2023年郴州职业技术学院高职单招(数学)试题库含答案解析_第1页
2023年郴州职业技术学院高职单招(数学)试题库含答案解析_第2页
2023年郴州职业技术学院高职单招(数学)试题库含答案解析_第3页
2023年郴州职业技术学院高职单招(数学)试题库含答案解析_第4页
2023年郴州职业技术学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年郴州职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()

①若K2的观测值满足K2≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;

②从独立性检验可知有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;

③从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误.

A.①

B.①③

C.③

D.②答案:C2.用数学归纳法证明“<n+1

(n∈N*)”.第二步证n=k+1时(n=1已验证,n=k已假设成立),这样证明:=<=(k+1)+1,所以当n=k+1时,命题正确.此种证法()

A.是正确的

B.归纳假设写法不正确

C.从k到k+1推理不严密

D.从k到k+1推理过程未使用归纳假设答案:D3.若直线ax+by+1=0与圆x2+y2=1相离,则点P(a,b)的位置是()

A.在圆上

B.在圆外

C.在圆内

D.以上都有可能答案:C4.设随机变量X服从B(6,),则P(X=3)的值是()

A.

B.

C.

D.答案:B5.为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00-10:00间各自的点击量,得如下所示的统计图,根据统计图:

(1)甲、乙两个网站点击量的极差,中位数分别是多少?

(2)甲网站点击量在[10,40]间的频率是多少?(结果用分数表示)

(3)甲、乙两个网站哪个更受欢迎?并说明理由。答案:解:(1)甲网站的极差为73-8=65,乙网站的极差为71-5=66;甲网站的中位数是56.5,乙网站的中位数是36.5。(2)甲网站点击量在[10,40]间的频率是;(3)甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方,从数据的分布情况来看,甲网站更受欢迎。6.(1)若三条直线2x+3y+8=0,x-y-1=0和x+ky=0相交于一点,则k的值为?

(2)若α∈N,又三点A(α,0),B(0,α+4),C(1,3)共线,求α的值.答案:(1)由2x+3y+8=0x-y-1=0解得x=-1,y=-2,∴直线2x+3y+8=0和x-y-1=0的交点为(-1,-2).∵三条直线2x+3y+8=0,x-y-1=0和x+ky=0相交于一点,∴(-1,-2)在直线x+ky=0上,∴-1-2k=0,解得k=-12.(2)A、B、C三点共线,说明直线AB与直线AC的斜率相等∴a+4-00-a=3-01-a,解得:a=27.已知复数z=2+i,则z2对应的点在第()象限.A.ⅠB.ⅡC.ⅢD.Ⅳ答案:由z=2+i,则z2=(2+i)2=22+4i+i2=3+4i.所以,复数z2的实部等于3,虚部等于4.所以z2对应的点在第Ⅰ象限.故选A.8.如图,已知C点在圆O直径BE的延长线上,CA切圆O于A点,∠ACB的平分线分别交AE、AB于点F、D.

(Ⅰ)求∠ADF的度数;

(Ⅱ)若AB=AC,求ACBC的值.答案:解

(1)∵AC为圆O的切线,∴∠B=∠EAC,又CD是∠ACB的平分线,∴∠ACD=∠DCB,∴∠B+∠DCB=∠EAC+∠ACD,即∠ADF=∠AFD.又∵BE为圆O的直径,∴∠BAE=90°,∴∠ADF=12(180°-∠BAE)=45°(2)∵∠B=∠EAC,∠ACE=∠BCA,∴△ACE∽△BCA又∵AB=AC,∴∠B=∠ACB,∴∠B=∠ACB=∠EAC,由∠BAE=90°及三角形内角和知,∠B=30°,∴在Rt△ABE中,ACBC=AEBA=tan∠B=tan30°=339.如图,AB是⊙O的直径,点D在AB的延长线上,BD=OB,CD与⊙O切于C,那么∠CAB═______.答案:连接OC,BC.∵CD是切线,∴OC⊥CD.∵BD=OB,∴BC=OB=OC.∴∠ABC=60°.∵AB是直径,∴∠ACB=90°,∴∠CAB=30°故为:30°10.频率分布直方图的重心是()

A.众数

B.中位数

C.标准差

D.平均数答案:D11.想要检验是否喜欢参加体育活动是不是与性别有关,应该检验()

A.H0:男性喜欢参加体育活动

B.H0:女性不喜欢参加体育活动

C.H0:喜欢参加体育活动与性别有关

D.H0:喜欢参加体育活动与性别无关答案:D12.若圆C过点M(0,1)且与直线l:y=-1相切,设圆心C的轨迹为曲线E,A、B为曲线E上的两点,点P(0,t)(t>0),且满足AP=λPB(λ>1).

(I)求曲线E的方程;

(II)若t=6,直线AB的斜率为12,过A、B两点的圆N与抛物线在点A处共同的切线,求圆N的方程;

(III)分别过A、B作曲线E的切线,两条切线交于点Q,若点Q恰好在直线l上,求证:t与QA•QB均为定值.答案:【解】(Ⅰ)依题意,点C到定点M的距离等于到定直线l的距离,所以点C的轨迹为抛物线,曲线E的方程为x2=4y.(Ⅱ)直线AB的方程是y=12x+6,即x-2y+12=0.由{_x2=4y,x-2y+12=0,及AP=λPB(λ>1)知|AP|>|PB|,得A(6,9)和B(-4,4)由x2=4y得y=14x2,y′=12x.所以抛物线x2=4y在点A处切线的斜率为y'|x=6=3.直线NA的方程为y-9=-13(x-6),即y=-13x+11.①线段AB的中点坐标为(1,132),线段AB中垂线方程为y-132=-2(x-1),即y=-2x+172.②由①、②解得N(-32,232).于是,圆C的方程为(x+32)2+(y-232)2=(-4+32)2+(4-232)2,即(x+32)2+(y-232)2=1252.(Ⅲ)设A(x1,x124),B(x2,x224),Q(a,-1).过点A的切线方程为y-x214=x12(x-x1),即x12-2ax1-4=0.同理可得x22-2ax2-4=0,所以x1+x2=2a,x1x2=-4.又kAB=x124-x224x1-x2=x1+x24,所以直线AB的方程为y-x124=x1+x24(x-x

1),即y=x1+x24x-x1x24,亦即y=a2x+1,所以t=-1.而QA=(x1-a,x124+1),QB=(x2-a,x224+1),所以QA•QB=(x1-a)(x2-a)+(x214+1)(x224+1)=x1x2-a(x1+x2)+a2+x21x2216+(x1+x2)2-2x1x24+1=-4-2a2+a2+1+4a2+84+1=0.13.抛物线y=-12x2上一点N到其焦点F的距离是3,则点N到直线y=1的距离等于______.答案:∵抛物线y=-12x2化成标准方程为x2=-2y∴抛物线的焦点为F(0,-12),准线方程为y=12∵点N在抛物线上,到焦点F的距离是3,∴点N到准线y=12的距离也是3因此,点N到直线y=1的距离等于3+(1-12)=72故为:7214.经过抛物线y2=2x的焦点且平行于直线3x-2y+5=0的直线的方程是()

A.6x-4y-3=0

B.3x-2y-3=0

C.2x+3y-2=0

D.2x+3y-1=0答案:A15.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P(ξ≤6)=______.答案:取出的4只球中红球个数可能为4,3,2,1个,黑球相应个数为0,1,2,3个.其分值为ξ=4,6,8.P(ξ≤6)=P(ξ=4)+P(ξ=6)=C44C03C47+C34C13C47=1335.故为:1335.16.直线x+y-1=0到直线xsinα+ycosα-1=0(<α<)的角是()

A.α-

B.-α

C.α-

D.-α答案:D17.在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为()

A.0.9

B.0.5

C.0.6

D.0.8答案:D18.双曲线(n>1)的两焦点为F1、、F2,P在双曲线上,且满足|PF1|+|PF2|=2,则△P

F1F2的面积为()

A.

B.1

C.2

D.4答案:B19.已知二次函数f(x)=x2+bx+c,f(0)<0,则该函数零点的个数为()

A.1

B.2

C.3

D.0答案:B20.应用反证法推出矛盾的推导过程中要把下列哪些作为条件使用()

①结论相反的判断,即假设

②原命题的条件

③公理、定理、定义等

④原结论

A.①②

B.①②④

C.①②③

D.②③答案:C21.已知f(x)=x2+4x+8,则f(3)=______.答案:f(3)=32+4×3+8=29,故为:29.22.已知x,y,z满足(x-3)2+(y-4)2+z2=2,那么x2+y2+z2的最小值是______.答案:由题意可得P(x,y,z),在以M(3,4,0)为球心,2为半径的球面上,x2+y2+z2表示原点与点P的距离的平方,显然当O,P,M共线且P在O,M之间时,|OP|最小,此时|OP|=|OM|-2=32+42-2=52,所以|OP|2=27-102.故为:27-102.23.若A(0,2,198),B(1,-1,58),C(-2,1,58)是平面α内的三点,设平面α的法向量a=(x,y,z),则x:y:z=______.答案:AB=(1,-3,-74),AC=(-2,-1,-74),α•AB=0,α•AC=0,∴x=23yz=-43y,x:y:z=23y:y:(-43y)=2:3:(-4).故为2:3:-4.24.已知双曲线的渐近线方程为2x±3y=0,F(0,-5)为双曲线的一个焦点,则双曲线的方程为()

A.

B.

C.

D.答案:B25.(文)椭圆的一个焦点与短轴的两端点构成一个正三角形,则该椭圆的离心率为()

A.

B.

C.

D.不确定答案:C26.已知函数f(x)=x21+x2,那么f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=______.答案:∵f(x)=x21+x2,∴f(1x)=11+x2∴f(x)+f(1x)=1∴f(2)+f(12)=1,f(3)+f(13)=1,f(4)+f(14)=1,f(1)=12∴f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=72故为:7227.已知直线l:x=2+ty=1-at(t为参数),与椭圆x2+4y2=16交于A、B两点.

(1)若A,B的中点为P(2,1),求|AB|;

(2)若P(2,1)是弦AB的一个三等分点,求直线l的直角坐标方程.答案:(1)直线l:x=2+ty=1-at代入椭圆方程,整理得(4a2+1)t2-4(2a-1)t-8=0设A、B对应的参数分别为t1、t2,则t1+t2=4(2a-1)4a2+1,t1t2=-84a2+1,∵A,B的中点为P(2,1),∴t1+t2=0解之得a=12,∴t1t2=-4,∵|AP|=12+(-12)2|t1|=52|t1|,|BP|=52|t2|,∴|AB|=52(|t1|+|t1|)=52×(t1+t2)2-4t1t2=25,(2)P(2,1)是弦AB的一个三等分点,∴|AP|=12|PB|,∴1+a2|t1|=21+a2|t2|,⇒t1=-2t2,∴t1+t2=-t2=4(2a-1)4a2+1,t1t2=-2t

22=-84a2+1,∴t

22=44a2+1,∴16(2a-1)2(4a2+1)2=44a2+1,解得a=4±76,∴直线l的直角坐标方程y-1=4±76(x-2).28.从甲乙丙三人中任选两名代表,甲被选中的概率为()A.12B.13C.23D.1答案:从3个人中选出2个人当代表,则所有的选法共有3种,即:甲乙、甲丙、乙丙,其中含有甲的选法有两种,故甲被选中的概率是23,故选C.29.若点P(a,b)在圆C:x2+y2=1的外部,则直线ax+by+1=0与圆C的位置关系是()

A.相切

B.相离

C.相交

D.相交或相切答案:C30.在班级随机地抽取8名学生,得到一组数学成绩与物理成绩的数据:

数学成绩6090115809513580145物理成绩4060754070856090(1)计算出数学成绩与物理成绩的平均分及方差;

(2)求相关系数r的值,并判断相关性的强弱;(r≥0.75为强)

(3)求出数学成绩x与物理成绩y的线性回归直线方程,并预测数学成绩为110的同学的物理成绩.答案:(1)计算出数学成绩与物理成绩的平均分及方差;.x=100,.y=65,数学成绩方差为750,物理成绩方差为306.25;(4分)(2)求相关系数r的值,并判断相关性的强弱;r=6675≈0.94>0.75,相关性较强;(8分)(3)求出数学成绩x与物理成绩y的线性回归直线方程,并预测数学成绩为110的同学的物理成绩.y=0.6x+5,预测数学成绩为110的同学的物理成绩为71.(12分)31.已知向量OC=(2,2),CA=(2cosa,2sina),则向量.OA的模的最大值是()A.3B.32C.2D.18答案:∵OA=OC+CA=(2+2cosa,2+2sina)|OA|=(2+2cosa)2+(2+2sina)2=10+8sin(a+π4)∴|OA|≤18=32故选B.32.已知a=(5,4),b=(3,2),则与2a-3b同向的单位向量为

______.答案:∵a=(5,4),b=(3,2),∴2a-3b=(1,2)设与2a-3b平行的单位向量为e=(x,y),则2a-3b=λe,|e|=1∴(1,2)=(λx,λy);x2+y2=1∴1=λx2=λyx2+y2=1解之x=55y=255或x=-55y=-255故为e=±(55,255)33.已知向量,,若与共线,则的值为

A

B

C

D

答案:D解析:,,由,得34.下列说法正确的是()

A.互斥事件一定是对立事件,对立事件不一定是互斥事件

B.互斥事件不一定是对立事件,对立事件一定是互斥事件

C.事件A,B中至少有一个发生的概率一定比A,B中恰有一个发生的概率大

D.事件A,B同时发生的概率一定比A,B中恰有一个发生的概率小答案:B35.如图,⊙O是Rt△ABC的外接圆,点O在AB上,BD⊥AB,点B是垂足,OD∥AC,连接CD.

求证:CD是⊙O的切线.答案:证明:连接CO,(1分)∵OD∥AC,∴∠COD=∠ACO,∠CAO=∠DOB.(3分)∵∠ACO=∠CAO,∴∠COD=∠DOB.(6分)∵OD=OD,OC=OB,∴△COD≌△BOD.(8分)∴∠OCD=∠OBD=90°.∴OC⊥CD,即CD是⊙O的切线.(10分)36.利用斜二侧画法画直观图时,①三角形的直观图还是三角形;②平行四边形的直观图还是平行四边形;③正方形的直观图还是正方形;④菱形的直观图还是菱形.其中正确的是

______.答案:由斜二侧直观图的画法法则可知:①三角形的直观图还是三角形;正确;②平行四边形的直观图还是平行四边形;正确.③正方形的直观图还是正方形;应该是平行四边形;所以不正确;④菱形的直观图还是菱形.也是平行四边形,所以不正确.故为:①②37.下列各组向量中不平行的是()A.a=(1,2,-2),b=(-2,-4,4)B.c=(1,0,0),d=(-3,0,0)C.e=(2,3,0),f=(0,0,0)D.g=(-2,3,5),h=(16,24,40)答案:选项A中,b=-2a⇒a∥b;选项B中有:d=-3c⇒d∥c,选项C中零向量与任意向量平行,选项D,事实上不存在任何一个实数λ,使得g=λh,即:(16,24,40)=λ(16,24,40).故应选:D38.三段论:“①船准时启航就能准时到达目的港,②这艘船准时到达了目的港,③这艘船是准时启航的”中,“小前提”是______.(填序号)答案:三段论:“①船准时启航就能准时到达目的港;②这艘船准时到达了目的港,③这艘船是准时启航的,我们易得大前提是①,小前提是②,结论是③,故为:②.39.已知=(-3,2,5),=(1,x,-1),且=2,则x的值为()

A.3

B.4

C.5

D.6答案:C40.有一批数量很大的产品,其中次品率是20%,对这批产品进行抽查,每次抽出一件,如果抽出次品则抽查终止,否则继续抽查,直到抽出次品,但抽查次数最多不超过9次,那么抽查次数为9次的概率为(

A.0.89

B.0.88×0.2

C.0.88

D.0.28×0.8答案:C41.等于()

A.

B.

C.

D.答案:B42.下列命题错误的是(

)A.命题“若,则中至少有一个为零”的否定是:“若,则都不为零”。B.对于命题,使得;则是,均有。C.命题“若,则方程有实根”的逆否命题为:“若方程无实根,则”。D.“”是“”的充分不必要条件。答案:A解析:命题的否定是只否定结论,∴选A.43.已知a,b

,c满足a+2c=b,且a⊥c,|a|=1,|c|=2,则|b|=______.答案:根据题意,a⊥c?a?c=0,则|b|2=(a+2c)2=a2+4c2=17,则|b|=17;故为17.44.极点到直线ρ(cosθ+sinθ)=3的距离是

______.答案:将原极坐标方程ρ(cosθ+sinθ)=3化为:直角坐标方程为:x+y=3,原点到该直线的距离是:d=|3|2=62.∴所求的距离是:62.故填:62.45.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.答案::如图可知:∵AC1=6,cos∠AC1A1=33∴A1C1=2,AA1=2∴正四棱柱的体积等于A1B12?AA1=2故为:246.如图,△ABC中,D,E,F分别是边BC,AB,CA的中点,在以A、B、C、D、E、F为端点的有向线段中所表示的向量中,

(1)与向量FE共线的有

______.

(2)与向量DF的模相等的有

______.

(3)与向量ED相等的有

______.答案:(1)∵EF是△ABC的中位线,∴EF∥BC且EF=12BC,则与向量FE共线的向量是BC、BD、DC、CB、DB、CD;(2))∵DF是△ABC的中位线,∴DF∥AC且DF=12AC,则与向量DF的模相等的有CE,EA,EC,AF;(3)∵DE是△ABC的中位线,∴DE∥AB且DE=12AB,则与向量ED相等的有AF,FB.47.若数据x1,x2,x3…xn的平均数.x=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1…,3xn+1的方差为______.答案:∵x1,x2,x3,…,xn的方差为2,∴3x1+1,3x2+1,3x3+1,…,3xn+1的方差是32×2=18.故为:18.48.教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是______.答案:这两章的内容都是通过建立直角坐标系,用代数中的函数思想来解决图形中的几何性质.故为用代数的方法研究图形的几何性质解析:教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是______.49.已知集合M={1,2,3},N={1,2,3,4},定义函数f:M→N.若点A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圆圆心为D,且

则满足条件的函数f(x)有()

A.6个

B.10个

C.12个

D.16个答案:C50.命题“p:任意x∈R,都有x≥2”的否定是______.答案:命题“任意x∈R,都有x≥2”是全称命题,否定时将量词对任意的x∈R变为存在实数x,再将不等号≥变为<即可.故为:存在实数x,使得x<2.第2卷一.综合题(共50题)1.命题:“方程x2-1=0的解是x=±1”,其使用逻辑联结词的情况是()A.使用了逻辑联结词“且”B.使用了逻辑联结词“或”C.使用了逻辑联结词“非”D.没有使用逻辑联结词答案:“x=±1”可以写成“x=1或x=-1”,故选B.2.已知某人在某种条件下射击命中的概率是,他连续射击两次,其中恰有一次射中的概率是()

A.

B.

C.

D.答案:C3.扇形周长为10,则扇形面积的最大值是()A.52B.254C.252D.102答案:设半径为r,弧长为l,则周长为2r+l=10,面积为s=12lr,因为10=2r+l≥22rl,所以rl≤252,所以s≤254故选B4.利用斜二测画法能得到的()

①三角形的直观图是三角形;

②平行四边形的直观图是平行四边形;

③正方形的直观图是正方形;

④菱形的直观图是菱形.

A.①②

B.①

C.③④

D.①②③④答案:A5.若4名学生和3名教师站在一排照相,则其中恰好有2名教师相邻的站法有______种.(用数字作答)答案:4名学生和3名教师站在一排照相,则其中恰好有2名教师相邻,所以第一步应先取两个老师且绑定有C23×A22=6种方法,第二步将四名学生全排列,共有4!=24种方法,第三步将绑定的两位老师与剩下的一位老师看作两个元素,插入四个学生隔开的五个空中,共有A25=20种方法故总的站法有6×24×20=2880种故为28806.双曲线的渐进线方程是3x±4y=0,则双曲线的离心率等于______.答案:由题意可得,当焦点在x轴上时,ba=34,∴ca=a2+b2a=a2+(3a4)2a=54.当焦点在y轴上时,ab=34,∴ca=a2+b2a=a2+(4a3)2a=53,故为:53

或54.7.沿着正四面体OABC的三条棱OA、OB、OC的方向有大小等于1、2、3的三个力f1、f2、f3.试求此三个力的合力f的大小以及此合力与三条棱所夹角的余弦.答案:用a、b、c分别代表棱OA、OB、OC上的三个单位向量,则f1=a,f2=2b,f3=3c,则f=f1+f2+f3=a+2b+3c,∴|f|2=(a+2b+3c)?(a+2b+3c)=|a|2+4|b|2+9|c|2+4a?b+6a?c+12b?c=1+4+9+4|a||b|cos<a,b>+6|a||c|cos<a,c>+12|b||c|cos<b,c>=14+4cos60°+6cos60°+12cos60°=14+2+3+6=25.∴|f|=5,即所求合力的大小为5,且cos<f,a>=f?a|f||a|=|a|2+2a?b+3a?c5=1+1+325=710.同理,可得cos<f,b>=45,cos<f,c>=910.8.直线x+1=0的倾斜角是______.答案:直线x+1=0与x轴垂直,所以直线的倾斜角为90°.故为:90°.9.已知圆C:x2+y2-4x-6y+12=0的圆心在点C,点A(3,5),求:

(1)过点A的圆的切线方程;

(2)O点是坐标原点,连接OA,OC,求△AOC的面积S.答案:(1)⊙C:(x-2)2+(y-3)2=1.当切线的斜率不存在时,对直线x=3,C(2,3)到直线的距离为1,满足条件;当k存在时,设直线y-5=k(x-3),即y=kx+5-3k,∴|-k+2|k2+1=1,得k=34.∴得直线方程x=3或y=34x+114.(2)|AO|=9+25=34,l:5x-3y=0,d=134,S=12d|AO|=12.10.如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是()

A.

B.

C.

D.2答案:C11.根据如图的框图,写出打印的第五个数是______.答案:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是:输出N<35时,打印A值.程序在运行过程中各变量的情况如下表示:

是否继续循环

A

N循环前

1

1

第一圈

2×1+1=3

2

是第二圈

2×3+1=7

3

是第三圈

2×7+1=15

4

是第四圈

2×15+1=31

5

是…所以这个打印的第五个数是31.故为:3112.下表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程.y=0.7x+0.35,那么表中m的值为______.

x3456y2.5m44.5答案:∵根据所给的表格可以求出.x=3+4+5+64=4.5,.y=2.5+m+4+4.54=11+m4∵这组数据的样本中心点在线性回归直线上,∴11+m4=0.7×4.5+0.35,∴m=3,故为:313.已知△ABC的三个顶点为A(1,-2,5),B(-1,0,1),C(3,-4,5),则边BC上的中线长为______.答案:∵A(1,-2,5),B(-1,0,1),C(3,-4,5),∴BC的中点为D(1,-2,3),∴|AD|=(1-1)2+(-2+2)2+(5-3)2=2.故为:2.14.已知点P(t,t),t∈R,点M是圆x2+(y-1)2=上的动点,点N是圆(x-2)2+y2=上的动点,则|PN|-|PM|的最大值是(

A.-1

B.

C.2

D.1答案:C15.(本题满分12分)已知对任意的平面向量,把绕其起点沿逆时针方向旋转角,得到向量,叫做把点B绕点A逆时针方向旋转角得到点P

①已知平面内的点A(1,2),B,把点B绕点A沿逆时针方向旋转后得到点P,求点P的坐标

②设平面内曲线C上的每一点绕逆时针方向旋转后得到的点的轨迹是曲线,求原来曲线C的方程.答案:解:

……2分

……6分

解得x="0,y="-1

……7分②

…………10分

即…………11分又x’2-y’2="1

"……12分

……13分

化简得:

……14分解析:略16.若集合A={x|3≤x<7},B={x|2<x<10},则A∪B=______.答案:因为集合A={x|3≤x<7},B={x|2<x<10},所以A∪B={x|3≤x<7}∪{x|2<x<10}={x|2<x<10},故为:{x|2<x<10}.17.已知平面向量.a,b的夹角为60°,.a=(3,1),|b|=1,则|.a+2b|=______.答案:∵平面向量.a,b的夹角为60°,.a=(3,1),∴|.a|=2.b2

再由|b|=1,可得.a?b=2×1cos60°=1,∴|.a+2b|=(.a+2b)2=a2+4a?b+4b2=23,故为23.18.已知点A(5,0)和⊙B:(x+5)2+y2=36,P是⊙B上的动点,直线BP与线段AP的垂直平分线交于点Q.

(1)证明点Q的轨迹是双曲线,并求出轨迹方程.

(2)若(BQ+BA)•QA=0,求点Q的坐标.答案:(1)∵点Q在线段AP的垂直平分线上,∴|QP|=|QA|,∴||BQ|-|PQ||=||BQ|-|AQ||=6.∴点Q的轨迹是以A、B为焦点的双曲线.(4′)其轨迹方程是x29-y216=1.(7′)(2)以A、B、Q为三个顶点作平行四边形ABQC,则BQ+BA=BC∵(BQ+BA)•QA=0,∴BC•QC=0,∴平行四边形ABQC是菱形,∴|BA|=|BQ|.(8′)∴点Q在圆(x+5)2+y2=100上.解方程组(x+5)2+y2=100x29-y216=1.(10′)得Q(-395,±485)或Q(215,±865).(12′)19.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为()A.7B.6C.5D.3答案:设上底面半径为r,因为圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,所以S侧面积=π(r+3r)l=84π,r=7故选A20.如图的算法的功能是______.输出结果i=______,i+2=______.答案:框图首先输入变量i的值,判断i(i+2)=624,执行输出i,i+2;否则,i=i+2.算法结束.故此算法执行的是求积为624的两个连续偶数,i=24,i+2=26;故为:求积为624的两个连续偶数,24,26.21.以双曲线x24-y216=1的右焦点为圆心,且被其渐近线截得的弦长为6的圆的方程为______.答案:双曲线x24-y216=1的右焦点为F(25,0),一条渐近线为2x+y=0.∴所求圆的圆心为(25,0).∵所求圆被渐近线2x+y=0截得的弦长为6,∴圆心为(25,0)到渐近线2x+y=0的距离d=455=4,圆半径r=9+16=5,∴所求圆的方程是(x-25)2+y2=25.故为(x-25)2+y2=25.22.已知椭圆C1:x2a2+y2b2=1(a>b>0)的离心率为33,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆相切.

(1)求椭圆C1的方程;

(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于直线l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;

(3)设C2与x轴交于点Q,不同的两点R,S在C2上,且满足QR•RS=0,求|QS|的取值范围.答案:(1)由e=33得2a2=3b2,又由直线l:y=x+2与圆x2+y2=b2相切,得b=2,a=3,∴椭圆C1的方程为:x23+y22=1.(4分)(2)由MP=MF2得动点M的轨迹是以l1:x=-1为准线,F2为焦点的抛物线,∴点M的轨迹C2的方程为y2=4x.(8分)(3)Q(0,0),设R(y214,y1),S(y224,y2),∴QR=(y214,y1),RS=(y22-y214,y2-y1),由QR•RS=0,得y21(y22-y21)16+y1(y2-y1)=0,∵y1≠y2∴化简得y2=-y1-16y1,(10分)∴y22=y21+256y21+32≥2256+32=64(当且仅当y1=±4时等号成立),∵|QS|=(y224)2+y22=14(y22+8)2-64,又∵y22≥64,∴当y22=64,即y2=±8时|QS|min=85,∴|QS|的取值范围是[85,+∞).(13分)23.(几何证明选做题)如图,已知:△ABC内接于圆O,点D在OC的延长线上,AD是圆O的切线,若∠B=30°,AC=2,则OD的长为______.答案:∵AD是圆O的切线,∠B=30°∴∠DAC=30°,∴∠OAC=60°,∴△AOC是一个等边三角形,∴OA=OC=2,在直角三角形AOD中,OD=2AO=4,故为:4.24.△ABC中,若有一个内角不小于120°,求证:最长边与最短边之比不小于3.答案:设最大角为∠A,最小角为∠C,则最大边为a,最小边为c因为A≥120°,所以B+C≤60°,且C≤B,所以2C≤B+C≤60°,C≤30°.所以ac=sinAsinC=sin(B+C)sinC≥sin2CsinC=2cosC≥3.25.如图,正方体ABCD-A1B1C1D1的棱长为1.

(1)求A1C与DB所成角的大小;

(2)求二面角D-A1B-C的余弦值;

(3)若点E在A1B上,且EB=1,求EC与平面ABCD所成角的大小.答案:(1)如图建立空间直角坐标系C-xyz,则C(0,0,0),D(1,0,0),B(0,1,0),A1(1,1,1).∴DB=(-1,1,0),CA1=(1,1,1).∴cos<DB,CA1>=DB•CA1|DB|•|CA1|=02•3=0.∴A1C与DB所成角的大小为90°.(2)设平面A1BD的法向量n1=(x,y,z),则n1⊥DB,n1⊥A1B,可得-x+y=0x+z=0,∴n1=(1,1,-1).同理可求得平面A1BC的一个法向量n2=(1,0,-1),∴cos<n1,n2>=n1•n2|n1|•|n2|=26=63,∴二面角D-A1B-C的余弦值为63.(3)设n=(0,0,1)是平面ABCD的一个法向量,且CE=(22,1,22),∴cos<n,CE>=n•CE|n|•|CE|=12,∴<n,CE>=60°,∴EC与平面ABCD所成的角是30°.26.一个盒子装有10个红、白两色同一型号的乒乓球,已知红色乒乓球有3个,若从盒子里随机取出3个乒乓球,则其中含有红色乒乓球个数的数学期望是______.答案:由题设知含有红色乒乓球个数ξ的可能取值是0,1,2,3,P(ξ=0)=C37C310=724,P(ξ=1)=C27C13C310=2140,P(ξ=2)=C17C23C310=740,P(ξ=3)=C33C310=1120.∴Eξ=0×724+1×

2140+2×740+3×1120=910.故为:910.27.凡自然数都是整数,而

4是自然数

所以4是整数.以上三段论推理()

A.正确

B.推理形式不正确

C.两个“自然数”概念不一致

D.两个“整数”概念不一致答案:A28.为如图所示的四块区域涂色,要求相邻区域不能同色,现有3种不同颜色可供选择,则共有______种不同涂色方案(要求用具体数字作答).答案:由题意,首先给左上方一个涂色,有三种结果,再给最左下边的上面的涂色,有两种结果,右上方,如果与左下边的同色,则右方的涂色,有两种结果,右上方,如果与左下边的不同色,则右方的涂色,有1种结果,∴根据分步计数原理得到共有3×2×(2+1)=18种结果,故为18.29.已知集合A={0,1,2},集合B={x|x=2a,a∈A},则A∩B=()A.{0}B.{2}C.{0,2}D.{1,4}答案:B={0,2,4},∴A∩B={0,2},故选C30.已知f(n)=1+12+13+L+1n(n∈N*),用数学归纳法证明f(2n)>n2时,f(2k+1)-f(2k)等于______.答案:因为假设n=k时,f(2k)=1+12+13+…+12k,当n=k+1时,f(2k+1)=1+12+13+…+12k+12k+1+…+12k+1∴f(2k+1)-f(2k)=12k+1+12k+2+…+12k+1故为:12k+1+12k+2+…+12k+131.已知P(x,y)是椭圆x24+y2=1上的点,求M=x+2y的取值范围.答案:∵x24+y2=1的参数方程是x=2cosθy=sinθ(θ是参数)∴设P(2cosθ,sinθ)(4分)∴M=x+2y=2cosθ+2sinθ=22sin(θ+π4)

(7分)∴M=x+2y的取值范围是[-22,22].(10分)32.设ABC是坐标平面上的一个三角形,P为平面上一点且AP=15AB+25AC,则△ABP的面积△ABC的面积=()A.12B.15C.25D.23答案:连接CP并延长交AB于D,∵P、C、D三点共线,∴AP=λAD+μAC且λ+μ=1设AB=kAD,结合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面积与△ABC有相同的底边AB高的比等于|PD|与|CD|之比∴△ABP的面积与△ABC面积之比为25故选:C33.函数y=ax+b和y=bax(a≠0,b>0,且b≠1)的图象只可能是()A.

B.

C.

D.

答案:对于A:函数y=ax+b递增可得a>0,0<b<1;函数y=bax(a≠0,b>0,且b≠1)递减可得0<b<1且a>0故A正确对于B:函数y=ax+b递增可得a>0,b>1;函数y=bax(a≠0,b>0,且b≠1)递减可得0<b<1且a>0,矛盾,故B不正确对于C:函数y=ax+b递减可得a<0,0<b<1;函数y=bax(a≠0,b>0,且b≠1)递减可得0<b<1且a>0,矛盾,故C不正确对于D:函数y=ax+b递减可得a<0,b>1;函数y=bax(a≠0,b>0,且b≠1)递增可得b>1且a>0,矛盾,故D不正确故选A34.满足{1,2}∪A={1,2,3}的集合A的个数为______.答案:由{1,2}∪A={1,2,3},所以A={3},或{1,3},或{2,3},或{1,2,3}.所以集合A的个数为4.35.已知实数x,y满足2x+y+5=0,那么x2+y2的最小值为______.答案:x2+y2

表示直线2x+y+5=0上的点与原点的距离,其最小值就是原点到直线2x+y+5=0的距离|0+0+5|4+1=5,故为:5.36.(几何证明选讲选选做题)如图,AC是⊙O的直径,B是⊙O上一点,∠ABC的平分线与⊙O相交于.D已知BC=1,AB=3,则AD=______;过B、D分别作⊙O的切线,则这两条切线的夹角θ=______.答案:∵AC是⊙O的直径,B是⊙O上一点∴∠ABC=90°∵∠ABC的平分线与⊙O相交于D,BC=1,AB=3∴∠C=60°,∠BAC=30°,∠ABD=∠CBD=45°由圆周角定理可知∠C=∠ADB=60°△ABD中,由正弦定理可得ABsin60°=ADsin45°即AD=3sin60°×sin45°=2∵∠BAD=30°+45°=75°∴∠BOD=2∠BAD=150°设所作的两切线交于点P,连接OB,OD,则可得OB⊥PB,OD⊥PD即∠OBP=∠ODP=90°∴点ODPB共圆∴∠P+∠BOD=180°∴∠P=30°故为:2,30°37.如图,在平行四边形OABC中,点C(1,3).

(1)求OC所在直线的斜率;

(2)过点C做CD⊥AB于点D,求CD所在直线的方程.答案:(1)∵点O(0,0),点C(1,3),∴OC所在直线的斜率为kOC=3-01-0=3.(2)在平行四边形OABC中,AB∥OC,∵CD⊥AB,∴CD⊥OC.∴CD所在直线的斜率为kCD=-13.∴CD所在直线方程为y-3=-13(x-1),即x+3y-10=0.38.甲、乙两人共同投掷一枚硬币,规定硬币正面朝上甲得1分,否则乙得1分,先积3分者获胜,并结束游戏.

①求在前3次投掷中甲得2分,乙得1分的概率.

②设ξ表示到游戏结束时乙的得分,求ξ的分布列以及期望.答案:(1)由题意知本题是一个古典概型试验发生的事件是掷一枚硬币3次,出现的所有可能情况共有以下8种.(正正正)、(正正反)、(正反反)、(反反反)、(正反正)、(反正正)、(反反正)、(反正反)、其中甲得(2分),乙得(1分)的情况有以下3种,(正正反)、(正反正)、(反正正)∴所求概率P=38(2)ξ的所有可能值为:0、1、2、3P(ξ=0)=12×12×12=18P(ξ=1)=C13×12×(12)2×12=316,P(ξ=2)=C24(12)2(12)212=316P(ξ=3)=12×12×12+C1312(12)212+C24(12)2(12)212=12∴ξ的分布列为:∴Eξ=1×316+2×316+3×12=331639.求证:不论λ取什么实数时,直线(2λ-1)x+(λ+3)y-(λ-11)=0都经过一个定点,并求出这个定点的坐标.答案:证明:直线(2λ-1)x+(λ+3)y-(λ-11)=0即λ(2x+y-1)+(-x+3y+11)=0,根据λ的任意性可得2x+y-1=0-x+3y+11=0,解得x=2y=-3,∴不论λ取什么实数时,直线(2λ-1)x+(λ+3)y-(λ-11)=0都经过一个定点(2,-3).40.设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素2n+n,则在映射f下,象20的原象是()A.2B.3C.4D.5答案:由2n+n=20求n,用代入法可知选C.故选C41.已知x、y的取值如下表所示:

x0134y2.24.34.86.7若从散点图分析,y与x线性相关,且

y=0.95x+

a,则

a的值等于()A.2.6B.6.3C.2D.4.5答案:∵.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5,∴这组数据的样本中心点是(2,4.5)∵y与x线性相关,且y=0.95x+a,∴4.5=0.95×2+a,∴a=2.6,故选A.42.把方程化为以参数的参数方程是(

)A.B.C.D.答案:D解析:,取非零实数,而A,B,C中的的范围有各自的限制43.△ABC中,A(1,2),B(3,1),重心G(3,2),则C点坐标为______.答案:设点C(x,y)由重心坐标公式知3×3=1+3+x,6=2+1+y解得x=5,y=3故点C的坐标为(5,3)故为(5,3)44.

在△ABC中,点D在线段BC的延长线上,且BC=3CD,点O在线段CD上(与点C、D不重合),若AO=xAB+(1-x)AC,则x的取值范围是()

A.

B.

C.

D.答案:D45.(本题10分)设函数的定义域为A,的定义域为B.(1)求A;

(2)若,求实数a的取值范围答案:(1);(2)。解析:略46.若曲线x24+k+y21-k=1表示双曲线,则k的取值范围是

______.答案:要使方程为双曲线方程需(4+k)(1-k)<0,即(k-1)(k+4)>0,解得k>1或k<-4故为(-∞,-4)∪(1,+∞)47.已知平面上直线l的方向向量=(-,),点O(0,0)和A(1,-2)在l上的射影分别是O'和A′,则=λ,其中λ等于()

A.

B.-

C.2

D.-2答案:D48.设与都是直线Ax+By+C=0(AB≠0)的方向向量,则下列关于与的叙述正确的是()

A.=

B.与同向

C.∥

D.与有相同的位置向量答案:C49.如图⊙0的直径AD=2,四边形ABCD内接于⊙0,直线MN切⊙0于点B,∠MBA=30°,则AB的长为______.答案:连BD,则∠MBA=∠ADB=30°,在直角三角形ABD中sin30°=ABAD,∴AB=12×2=1故为:150.直线x=-3+ty=1-t(t是参数)被圆x=5cosθy=5sinθ(θ是参数)所截得的弦长是______.答案:把直线和圆的参数方程化为普通方程得:直线x+y+2=0,圆x2+y2=25,画出函数图象,如图所示:过圆心O(0,0)作OC⊥AB,根据垂径定理得到:AC=BC=12AB,连接OA,则|OA|=5,且圆心O到直线x+y+2=0的距离|OC|=|2|2=2,在直角△ACO中,根据勾股定理得:AC=23,所以AB=223,则直线被圆截得的弦长为223.故为:223第3卷一.综合题(共50题)1.用样本估计总体,下列说法正确的是()A.样本的结果就是总体的结果B.样本容量越大,估计就越精确C.样本容量越小,估计就越精确D.样本的方差可以近似地反映总体的平均状态答案:用样本估计总体时,样本容量越大,估计就越精确,样本的平均值可以近似地反映总体的平均状态,样本的标准差可以近似地反映总体的波动状态,数据的方差越大,说明数据越不稳定,样本的结果可以粗略的估计总体的结果,但不就是总体的结果.故选B.2.(Ⅰ)已知z∈C,且|z|-i=.z+2+3i(i为虚数单位),求复数z2+i的虚部.

(Ⅱ)已知z1=a+2i,z2=3-4i(i为虚数单位),且z1z2为纯虚数,求实数a的值.答案:(Ⅰ)设z=x+yi,代入方程|z|-i=.z+2+3i,得出x2+y2-i=x-yi+2+3i=(x+2)+(3-y)i,故有x2+y2=x+23-y=-1,解得x=3y=4,∴z=3+4i,复数z2+i=3+4i2+i=2+i,虚部为1(Ⅱ)z1z2=a+2i3-4i=3a-8+(4a+6)i25,且z1z2为纯虚数则3a-8=0,且4a+6≠0,解得a=833.抽样方法有()A.随机抽样、系统抽样和分层抽样B.随机数法、抽签法和分层抽样法C.简单随机抽样、分层抽样和系统抽样D.系统抽样、分层抽样和随机数法答案:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而抽签法和随机数法,只是简单随机抽样的两种不同抽取方法故选C4.已知向量,,若与共线,则的值为

A

B

C

D

答案:D解析:,,由,得5.已知直线l的参数方程为x=-4+4ty=-1-2t(t为参数),圆C的极坐标方程为ρ=22cos(θ+π4),则圆心C到直线l的距离是______.答案:直线l的普通方程为x+2y+6=0,圆C的直角坐标方程为x2+y2-2x+2y=0.所以圆心C(1,-1)到直线l的距离d=|1-2+6|5=5.故为5.6.已知,求证:答案:证明略解析:∵

∴①

又∵②

③由①②③得

∴,又不等式①、②、③中等号成立的条件分别为,,故不能同时成立,从而.7.袋子A和袋子B均装有红球和白球,从A中摸出一个红球的概率是13,从B中摸出一个红球的概率是P.

(1)从A中有放回地摸球,每次摸出一个,共摸5次,求恰好有3次摸到红球的概率;

(2)若A、B两个袋子中的总球数之比为1:2,将A、B中的球装在一起后,从中摸出一个红球的概率为25,求P的值.答案:(1)每次从A中摸一个红球的概率是13,摸不到红球的概率为23,根据独立重复试验的概率公式,故共摸5次,恰好有3次摸到红球的概率为:P=C35(13)3(23)2=10×127×49=40243.(2)设A中有m个球,A、B两个袋子中的球数之比为1:2,则B中有2m个球,∵将A、B中的球装在一起后,从中摸出一个红球的概率是25,∴13m+2mp3m=25,解得p=1330.8.一次函数y=3x+2的斜率和截距分别是()A.2、3B.2、2C.3、2D.3、3答案:根据一次函数的定义和直线的斜截式方程知,此一次函数的斜率为3、截距为2故选C9.半径为1、2、3的三个圆两两外切.证明:以这三个圆的圆心为顶点的三角形是直角三角形.

答案:证明:设⊙O1、⊙O2、⊙O3的半径分别为1、2、3.因这三个圆两两外切,故有O1O2=1+2=3,O2O3=2+3=5,O1O3=1+3=4,则有O1O22+O1O32=32+42=52=O2O32根据勾股定理的逆定理,得到△O1O2O3为直角三角形.10.设f(n)=nn+1,g(n)=(n+1)n,n∈N*.

(1)当n=1,2,3,4时,比较f(n)与g(n)的大小.

(2)根据(1)的结果猜测一个一般性结论,并加以证明.答案:(1)当n=1时,nn+1=1,(n+1)n=2,此时,nn+1<(n+1)n,当n=2时,nn+1=8,(n+1)n=9,此时,nn+1<(n+1)n,当n=3时,nn+1=81,(n+1)n=64,此时,nn+1>(n+1)n,当n=4时,nn+1=1024,(n+1)n=625,此时,nn+1>(n+1)n,(2)根据上述结论,我们猜想:当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.①当n=3时,nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假设当n=k时,kk+1>(k+1)k成立,即:kk+1(k+1)k>1则当n=k+1时,(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即当n=k+1时也成立,∴当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.11.已知回归直线的斜率的估计值是1.23,样本中心点为(4,5),若解释变量的值为10,则预报变量的值约为()A.16.3B.17.3C.12.38D.2.03答案:设回归方程为y=1.23x+b,∵样本中心点为(4,5),∴5=4.92+b∴b=0.08∴y=1.23x+0.08x=10时,y=12.38故选C.12.若由一个2*2列联表中的数据计算得k2=4.013,那么有()把握认为两个变量有关系.

A.95%

B.97.5%

C.99%

D.99.9%答案:A13.在平面直角坐标系xOy中,椭圆x2a2+y2b2=1(a>b>0)的焦距为2c,以O为圆心,a为半径作圆M,若过P(a2c,0)作圆M的两条切线相互垂直,则椭圆的离心率为______.答案:设切线PA、PB互相垂直,又半径OA垂直于PA,所以△OAP是等腰直角三角形,故a2c=2a,解得e=ca=22,故为22.14.两个样本甲和乙,其中=10,=10,=0.055,=0.015,那么样本甲比样本乙波动()

A.大

B.相等

C.小

D.无法确定答案:A15.已知矩阵A=12-14,向量a=74.

(1)求矩阵A的特征值λ1、λ2和特征向量α1、α2;

(2)求A5α的值.答案:(1)矩阵A的特征多项式为f(λ)=.λ-1-21λ-4.=λ2-5λ+6,令f(λ)=0,得λ1=2,λ2=3,当λ1=2时,得α1=21,当λ2=3时,得α2=11.(7分)(2)由α=mα1+nα2得2m+n=7m+n=4,得m=3,n=1.∴A5α=A5(3α1+α2)=3(A5α1)+A5α2=3(λ51α1)+λ52α2=3×2521+3511=435339.(15分)16.设与都是直线Ax+By+C=0(AB≠0)的方向向量,则下列关于与的叙述正确的是()

A.=

B.与同向

C.∥

D.与有相同的位置向量答案:C17.平行线3x-4y-8=0与6x-8y+3=0的距离为______.答案:6x-8y+3=0可化为3x-4y+32=0,故所求距离为|-8-32|32+(-4)2=1910,故为:191018.若双曲线的渐近线方程为y=±3x,它的一个焦点是(10,0),则双曲线的方程是______.答案:因为双曲线的渐近线方程为y=±3x,则设双曲线的方程是x2-y29=λ,又它的一个焦点是(10,0)故λ+9λ=10∴λ=1,x2-y29=1故为:x2-y29=119.已知抛物线y=14x2,则过其焦点垂直于其对称轴的直线方程为______.答案:抛物线y=14x2的标准方程为x2=4y的焦点F(0,1),对称轴为y轴所以抛物线y=14x2,则过其焦点垂直于其对称轴的直线方程为y=1故为y=1.20.在120个零件中,一级品24个,二级品36个,三级品60个.用系统抽样法从中抽取容量为20的样本、则每个个体被抽取到的概率是()

A.

B.

C.

D.答案:D21.设a=0.7,b=0.8,c=log30.7,则()

A.c<b<a

B.c<a<b

C.a<b<c

D.b<a<c答案:B22.下列函数中,既是偶函数,又在(0,1)上单调递增的函数是()A.y=|log3x|B.y=x3C.y=e|x|D.y=cos|x|答案:对于A选项,函数定义域是(0,+∞),故是非奇非偶函数,不合题意,A选项不正确;对于B选项,函数y=x3是一个奇函数,故不是正确选项;对于C选项,函数的定义域是R,是偶函数,且当x∈(0,+∞)时,函数是增函数,故在(0,1)上单调递增,符合题意,故C选项正确;对于D选项,函数y=cos|x|是偶函数,在(0,1)上单调递减,不合题意综上知,C选项是正确选项故选C23.直线y=x-1的倾斜角是()

A.30°

B.120°

C.60°

D.150°答案:A24.设双曲线的焦点在x轴上,两条渐近线为y=±12x,则双曲线的离心率e=______.答案:依题意可知ba=12,求得a=2b∴c=a2+b2=5b∴e=ca=52故为52.25.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法求得回归直线方程y=0.68x+54.6

表中有一个数据模糊不清,请你推断出该数据的值为()A.68B.68.2C.69D.75答案:设表中有一个模糊看不清数据为m.由表中数据得:.x=30,.y=m+3075,由于由最小二乘法求得回归方程y=0.68x+54.6.将x=30,y=m+3075代入回归直线方程,得m=68.故选A.26.已知向量a,b,向量c=2a+b,且|a|=1,|b|=2,a与b的夹角为60°

(1)求|c|2;(2)若向量d=ma-b,且d∥c,求实数m的值.答案:(1)∵|a|=1,|b|=2,a和b的夹角为60°∴a•b=|a||b|cos60°=1∴|c|2=(

2a+b)2=4a2+4ab+b2=4+4+4=12(2)∵d∥c∴存在实数λ使得d=λc即ma-b=λ(2a+b)又∵a,b不共线∴2λ=m,λ=-1∴m=-227.设x+y+z=1,求F=2x2+3y2+z2的最小值.答案:∵1=(x+y+z)2=(12?2x+13?3y+1?z)2≤(12+13+1)(2x2+3y2+z2)∴F=2x2+3y2+z2≥611(8分)当且仅当2x12=3y13=z1且x+y+z=1,x=311,y=211,z=611F有最小值611(12分)28.如果方程x2+(m-1)x+m2-2=0的两个实根一个小于1,另一个大于1,那么实数m的取值范围是()

A.

B.(-2,0)

C.(-2,1)

D.(0,1)答案:C29.参数方程x=sinθ+cosθy=sinθ•cosθ化为普通方程是______.答案:把x=sinθ+cosθy=sinθ•cosθ利用同角三角函数的基本关系消去参数θ,化为普通方程可得x2=1+2y,故为x2=1+2y.30.若函数y=ax(a>1)在[0,1]上的最大值与最小值之和为3,则a=______.答案:①当0<a<1时函数y=ax在[0,1]上为单调减函数∴函数y=ax在[0,1]上的最大值与最小值分别为1,a∵函数y=ax在[0,1]上的最大值与最小值和为3∴1+a=3∴a=2(舍)②当a>1时函数y=ax在[0,1]上为单调增函数∴函数y=ax在[0,1]上的最大值与最小值分别为a,1∵函数y=ax在[0,1]上的最大值与最小值和为3∴1+a=3∴a=2故为:2.31.如图,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB为直径作⊙O,连接OC,过点C作⊙O的切线CD,D为切点,若sin∠OCD=45,则直径AB=______.答案:连接OD,则OD⊥CD.∵∠ABC=90°,∴CD、CB为⊙O的两条切线.∴根据切线长定理得:CD=BC=6.在Rt△OCD中,sin∠OCD=45,∴tan∠OCD=43,OD=tan∠OCD×CD=8.∴AB=2OD=16.故为16.32.

点M分有向线段的比为λ,已知点M1(1,5),M2(2,3),λ=-2,则点M的坐标为()

A.(3,8)

B.(1,3)

C.(3,1)

D.(-3,-1)答案:C33.①点P在△ABC所在的平面内,且②点P为△ABC内的一点,且使得取得最小值;③点P是△ABC所在平面内一点,且,上述三个点P中,是△ABC的重心的有()

A.0个

B.1个

C.2个

D.3个答案:D34.在平面直角坐标系xOy中,点P的坐标为(-1,1),若取原点O为极点,x轴正半轴为极轴,建立极坐标系,则在下列选项中,不是点P极坐标的是()

A.()

B.()

C.()

D.()答案:D35.已知当m∈R时,函数f(x)=m(x2-1)+x-a的图象和x轴恒

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论