人教版)
- 信念系统课件完整版
- 05G359-3 悬挂运输设备轨道(适用于一般混凝土梁)
- 饮品创业项目计划书
- 外国文学史期末考试题库(含答案)
- GB 18384-2020电动汽车安全要求
- FZ/T 52003-1993丙纶短纤维
- 索拉燃气轮机Titan130介绍
- 某银行操作风险管理讲义
- 快递公司客服外包服务协议
- DB63-T 1789-2021地方标准制定工作规范
评论
0/150
提交评论