2023年郑州电子商务职业学院高职单招(数学)试题库含答案解析_第1页
2023年郑州电子商务职业学院高职单招(数学)试题库含答案解析_第2页
2023年郑州电子商务职业学院高职单招(数学)试题库含答案解析_第3页
2023年郑州电子商务职业学院高职单招(数学)试题库含答案解析_第4页
2023年郑州电子商务职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年郑州电子商务职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.圆锥曲线G的一个焦点是F,与之对应的准线是,过F作直线与G交于A、B两点,以AB为直径作圆M,圆M与的位置关系决定G

是何种曲线之间的关系是:______

圆M与的位置相离相切相交G

是何种曲线答案:设圆锥曲线过焦点F的弦为AB,过A、B分别向相应的准线作垂线AA',BB',则由第二定义得:|AF|=e|AA'|,|BF|=e|BB'|,∴|AF|+|BF|2=|AA′|+|BB′|2

?

e.设以AB为直径的圆半径为r,圆心到准线的距离为d,即有r=de,椭圆的离心率

0<e<1,此时r<d,圆M与准线相离;抛物线的离心率

e=1,此时r=d,圆M与准线相切;双曲线的离心率

e>1,此时r>d,圆M与准线相交.故为:椭圆、抛物线、双曲线.2.若一辆汽车每天行驶的路程比原来多19km,则该汽车在8天内行驶的路程s(km)就超过2200km;若它每天行驶的路程比原来少12km,则它行驶同样的路程s(km)就得花9天多的时间。这辆汽车原来每天行驶的路程(km)的范围是(

A.(259,260)

B.(258,260)

C.(257,260)

D.(256,260)答案:D3.已知函数f(x)=ax,(a>0,a≠1)的图象经过点P(12,12),则常数a的值为()A.2B.4C.12D.14答案:∵函数f(x)=ax,(a>0,a≠1)的图象经过点P(12,12),∴a12=12,?a=14.故选D.4.已知抛物线的顶点在原点,焦点在x轴的正半轴上,F为焦点,A,B,C为抛物线上的三点,且满足FA+FB+FC=0,|FA|+|FB|+|FC|=6,则抛物线的方程为______.答案:设向量FA,FB,FC的坐标分别为(x1,y1)(x2,y2)(x3,y3)由FA+FB+FC=0得x1+x2+x3=0∵XA=x1+p2,同理XB=x2+p2,XC=x3+p2∴|FA|=x1+p2+p2=x1+p,同理有|FB|=x2+p2+p2=x2+p,|FC|=x3+p2+p2=x3+p,又|FA|+|FB|+|FC|=6,∴x1+x2+x3+3p=6,∴p=2,∴抛物线方程为y2=4x.故为:y2=4x.5.A、B为球面上相异两点,则通过A、B两点可作球的大圆有()A.一个B.无穷多个C.零个D.一个或无穷多个答案:如果A,B两点为球面上的两极点(即球直径的两端点)则通过A、B两点可作球的无数个大圆如果A,B两点不是球面上的两极点(即球直径的两端点)则通过A、B两点可作球的一个大圆故选:D6.已知点G是△ABC的重心,O是空间任一点,若OA+OB+OC=λOG,则实数λ=______.答案:由于G是三角形ABC的重心,则有GA+GB+GC=0,OA-OG+OB-OG+OC-OG=0故OA+OB+OC=3OG又由已知OA+OB+OC=λOG故可得λ=3故为:37.某班有40名学生,其中有15人是共青团员.现将全班分成4个小组,第一组有学生10人,共青团员4人,从该班任选一个学生代表.在选到的学生代表是共青团员的条件下,他又是第一组学生的概率为()A.415B.514C.14D.34答案:由于所有的共青团员共有15人,而第一小组有4人是共青团员,故在选到的学生代表是共青团员的条件下,他又是第一组学生的概率为415,故选A.8.将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是()

A.a=bb=a

B.c=b

b=a

a=c

C.b=aa=b

D.a=cc=bb=a答案:B9.如图是一个方形迷宫,甲、乙两人分别位于迷宫的A、B两处,两人同时以每一分钟一格的速度向东、西、南、北四个方向行走,已知甲向东、西行走的概率都为14,向南、北行走的概率为13和p,乙向东、西、南、北四个方向行走的概率均为q

(1)p和q的值;

(2)问最少几分钟,甲、乙二人相遇?并求出最短时间内可以相遇的概率.答案:(1)∵14+14+13+p=1,∴p=16,∵4q=1,∴q=14(2)t=2甲、乙两人可以相遇(如图,在C、D、E三处相遇)

设在C、D、E三处相遇的概率分别为PC、PD、PE,则:PC=(16×16)×(14×14)=1576PD=2(16×14)×2(14×14)=196PE=(14×14)×(14×14)=1256PC+PD+PE=372304即所求的概率为37230410.已知平面向量.a,b的夹角为60°,.a=(3,1),|b|=1,则|.a+2b|=______.答案:∵平面向量.a,b的夹角为60°,.a=(3,1),∴|.a|=2.b2

再由|b|=1,可得.a?b=2×1cos60°=1,∴|.a+2b|=(.a+2b)2=a2+4a?b+4b2=23,故为23.11.已知圆O:x2+y2=5和点A(1,2),则过A且与圆O相切的直线与两坐标轴围成的三角形的面积=______.答案:由题意知,点A在圆上,切线斜率为-1KOA=-121=-12,用点斜式可直接求出切线方程为:y-2=-12(x-1),即x+2y-5=0,从而求出在两坐标轴上的截距分别是5和52,所以,所求面积为12×52×5=254.12.如图,AB为⊙O的直径,弦AC、BD交于点P,若AP=5,PC=3,DP=5,则AB=______.

答案:∵AP=5,PC=3,DP=5由相交弦定理可得:BP=35又∵AB为直径,∴∠ACB=90°∴BC=PB2-PC2=6∴AB=AC2-BC2=10故为:1013.已知a,b

,c满足a+2c=b,且a⊥c,|a|=1,|c|=2,则|b|=______.答案:根据题意,a⊥c?a?c=0,则|b|2=(a+2c)2=a2+4c2=17,则|b|=17;故为17.14.函数f(x)=log2(3x+1)的值域为()

A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)答案:根据对数函数的定义可知,真数3x+1>0恒成立,解得x∈R.因此,该函数的定义域为R,原函数f(x)=log2(3x+1)是由对数函数y=log2t和t=3x+1复合的复合函数.由复合函数的单调性定义(同増异减)知道,原函数在定义域R上是单调递增的.根据指数函数的性质可知,3x>0,所以,3x+1>1,所以f(x)=log2(3x+1)>log21=0,故选A.解析:试题分析15.已知直线l1,l2的夹角平分线所在直线方程为y=x,如果l1的方程是ax+by+c=0(ab>0),那么l2的方程是()

A.bx+ay+c=0

B.ax-by+c=0

C.bx+ay-c=0

D.bx-ay+c=0答案:A16.在y=2x,y=log2x,y=x2,y=cosx这四个函数中,当0<x1<x2<1时,使f(x1+x22)>f(x1)+f(x2)2恒成立的函数的个数是()A.0B.1C.2D.3答案:当0<x1<x2<1时,使f(x1+x22)>f(x1)+f(x2)2恒成立,说明函数一个递增的越来越慢的函数或者是一个递减的越来越快的函数或是一个先递增得越来越慢,再递减得越来越快的函数考查四个函数y=2x,y=log2x,y=x2,y=cosx中,y=log2x在(0,1)是递增得越来越慢型,函数y=cosx在(0,1)是递减得越来越快型,y=2x,y=x2,这两个函数都是递增得越来越快型综上分析知,满足条件的函数有两个故选C17.f(x)=(1+2x)m+(1+3x)n(m,n∈N*)的展开式中x的系数为13,则x2的系数为()A.31B.40C.31或40D.71或80答案:(1+2x)m的展开式中x的系数为2Cm1=2m,(1+3x)n的展开式中x的系数为3Cn1=3n∴3n+2m=13∴n=1m=5或n=3m=2(1+2x)m的展开式中的x2系数为22Cm2,(1+3x)n的展开式中的x2系数为32Cn2∴当n=1m=5时,x2的系数为22Cm2+32Cn2=40当n=3m=2时,x2的系数为22Cm2+32Cn2=31故选C.18.一只袋中装有2个白球、3个红球,这些球除颜色外都相同.

(Ⅰ)从袋中任意摸出1个球,求摸到的球是白球的概率;

(Ⅱ)从袋中任意摸出2个球,求摸出的两个球都是白球的概率;

(Ⅲ)从袋中任意摸出2个球,求摸出的两个球颜色不同的概率.答案:(Ⅰ)从5个球中摸出1个球,共有5种结果,其中是白球的有2种,所以从袋中任意摸出1个球,摸到白球的概率为25.

…(4分)(Ⅱ)从袋中任意摸出2个球,共有C25=10种情况,其中全是白球的有1种,故从袋中任意摸出2个球,摸出的两个球都是白球的概率为110.…(9分)(Ⅲ)由(Ⅱ)可知,摸出的两个球颜色不同的情况共有2×3=6种,故从袋中任意摸出2个球,摸出的2个球颜色不同的概率为610=35.

…(14分)19.设集合A={x|x<1,x∈R},B={x|1x>1,x∈R},则下列图形能表示A与B关系的是()A.

B.

C.

D.

答案:B={x|1x>1}={x|0<x<1},所以B?A.所以对应的关系选A.故选A.20.若关于x的方程x2+ax+a2-1=0有一正根和一负根,则a的取值范围为______.答案:令f(x)=x2+ax+a2-1,∴二次函数开口向上,若方程有一正一负根,则只需f(0)<0,即a2-1<0,∴-1<a<1.故为:-1<a<1.21.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100mL(不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100mL(含80)以上时,属醉酒驾车.据有关报道,2009年8月15日至8

月28日,某地区查处酒后驾车和醉酒驾车共500人,如图是对这500人血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为()A.25B.50C.75D.100答案:∵血液酒精浓度在80mg/100ml(含80)以上时,属醉酒驾车,通过频率分步直方图知道属于醉驾的频率是(0.005+0.01)×10=0.15,∵样本容量是500,∴醉驾的人数有500×0.15=75故选C.22.

选修1:几何证明选讲

如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证:

(1)l是⊙O的切线;

(2)PB平分∠ABD.答案:证明:(1)连接OP,因为AC⊥l,BD⊥l,所以AC∥BD.又OA=OB,PC=PD,所以OP∥BD,从而OP⊥l.因为P在⊙O上,所以l是⊙O的切线.(2)连接AP,因为l是⊙O的切线,所以∠BPD=∠BAP.又∠BPD+∠PBD=90°,∠BAP+∠PBA=90°,所以∠PBA=∠PBD,即PB平分∠ABD.23.直线x+1=0的倾斜角是______.答案:直线x+1=0与x轴垂直,所以直线的倾斜角为90°.故为:90°.24.已知x,y的取值如下表:

x0134y2.24.34.86.7从散点图分析,y与x线性相关,则回归方程为.y=bx+a必过点______.答案:.X=0+1+3+44=2,.Y=2.2+4.3+4.8+6.74=92,故样本中心点的坐标为(2,92).故为:(2,92).25.利用计算机在区间(0,1)上产生两个随机数a和b,则方程有实根的概率为()

A.

B.

C.

D.1答案:A26.如图,某公司制造一种海上用的“浮球”,它是由两个半球和一个圆柱筒组成.其中圆柱的高为2米,球的半径r为0.5米.

(1)这种“浮球”的体积是多少立方米(结果精确到0.1m3)?

(2)假设该“浮球”的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为20元,半球形部分每平方米建造费用为30元.求该“浮球”的建造费用(结果精确到1元).答案:(1)∵球的半径r为0.5米,∴两个半球的体积之和为V球=43πr3=43π?18=16πm3,∵圆柱的高为2米,∴V圆柱=πr2?h=π×14×2=12πm3,∴该“浮球”的体积是:V=V球+V圆柱=23π≈2.1m3;(2)圆柱筒的表面积为2πrh=2πm2;两个半球的表面积为4πr2=πm2,∵圆柱形部分每平方米建造费用为20元,半球形部分每平方米建造费用为30元,∴该“浮球”的建造费用为2π×20+π×30=70π≈220元.27.关于直线a,b,c以及平面M,N,给出下面命题:

①若a∥M,b∥M,则a∥b

②若a∥M,b⊥M,则b⊥a

③若a∥M,b⊥M,且c⊥a,c⊥b,则c⊥M

④若a⊥M,a∥N,则M⊥N,

其中正确命题的个数为()

A.0个

B.1个

C.2个

D.3个答案:C28.用数学归纳法证明1+2+3+…+n2=,则当n=k+1时左端应在n=k的基础上加上()

A.k2+1

B.(k+1)2

C.

D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2答案:D29.已知双曲线x2-y23=1,过P(2,1)点作一直线交双曲线于A、B两点,并使P为AB的中点,则直线AB的斜率为______.答案:设A(x1,y1)、B(x2,y2),代入双曲线方程x2-y23=1相减得直线AB的斜率kAB=y1-y2x1-x2=3(x1+x2)y1+y2=3×x1+x22y1+y22=3×21=6.故为:630.对于回归方程y=4.75x+2.57,当x=28时,y

的估计值是______.答案:∵回归方程y=4.75x+2.57,∴当x=28时,y的估计值是4.75×28+2.57=135.57.故为:135.57.31.当a>0时,设命题P:函数f(x)=x+ax在区间(1,2)上单调递增;命题Q:不等式x2+ax+1>0对任意x∈R都成立.若“P且Q”是真命题,则实数a的取值范围是()A.0<a≤1B.1≤a<2C.0≤a≤2D.0<a<1或a≥2答案:∵函数f(x)=x+ax在区间(1,2)上单调递增;∴f′(x)≥0在区间(1,2)上恒成立,∴1-ax2≥0在区间(1,2)上恒成立,即a≤x2在区间(1,2)上恒成立,∴a≤1.且a>0…①又不等式x2+ax+1>0对任意x∈R都成立,∴△=a2-4<0,∴-2<a<2…②若“P且Q”是真命题,则P且Q都是真命题,故由①②的交集得:0<a≤1,则实数a的取值范围是0<a≤1.故选A.32.(坐标系与参数方程选做题)过点(2,π3)且平行于极轴的直线的极坐标方程为______.答案:法一:先将极坐标化成直角坐标表示,(2,π3)化为(1,3),过(1,3)且平行于x轴的直线为y=3,再化成极坐标表示,即ρsinθ=3.法二:在极坐标系中,直接构造直角三角形由其边角关系得方程ρsinθ=3.设A(ρ,θ)是直线上的任一点,A到极轴的距离AH=2sinπ3=3,直接构造直角三角形由其边角关系得方程ρsinθ=3.故为:ρsinθ=333.已知函数f(x)=2x,x≤1log13x,x>1,若f(a)=2,则a=______.答案:当a≤1时y=2x∴2a=2∴a=1当a>1时y=log13x∴2=loga13∴a=19不成立所以a=1故为:134.如图,在正方体ABCD-A1B1C1D1中,M、N分别为AB、B1C的中点.用AB、AD、AA1表示向量MN,则MN=______.答案:∵MN=MB+BC+CN=12AB+AD+12(CB+BB1)=12AB+AD+12(-AD+AA1)=12AB+12AD+12AA1.故为12AB+12AD+12AA1.35.把函数y=sin(x-)-2的图象经过按平移得到y=sinx的图象,则=(

A.

B.

C.

D.答案:A36.参数方程x=sinθ+cosθy=sinθ•cosθ化为普通方程是______.答案:把x=sinθ+cosθy=sinθ•cosθ利用同角三角函数的基本关系消去参数θ,化为普通方程可得x2=1+2y,故为x2=1+2y.37.若a=0.30.2,b=20.4,c=0.30.3,则a,b,c三个数的大小关系是:______(用符号“>”连接这三个字母)答案:∵1=0.30>0.30.2>0.30.3,又∵20.4>20=1,∴b>a>c.故为:b>a>c.38.直线x=1和函数y=f(x)的图象的公共点的个数为______.答案:由函数定义知当函数在x=1处有定义时,直线x=1和函数y=f(x)的图象的公共点的个数为1,若函数在x=1处有无定义时,直线x=1和函数y=f(x)的图象的公共点的个数为0故线x=1和函数y=f(x)的图象的公共点的个数为0或1故为0或139.对于非零的自然数n,抛物线y=(n2+n)x2-(2n+1)x+1与x轴相交于An,Bn两点,若以|AnBn|表示这两点间的距离,则|A1B1|+|A2B2|+|A3B3|+┅+|A2009B2009|的值

等于______.答案:令(n2+n)x2-(2n+1)x+1=0,得x1=1n,x2=1n+1所以An(1n,0),Bn(1n+1,0)所以|AnBn|=1n-1n+1,所以|A1B1|+|A2B2|+|A3B3|+┅+|A2009B2009|=(11-12)+(12-13)+┉+(12009-12010)=1-12010=20092010.故为:20092010.40.已知a,b,c为正数,且两两不等,求证:2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b).答案:证明:不妨设a>b>c>0,则(a-b)2>0,(b-c)2>0,(c-a)2>0.由于2(a3+b3+c3)-a2(b+c)+b2(a+c)+c2(a+b)=a2(a-b)+a2(a-c)+b2(b-c)+b2(b-a)+c2(c-a)+c2(c-b)

=(a-b)2(a+b)+(b-c)2(b+c)+(c-a)2(c+a)>0,故有2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b)成立.41.已知函数f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=sinx.当x1>x2>π时,使f(x1)+f(x2)2<f(x1+x22)恒成立的函数是()A.f1(x)=x2B.f2(x)=2xC.f3(x)=log2xD.f4(x)=sinx答案:由题意,当x1>x2>π时,使f(x1)+f(x2)2<f(x1+x22)恒成立,图象呈上凸趋势由于f1(x)=x2,f2(x)=2x,f4(x)=sinx在x1>x2>π上的图象为图象呈下凹趋势,故f(x1)+f(x2)2<f(x1+x22)不成立故选C.42.从1,2,3,4,5中不放回地依次取2个数,事件A=“第一次取到的是奇数”,B=“第二次取到的是奇数”,则P(B|A)=()

A.

B.

C.

D.答案:D43.某制药厂为了缩短培养时间,决定优选培养温度,试验范围定为29℃至50℃,现用分数法确定最佳温度,设第1,2,3次试验的温度分别为x1,x2,x3,若第2个试点比第1个试点好,则x3的值为(

)。答案:34℃或45℃44.一口袋内装有5个黄球,3个红球,现从袋中往外取球,每次取出一个,取出后记下球的颜色,然后放回,直到红球出现10次时停止,停止时取球的次数ξ是一个随机变量,则P(ξ=12)=______.(填算式)答案:若ξ=12,则取12次停止,第12次取出的是红球,前11次中有9次是红球,∴P(ξ=12)=C119(38)9×(58)2×38=C911(38)10(58)2

故为C911(38)10(58)245.若回归直线方程中的回归系数b=0时,则相关系数r=______.答案:由于在回归系数b的计算公式中,与相关指数的计算公式中,它们的分子相同,故为:0.46.已知=2+i,则复数z=()

A.-1+3i

B.1-3i

C.3+i

D.3-i答案:B47.如图所示,已知A、B、C三点不共线,O为平面ABC外的一点,若点M满足

(1)判断三个向量是否共面;

(2)判断点M是否在平面ABC内.答案:解:(1)由已知,得,∴向量共面.(2)由(1)知向量共面,三个向量的基线又有公共点M,∴M、A、B、C共面,即点M在平面ABC内,48.P是以F1,F2为焦点的椭圆上一点,过焦点F2作∠F1PF2外角平分线的垂线,垂足为M,则点M的轨迹是()

A.椭圆

B.圆

C.双曲线

D.双曲线的一支答案:B49.已知单位正方体ABCD-A1B1C1D1,E分别是棱C1D1的中点,试求:

(1)AE与平面BB1C1C所成的角的正弦值;

(2)二面角C1-DB-A的余弦值.答案:以D为坐标原点建立空间直角坐标系,如图所示:(1)设正方体棱长为2.则E(0,1,2),A(2,0,0).AE=(-2,1,2),平面BCC1B1的法向量为n=(0,1,0).设AE与平面BCC1B1所成的角为θ.sinθ=|cos<AE,n>|=|AE•n||AE|

|n|=19=13.∴sinθ=13.(2)A(1,0,0),B(1,1,0),C1(0,1,1),∴DA=(1,0,0),DB=(1,1,0),DC1=(0,1,1).设平面DBC1的法向量为n1=(x,y,z),则n1•DB=x+y=0n1•DC1=y+z=0,令y=-1,则x=1,z=1.∴n1=(1,-1,1).取平面ADB的法向量为n2=(0,0,1).设二面角C1-DB-A的大小为α,从图中可知:α为钝角.∵cos<n1,n2>=n1•n2|n1|

|n2|=13=33,∴cosα=-33.50.若集合A={1,2,3},则集合A的真子集共有()A.3个B.5个C.7个D.8个答案:由集合A={1,2,3},所以集合A的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7个.故选C.第2卷一.综合题(共50题)1.设f(x)=ex(x≤0)ln

x(x>0),则f[f(13)]=______.答案:因为f(x)=ex(x≤0)ln

x(x>0),所以f(13)=ln13<0,所以f[f(13)]=f(ln13)=eln13=13,故为13.2.一次函数y=3x+2的斜率和截距分别是()A.2、3B.2、2C.3、2D.3、3答案:根据一次函数的定义和直线的斜截式方程知,此一次函数的斜率为3、截距为2故选C3.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为4的等腰三角形,左视图是一个底边长为6、高为4的等腰三角形.则该几何体的体积为______.答案:由题意几何体复原是一个底面边长为8,6的距离,高为4,且顶点在底面的射影是底面矩形的中心的四棱锥.底面矩形的面积是48所以几何体的体积是:13×46×4=64故为:64.4.命题“对于正数a,若a>1,则lg

a>0”及其逆命题、否命题、逆否命题四种命题中真命题的个数为()A.0B.1C.2D.4答案:原命题“对于正数a,若a>1,则lga>0”是真命题;逆命题“对于正数a,若lga>0,则a>1”是真命题;否命题“对于正数a,若a≤1,则lga≤0”是真命题;逆否命题“对于正数a,若lga≤0,则a≤1”是真命题.故选D.5.a、b、c∈R,则下列命题为真命题的是______.

①若a>b,则ac2>bc2

②若ac2>bc2,则a>b

③若a<b<0,则a2>ab>b2

④若a<b<0,则1a<1b.答案:当c=0时,ac2=bc2,故①不成立;若ac2>bc2,则c2≠0,即c2>0,则a>b,故②成立;若a<b<0,则a2>ab且ab>b2,故a2>ab>b2,故③成立;若a<b<0,则ab>0,故aab<bab,即1a>1b,故④不成立故②③为真命题故为:②③6.下图是由A、B、C、D中的哪个平面图旋转而得到的(

)答案:A7.把点按向量平移到点,则的图象按向量平移后的图象的函数表达式为(

).A.B.C.D.答案:D解析:,由可得,所以平移后的函数解析式为8.已知向量与的夹角为120°,若向量,且,则=()

A.2

B.

C.

D.答案:C9.如图,AC、BC分别是直角三角形ABC的两条直角边,且AC=3,BC=4,以AC为直径作圆与斜边AB交于D,则BD=______.答案:连CD,在Rt△ABC中,因为AC、BC的长分别为3cm、4cm,所以AB=5cm,∵AC为直径,∴∠ADC=90°,∵∠B公共角,可得Rt△BDC∽Rt△BCA,∴BD=165,故为:16510.如图程序运行后输出的结果为______.答案:由题意,列出如下表格s

0

5

9

12

n

5

4

3

2当n=12时,不满足“s<10”,则输出n的值2故为:211.已知图形F上的点A按向量平移前后的坐标分别是和,若B()是图形F上的又一点,则在F按向量平移后得到的图形F,上B,的坐标是(

)A.B.C.D.答案:选D解析:设向量,则平移公式为依题意有∴平移公式为将B点坐标代入可得B,点的坐标为.所以选D.12.如图,正方体ABCD-A1B1C1D1的棱长为1.

(1)求A1C与DB所成角的大小;

(2)求二面角D-A1B-C的余弦值;

(3)若点E在A1B上,且EB=1,求EC与平面ABCD所成角的大小.答案:(1)如图建立空间直角坐标系C-xyz,则C(0,0,0),D(1,0,0),B(0,1,0),A1(1,1,1).∴DB=(-1,1,0),CA1=(1,1,1).∴cos<DB,CA1>=DB•CA1|DB|•|CA1|=02•3=0.∴A1C与DB所成角的大小为90°.(2)设平面A1BD的法向量n1=(x,y,z),则n1⊥DB,n1⊥A1B,可得-x+y=0x+z=0,∴n1=(1,1,-1).同理可求得平面A1BC的一个法向量n2=(1,0,-1),∴cos<n1,n2>=n1•n2|n1|•|n2|=26=63,∴二面角D-A1B-C的余弦值为63.(3)设n=(0,0,1)是平面ABCD的一个法向量,且CE=(22,1,22),∴cos<n,CE>=n•CE|n|•|CE|=12,∴<n,CE>=60°,∴EC与平面ABCD所成的角是30°.13.利用“直接插入排序法”给按从大到小的顺序排序,

当插入第四个数时,实际是插入哪两个数之间(

)A.与B.与C.与D.与答案:B解析:先比较与,得;把插入到,得;把插入到,得;14.以下命题:

①两个共线向量是指在同一直线上的两个向量;

②共线的两个向量互相平行;

③共面的三个向量是指在同一平面内的三个向量;

④共面的三个向量是指平行于同一平面的三个向量.

其中正确命题的序号是______.答案:解①根据共面与共线向量的定义可知①错误.②根据共线向量的定义可知②正确.③根据共面向量的定义可知③错误.④根据共面向量的定义可知④正确.故为:②④.15.

若向量,满足||=||=2,与的夹角为60°,则|+|=()

A.

B.2

C.4

D.12答案:B16.我市某机构为调查2009年下半年落实中学生“阳光体育”活动的情况,设平均每人每天参加体育锻炼时间为X(单位:分钟),按锻炼时间分下列四种情况统计:①0~10分钟;②11~20分钟;③21~30分钟;④30分钟以上,有10000名中学生参加了此项活动,右图是此次调查中某一项的流程图,其输出的结果是6200,则平均每天参加体育锻炼时间在0~20分钟内的学生的频率是()A.0.62B.0.38C.6200D.3800答案:由图知输出的S的值是运动时间超过20分钟的学生人数,由于统计总人数是10000,又输出的S=6200,故运动时间不超过20分钟的学生人数是3800事件“平均每天参加体育锻炼时间在0~20分钟内的学生的”频率是380010000=0.38故选B17.下列各组几何体中是多面体的一组是(

A.三棱柱、四棱台、球、圆锥

B.三棱柱、四棱台、正方体、圆台

C.三棱柱、四棱台、正方体、六棱锥

D.圆锥、圆台、球、半球答案:C18.若直线y=x+b与圆x2+y2=2相切,则b的值为(

A.±4

B.±2

C.±

D.±2

答案:B19.学校成员、教师、后勤人员、理科教师、文科教师的结构图正确的是()

A.

B.

C.

D.

答案:A20.AB是圆O的直径,EF切圆O于C,AD⊥EF于D,AD=2,AB=6,则AC长为()

A.

B.3

C.2

D.2答案:A21.已知随机变量ξ服从正态分布N(2,a2),且P(ξ<4)=0.8,则P(0<ξ<2)=()

A.0.6

B.0.4

C.0.3

D.0.2答案:C22.求证:答案:证明见解析解析:证明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。23.在极坐标系中,过点(22,π4)作圆ρ=4sinθ的切线,则切线的极坐标方程是______.答案:(22,π4)的直角坐标为:(2,2),圆ρ=4sinθ的直角坐标方程为:x2+y2-4y=0;显然,圆心坐标(0,2),半径为:2;所以过(2,2)与圆相切的直线方程为:x=2,所以切线的极坐标方程是:ρcosθ=2故为:ρcosθ=224.试比较nn+1与(n+1)n(n∈N*)的大小.

当n=1时,有nn+1______(n+1)n(填>、=或<);

当n=2时,有nn+1______(n+1)n(填>、=或<);

当n=3时,有nn+1______(n+1)n(填>、=或<);

当n=4时,有nn+1______(n+1)n(填>、=或<);

猜想一个一般性的结论,并加以证明.答案:当n=1时,nn+1=1,(n+1)n=2,此时,nn+1<(n+1)n,当n=2时,nn+1=8,(n+1)n=9,此时,nn+1<(n+1)n,当n=3时,nn+1=81,(n+1)n=64,此时,nn+1>(n+1)n,当n=4时,nn+1=1024,(n+1)n=625,此时,nn+1>(n+1)n,根据上述结论,我们猜想:当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.①当n=3时,nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假设当n=k时,kk+1>(k+1)k成立,即:kk+1(k+1)k>1则当n=k+1时,(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即当n=k+1时也成立,∴当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.25.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是(

A.

B.

C.

D.答案:B26.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为()A.8B.8πC.4πD.2π答案:∵用长为4、宽为2的矩形做侧面围成一个圆柱,且圆柱高为h=2∴底面圆周由长为4的线段围成,可得底面圆直径2r=4π∴此圆柱的轴截面矩形的面积为S=2r×h=8π故选:B27.已知有如下两段程序:

问:程序1运行的结果为______.程序2运行的结果为______.

答案:程序1是计数变量i=21开始,不满足i≤20,终止循环,累加变量sum=0,这个程序计算的结果:sum=0;程序2计数变量i=21,开始进入循环,sum=0+21=22,其值大于20,循环终止,累加变量sum从0开始,这个程序计算的是sum=21.故为:0;21.28.已知|x|<ch,|y|>c>0.求证:|xy|<h.答案:证明:∵|y|>c>0∴0<|1y|<1c∵0<|x|<ch,∴|xy|<ch×1c=h.29.设复数z=lg(m2-2m-2)+(m2+3m+2)i,试求实数m的取值范围,使得:

(1)z是纯虚数;

(2)z是实数;

(3)z对应的点位于复平面的第二象限.答案:(1)若z=lg(m2-2m-2)+(m2+3m+2)i是纯虚数,则可得lg(m2-2m-2)=0m2+3m+2≠0,即m2-2m-2=1m2+3m+2≠0,解之得m=3(舍去-1);…(3分)(2)若z=lg(m2-2m-2)+(m2+3m+2)i是实数,则可得m2+3m+2=0,解之得m=-1或m=-2…(6分)(3)∵z=lg(m2-2m-2)+(m2+3m+2)i对应的点坐标为(lg(m2-2m-2),m2+3m+2)∴若该对应点位于复平面的第二象限,则可得lg(m2-2m-2)<0m2+3m+2>0,即0<m2-2m-2<1m2+3m+2>0,解之得-1<m<1-3或1+3<m<3.…(10分)30.设集合A={0,1,2,3},B={1,2,3,4},则集合A∩B的真子集的个数为()A.32个B.16个C.8个D.7个答案:∵A={0,1,2,3},B={1,2,3,4},∴集合A∩B={1,2,3}.集合的真子集为{1},{2},{3},{1,2},{1,3},{2,3},?.共有7个.故选D.31.已知当抛物线型拱桥的顶点距水面2米时,量得水面宽8米.当水面升高1米后,水面宽度是______米.答案:由题意,建立如图所示的坐标系,抛物线的开口向下,设抛物线的标准方程为x2=-2py(p>0)∵顶点距水面2米时,量得水面宽8米∴点(4,-2)在抛物线上,代入方程得,p=4∴x2=-8y当水面升高1米后,y=-1代入方程得:x=±22∴水面宽度是42米故为:4232.不等式|3x-2|>4的解集是______.答案:由|3x-2|>4可得

3x-2>4

或3x-2<-4,∴x>2或x<-23.故为:(-∞,-23)∪(2,+∞).33.有5组(x,y)的统计数据:(1,2),(2,4),(4,5),(3,10),(10,12),要使剩下的数据具有较强的相关关系,应去掉的一组数据是()

A.(1,2)

B.(4,5)

C.(3,10)

D.(10,12)答案:C34.向量a=(2,-1,4)与b=(-1,1,1)的夹角的余弦值为______.答案:∵a•b=-2-1+4=1,|a|=22+1+42=21,|b|=3.∴cos<a,b>=a•b|a|

|b|=121•3=721.故为721.35.已知平行四边形的三个顶点A(-2,1),B(-1,3),C(3,4),求第四个顶点D的坐标.答案:若构成的平行四边形为ABCD1,即AC为一条对角线,设D1(x,y),则由AC中点也是BD1中点,可得

-2+32=x-121+42=y+32,解得

x=2y=2,∴D1(2,2).同理可得,若构成以AB为对角线的平行四边形ACBD2,则D2(-6,0);以BC为对角线的平行四边形ACD3B,则D3(4,6),∴第四个顶点D的坐标为:(2,2),或(-6,0),或(4,6).36.(本小题满分10分)如图,D、E分别是AB、AC边上的点,且不与顶点重合,已知为方程的两根

(1)证明四点共圆

(2)若求四点所在圆的半径答案:(1)见解析;(2)解析:解:(Ⅰ)如图,连接DE,依题意在中,,由因为所以,∽,四点C、B、D、E共圆。(Ⅱ)当时,方程的根因而,取CE中点G,BD中点F,分别过G,F做AC,AB的垂线,两垂线交于点H,连接DH,因为四点C、B、D、E共圆,所以,H为圆心,半径为DH.,,所以,,点评:此题考查平面几何中的圆与相似三角形及方程等概念和性质。注意把握判定与性质的作用。37.若双曲线的渐近线方程为y=±3x,它的一个焦点是(10,0),则双曲线的方程是______.答案:因为双曲线的渐近线方程为y=±3x,则设双曲线的方程是x2-y29=λ,又它的一个焦点是(10,0)故λ+9λ=10∴λ=1,x2-y29=1故为:x2-y29=138.若矩阵A=

72

69

67

65

62

59

81

74

68

64

59

52

85

79

76

72

69

64

228

219

211

204

195

183

是表示我校2011届学生高二上学期的期中成绩矩阵,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含义如下:i=1表示语文成绩,i=2表示数学成绩,i=3表示英语成绩,i=4表示语数外三门总分成绩j=k,k∈N*表示第50k名分数.若经过一定量的努力,各科能前进的名次是一样的.现小明的各科排名均在250左右,他想尽量提高三门总分分数,那么他应把努力方向主要放在哪一门学科上()

A.语文

B.数学

C.外语

D.都一样答案:B39.集合A={3,2a},B={a,b},若A∩B={2},则A∪B=______.答案:根据题意,若A∩B={2},则2∈A,2∈B,而已知A={3,2a},则必有2a=2,故a=1,又由2∈B,且a=1则b=2,故A∪B={1,2,3},故为{1,2,3}.40.选修4-2:矩阵与变换

已知矩阵A=33cd,若矩阵A属于特征值6的一个特征向量为α1=11,属于特征值1的一个特征向量为α2=3-2.求矩阵A的逆矩阵.答案:由矩阵A属于特征值6的一个特征向量为α1=11,可得33cd11=611,即c+d=6;由矩阵A属于特征值1的一个特征向量为α2=3-2可得,33cd3-2=3-2,即3c-2d=-2,解得c=2d=4,即A=3324,A逆矩阵是23-12-1312.41.下列各量:①密度

②浮力

③风速

④温度,其中是向量的个数有()个.A.1B.3C.2D.4答案:根据向量的定义,知道需要同时具有大小和方向两个要素才是向量,在所给的四个量中,密度只有大小,浮力既有大小又有方向,风速既有大小又有方向,温度只有大小没有方向综上可知向量的个数是2个,故选C.42.某个命题与自然数n有关,若n=k(k∈N*)时命题成立,那么可推得当n=k+1时该命题也成立.现已知当n=5时,该命题不成立,那么可推得()

A.当n=6时,该命题不成立

B.当n=6时,该命题成立

C.当n=4时,该命题不成立

D.当n=4时,该命题成立答案:C43.抽样方法有()A.随机抽样、系统抽样和分层抽样B.随机数法、抽签法和分层抽样法C.简单随机抽样、分层抽样和系统抽样D.系统抽样、分层抽样和随机数法答案:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而抽签法和随机数法,只是简单随机抽样的两种不同抽取方法故选C44.直线x3+y4=t被两坐标轴截得的线段长度为1,则t的值是

______.答案:令y=0,得:x=3t;令x=0,得:y=4t,所以被两坐标轴截得的线段长度为(3t)2+(4t)2=|5t|=1所以t=±15故为±1545.用数学归纳法证明等式时,第一步验证n=1时,左边应取的项是()

A.1

B.1+2

C.1+2+3

D.1+2+3+4答案:D46.定义:若函数f(x)对于其定义域内的某一数x0,有f(x0)=x0,则称x0是f(x)的一个不动点。

已知函数f(x)=ax2+(b+1)x+b-1(a≠0)。

(1)当a=1,b=-2时,求函数f(x)的不动点;

(2)若对任意的实数b,函数f(x)恒有两个不动点,求a的取值范围;

(3)在(2)的条件下,若y=f(x)图象上两个点A、B的横坐标是函数f(x)的不动点,且A、B的中点C在函数g(x)=-x+的图象上,求b的最小值。

(参考公式:A(x1,y1),B(x2,y2)的中点坐标为)

答案:解:(1)f(x)=x2-x-3,由x2-x-3=0,解得x=3或x=-1,所以所求的不动点为-1或3。(2)令ax2+(b+1)x+b+1=x,则ax2+bx+b-1=0,①由题意,方程①恒由两个不等实根,所以△=b2-4a(b-1)>0,即b2-4ab+4a>0对任意的b∈R恒成立,则△′=16a2-16a<0,故0(3)依题意,设,则AB中点C的坐标为,又AB的中点在直线上,∴,∴,又x1,x2是方程①的两个根,∴,∴,,∴,∴当时,bmin=-1。</a<1。47.已知直线l的方程为x=2-4

ty=1+3

t,则直线l的斜率为______.答案:直线x=2-4

ty=1+3

t,所以直线的普通方程为:(y-1)=-34(x-2);所以直线的斜率为:-34;故为:-34.48.赋值语句n=n+1的意思是()

A.n等于n+1

B.n+1等于n

C.将n的值赋给n+1

D.将n的值增加1,再赋给n,即n的值增加1答案:D49.若=(2,-3,1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是()

A.(0,-3,1)

B.(2,0,1)

C.(-2,-3,1)

D.(-2,3,-1)答案:D50.已知a,b,c是正实数,且a+b+c=1,则的最小值为(

)A.3B.6C.9D.12答案:C解析:本题考查均值不等式等知识。将1代入中,得,当且仅当,又,故时不等式取,选C。第3卷一.综合题(共50题)1.下列函数中,与函数y=x(x≥0)有相同图象的一个是()A.y=x2B.y=(x)2C.y=3x3D.y=x2x答案:一个函数与函数y=x

(x≥0)有相同图象时,这两个函数应是同一个函数.A中的函数和函数y=x

(x≥0)的值域不同,故不是同一个函数.B中的函数和函数y=x

(x≥0)具有相同的定义域、值域、对应关系,故是同一个函数.C中的函数和函数y=x

(x≥0)的值域不同,故不是同一个函数.D中的函数和函数y=x

(x≥0)的定义域不同,故不是同一个函数.综上,只有B中的函数和函数y=x

(x≥0)是同一个函数,具有相同的图象,故选B.2.若a>0,b>0,则不等式-b<aA.<x<0或0<x<

答案:D解析:试题分析:3.函数f(x)=11+x2(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]答案:∵函数f(x)=11+x2(x∈R),∴1+x2≥1,所以原函数的值域是(0,1],故选B.4.若向量=(1,λ,2),=(-2,1,1),,夹角的余弦值为,则λ等于()

A.1

B.-1

C.±1

D.2答案:A5.某次考试,满分100分,按规定x≥80者为良好,60≤x<80者为及格,小于60者不及格,画出当输入一个同学的成绩x时,输出这个同学属于良好、及格还是不及格的程序框图.答案:第一步:输入一个成绩X(0≤X≤100)第二步:判断X是否大于等于80,若是,则输出良好;否则,判断X是否大于等于60,若是,则输出及格;否则,输出不及格;第三步:算法结束6.3科老师都布置了作业,在同一时刻4名学生都做作业的可能情况有()

A.43种

B.4×3×2种

C.34种

D.1×2×3种答案:C7.若,,,则

(

)

A.

B.

C.

D.答案:A8.已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为()

A.3

B.-2

C.2

D.不存在答案:B9.已知|log12x+4i|≥5,则实数x

的取值范围是______.答案:由题意,得(log12x)2+42≥5?|log12x|≥3?0<x≤18或x≥8.∴则实数x

的取值范围是0<x≤18或x≥8.故为:0<x≤18或x≥8.10.直线l1:x+ay=2a+2与直线l2:ax+y=a+1平行,则a=______.答案:直线l1:x+ay=2a+2即x+ay-2a-2=0;直线l2:ax+y=a+1即ax+y-a-1=0,∵直线l1与直线l2互相平行∴当a≠0且a≠-1时,1a=a1≠-2a-2-a-1,解之得a=1当a=0时,两条直线垂直;当a=-1时,两条直线重合故为:111.将y=sin2x的图象向右按作最小的平移,使平移后的图象在[k,k+](kz)上递减,试求平移后的函数解析式和.答案:y=-cos2x,

=(,0)解析:将y=sin2x的图象向右按作最小的平移,使平移后的图象在[k,k+](kz)上递减,试求平移后的函数解析式和.12.平行线l1:3x-2y-5=0与l2:6x-4y+3=0之间的距离为______.答案:将l1:3x-2y-5=0化成6x-4y-10=0∴l1:3x-2y-5=0与l2:6x-4y+3=0之间的距离为d=|-10-3|62+(-4)2=1352=132故为:13213.给定椭圆C:x2a2+y2b2=1(a>b>0),称圆心在原点O、半径是a2+b2的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(2,0),其短轴的一个端点到点F的距离为3.

(1)求椭圆C和其“准圆”的方程;

(2)过椭圆C的“准圆”与y轴正半轴的交点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,求l1,l2的方程;

(3)若点A是椭圆C的“准圆”与x轴正半轴的交点,B,D是椭圆C上的两相异点,且BD⊥x轴,求AB•AD的取值范围.答案:(1)由题意可得:a=3,c=2,b=1,∴r=(3)2+12=2.∴椭圆C的方程为x23+y2=1,其“准圆”的方程为x2+y2=4;(2)由“准圆”的方程为x2+y2=4,令y=0,解得x=±2,取P(2,0),设过点P且与椭圆相切的直线l的方程为my=x-2,联立my=x-2x23+y2=1,消去x得到关于y的一元二次方程(3+m2)x2+4m+1=0,∴△=16m2-4(3+m2)=0,解得m=±1,故直线l1、l2的方程分别为:y=x-2,y=-x+2.(3)由“准圆”的方程为x2+y2=4,令y=0,解得x=±2,取点A(2,0).设点B(x0,y0),则D(x0,-y0).∴AB•AD=(x0-2,y0)•(x0-2,-y0)=(x0-2)2-y02,∵点B在椭圆x23+y2=1上,∴x023+y02=1,∴y02=1-x023,∴AD•AB=(x0-2)2-1+x023=43(x0-32)2,∵-3<x0<3,∴0≤43(x0-32)2<7+43,∴0≤AD•AB<7+43,即AD•AB的取值范围为[0,7+43)14.已知f(x)=3mx2-2(m+n)x+n(m≠0)满足f(0)•f(1)>0,设x1,x2是方程f(x)=0的两根,则|x1-x2|的取值范围为()

A.[,)

B.[,)

C.[,)

D.[,)答案:A15.已知双曲线的两条准线将两焦点间的线段三等分,则双曲线的离心率是______.答案:由题意可得2c×13=2a2c,∴3a2=c2,∴e=ca=3,故为:3.16.用反证法证明命题“三角形中最多只有一个内角是钝角”时,则假设的内容是()

A.三角形中有两个内角是钝角

B.三角形中有三个内角是钝角

C.三角形中至少有两个内角是钝角

D.三角形中没有一个内角是钝角答案:C17.平面内有两个定点F1(-5,0)和F2(5,0),动点P满足条件|PF1|-|PF2|=6,则动点P的轨迹方程是()A.x216-y29=1(x≤-4)B.x29-y216=1(x≤-3)C.x216-y29=1(x>≥4)D.x29-y216=1(x≥3)答案:由|PF1|-|PF2|=6<|F1F2|知,点P的轨迹是以F1、F2为焦点的双曲线右支,得c=5,2a=6,∴a=3,∴b2=16,故动点P的轨迹方程是x29-y216=1(x≥3).故选D.18.若{、、}为空间的一组基底,则下列各项中,能构成基底的一组向量是[

]A.,+,﹣

B.,+,﹣

C.,+,﹣

D.+,﹣,+2答案:C19.已知椭圆(a>b>0)的焦点分别为F1,F2,b=4,离心率e=过F1的直线交椭圆于A,B两点,则△ABF2的周长为()

A.10

B.12

C.16

D.20答案:D20.关于x的方程(m+3)x2-4mx+2m-1=0的两根异号,且负数根的绝对值比正数根大,那么实数m的取值范围是()

A.-3<m<0

B.0<m<3

C.m<-3或m>0

D.m<0或m>3答案:A21.P在⊙O外,PC切⊙O于C,PAB交⊙O于A、B,则()

A.∠PCB=∠B

B.∠PAC=∠P

C.∠PCA=∠B

D.∠PAC=∠BCA答案:C22.已知非零向量,若与互相垂直,则=(

A.

B.4

C.

D.2答案:D23.“神六”上天并顺利返回,让越来越多的青少年对航天技术发生了兴趣.某学校科技小组在计算机上模拟航天器变轨返回试验,设计方案

如图:航天器运行(按顺时针方向)的轨迹方程为x2100+y225=1,变轨(航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以y轴为

对称轴、M(0,647)为顶点的抛物线的实线部分,降落点为D(8,0),观测点A(4,0)、B(6,0)同时跟踪航天器.试问:当航天器在x轴上方时,观测点A、B测得离航天器的距离分别为______时航天器发出变轨指令.答案:设曲线方程为y=ax2+647,由题意可知,0=a•64+647.∴a=-17,∴曲线方程为y=-17x2+647.设变轨点为C(x,y),根据题意可知,抛物线方程与椭圆方程联立,可得4y2-7y-36=0,y=4或y=-94(不合题意,舍去).∴y=4.∴x=6或x=-6(不合题意,舍去).∴C点的坐标为(6,4),|AC|=25,|BC|=4.故为:25、4.24.有五条线段长度分别为1、3、5、7、9,从这5条线段中任取3条,则所取3条线段能构成一个三角形的概率为()A.110B.310C.12D.710答案:由题意知本题是一个古典概型,∵试验发生包含的所有事件是从五条线段中取三条共有C53种结果,而满足条件的事件是3、5、7;3、7、9;5、7、9,三种结果,∴由古典概型公式得到P=3C35=310,故选B.25.设,是互相垂直的单位向量,向量=(m+1)-3,=-(m-1),(+)⊥(-)则实数m为()

A.-2

B.2

C.-

D.不存在答案:A26.用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是()

A.假设至少有一个钝角

B.假设没有一个钝角

C.假设至少有两个钝角

D.假设没有一个钝角或至少有两个钝角答案:C27.若kxy-8x+9y-12=0表示两条直线,则实数k的值及两直线所成的角分别是()

A.8,60°

B.4,45°

C.6,90°

D.2,30°答案:C28.某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则

即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为、、、,且各轮问题能否正确回答互不影响.

(Ⅰ)求该选手进入第四轮才被淘汰的概率;

(Ⅱ)求该选手至多进入第三轮考核的概率.

(注:本小题结果可用分数表示)答案:(1)该选手进入第四轮才被淘汰的概率.(Ⅱ)该选手至多进入第三轮考核的概率.解析:(Ⅰ)记“该选手能正确回答第轮的问题”的事件为,则,,,,该选手进入第四轮才被淘汰的概率.(Ⅱ)该选手至多进入第三轮考核的概率.29.已知抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且AF=λFB(λ>0).过A、B两点分别作抛物线的切线,设其交点为M.

(I)证明FM.AB为定值;

(II)设△ABM的面积为S,写出S=f(λ)的表达式,并求S的最小值.答案:(1)设A(x1,y1),B(x2,y2),M(xo,yo),焦点F(0,1),准线方程为y=-1,显然AB斜率存在且过F(0,1)设其直线方程为y=kx+1,联立4y=x2消去y得:x2-4kx-4=0,判别式△=16(k2+1)>0.x1+x2=4k,x1x2=-4于是曲线4y=x2上任意一点斜率为y'=x2,则易得切线AM,BM方程分别为y=(12)x1(x-x1)+y1,y=(12)x2(x-x2)+y2,其中4y1=x12,4y2=x22,联立方程易解得交点M坐标,xo=x1+x22=2k,yo=x1x24=-1,即M(x1+x22,-1)从而,FM=(x1+x22,-2),AB(x2-x1,y2-y1)FM•AB=12(x1+x2)(x2-x1)-2(y2-y1)=12(x22-x12)-2[14(x22-x12)]=0,(定值)命题得证.这就说明AB⊥FM.(Ⅱ)由(Ⅰ)知在△ABM中,FM⊥AB,因而S=12|AB||FM|.|FM|=(x1+x22)2+(-2)2=14x12+14x22+12x1x2+4=λ+1λ+2=λ+1λ.因为|AF|、|BF|分别等于A、B到抛物线准线y=-1的距离,所以|AB|=|AF|+|BF|=y1+y2+2=λ+1λ+2=(λ+1λ)2.于是S=12|AB||FM|=12(λ+1λ)3,由λ+1λ≥2知S≥4,且当λ=1时,S取得最小值4.30.在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M在y轴上,且M到A与到B的距离相等,则M的坐标是______.答案:设M(0,y,0)由12+y2+4=1+(y+3)2+1可得y=-1故M(0,-1,0)故为:(0,-1,0).31.中,是边上的中线(如图).

求证:.

答案:证明见解析解析:取线段所在的直线为轴,点为原点建立直角坐标系.设点的坐标为,点的坐标为,则点的坐标为.可得,,,.,..32.已知x,y,z满足(x-3)2+(y-4)2+z2=2,那么x2+y2+z2的最小值是______.答案:由题意可得P(x,y,z),在以M(3,4,0)为球心,2为半径的球面上,x2+y2+z2表示原点与点P的距离的平方,显然当O,P,M共线且P在O,M之间时,|OP|最小,此时|OP|=|OM|-2=32+42-2=52,所以|OP|2=27-102.故为:27-102.33.考虑坐标平面上以O(0,0),A(3,0),B(0,4)为顶点的三角形,令C1,C2分别为△OAB的外接圆、内切圆.请问下列哪些选项是正确的?

(1)C1的半径为2

(2)C1的圆心在直线y=x上

(3)C1的圆心在直线4x+3y=12上

(4)C2的圆心在直线y=x上

(5)C2的圆心在直线4x+3y=6上.答案:O,A,B三点的位置如右图所示,C1,C2为△OAB的外接圆与内切圆,∵△OAB为直角三角形,∴C1为以线段AB为直径的圆,故半径为12|AB|=52,所以(1)选项错误;又C1的圆心为线段AB的中点(32,2),此点在直线4x+3y=12上,所以选项(2)错误,选项(3)正确;如图,P为△OAB的内切圆C2的圆心,故P到△OAB的三边距离相等均为圆C2的半径r.连接PA,PB,PC,可得:S△OAB=S△POA+S△PAB+S△POB?12×3×4=12×3×r+12×5×r+12×4×r?r=1故P的坐标为(1,1),此点在y=x上.所以选项(4)正确,选项(5)错误,综上,正确的选项有(3)、(4).34.在极坐标系中,曲线ρ=4cosθ围成的图形面积为()

A.π

B.4

C.4π

D.16答案:C35.x2+(m-3)x+m=0

一个根大于1,一个根小于1,m的范围是______.答案:设f(x)=x2+(m-3)x+m,则∵x2+(m-3)x+m=0一个根大于1,一个根小于1,∴f(1)<0∴1+(m-3)+m<0∴m<1故为m<1.36.以下四组向量中,互相平行的是.()

(1)=(1,2,1),=(1,-2,3);

(2)=(8,4,-6),=(4,2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论