2023年辽宁政法职业学院高职单招(数学)试题库含答案解析_第1页
2023年辽宁政法职业学院高职单招(数学)试题库含答案解析_第2页
2023年辽宁政法职业学院高职单招(数学)试题库含答案解析_第3页
2023年辽宁政法职业学院高职单招(数学)试题库含答案解析_第4页
2023年辽宁政法职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年辽宁政法职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.设△ABC是边长为1的正三角形,则|CA+CB|=______.答案:∵△ABC是边长为1的正三角形,∴|CA|=1,|CB|=1,CA?CB=1×1×cosπ3=12∴|CA+CB|=CA2+2CA?CB+CB2=1+1+

2×12=3,故为:32.(文)对于任意的平面向量a=(x1,y1),b=(x2,y2),定义新运算⊕:a⊕b=(x1+x2,y1y2).若a,b,c为平面向量,k∈R,则下列运算性质一定成立的所有序号是______.

①a⊕b=b⊕a;

②(ka)⊕b=a⊕(kb);

③a⊕(b⊕c)=(a⊕b)⊕c;

④a⊕(b+c)=a⊕b+a⊕c.答案:①a⊕b=(x1+x2,y1y2)=(x2+x1,y2y1)=b⊕a,故正确;②∵(ka)⊕b=(kx1+x2,ky1y2),a⊕(kb)=(x1+kx2,y1ky2),∴(ka)⊕b≠a⊕(kb),故不正确;③设c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),(a⊕b)⊕c=(x1+x2,y1y2)⊕c=(x1+x2+x3,y1y2y3),∴a⊕(b⊕c)=(a⊕b)⊕c,故正确;④设c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),a⊕b+a⊕c=(x1+x2,y1y2)+(x1+x3,y1y3)=(2x1+x2+x3,y1(y2+y3)),∴a⊕(b⊕c)≠a⊕b+a⊕c,故不正确.综上可知:只有①③正确.故为①③.3.在(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是______.(用数字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是C31+C41+C51+…+C71=25故为:254.如图表示空间直角坐标系的直观图中,正确的个数为()

A.1个

B.2个

C.3个

D.4个答案:C5.下表是关于某设备的使用年限(年)和所需要的维修费用y(万元)的几组统计数据:

x23456y2.23.85.56.57.0(1)请在给出的坐标系中画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

y=

bx+

a;

(3)估计使用年限为10年时,维修费用为多少?

(参考数值:2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3).答案:(1)根据所给的数据,得到对应的点的坐标,写出点的坐标,在坐标系描出点,得到散点图,(2)∵5i=1xi2=4+9+16+25+36=90

且.x=4,.y=5,n=5,∴̂b=112.3-5×4×590-5×16=12.310=1.23̂a=5-1.23×4=0.08∴回归直线为y=1.23x+0.08.(3)当x=10时,y=1.23×10+0.08=12.38,所以估计当使用10年时,维修费用约为12.38万元.6.袋中有5个小球(3白2黑),现从袋中每次取一个球,不放回地抽取两次,则在第一次取到白球的条件下,第二次取到白球的概率是()

A.

B.

C.

D.答案:C7.若椭圆x2+4(y-a)2=4与抛物线x2=2y有公共点,则实数a的取值范围是______.答案:椭圆x2+4(y-a)2=4与抛物线x2=2y联立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵椭圆x2+4(y-a)2=4与抛物线x2=2y有公共点,∴方程2y2-(4a-1)y+2a2-2=0至少有一个非负根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵两根皆负时,由韦达定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一个非负根时,-1≤a≤178故为:-1≤a≤1788.(坐标系与参数方程选做题)过点(2,π3)且平行于极轴的直线的极坐标方程为______.答案:法一:先将极坐标化成直角坐标表示,(2,π3)化为(1,3),过(1,3)且平行于x轴的直线为y=3,再化成极坐标表示,即ρsinθ=3.法二:在极坐标系中,直接构造直角三角形由其边角关系得方程ρsinθ=3.设A(ρ,θ)是直线上的任一点,A到极轴的距离AH=2sinπ3=3,直接构造直角三角形由其边角关系得方程ρsinθ=3.故为:ρsinθ=39.解不等式|2x-1|<|x|+1.答案:根据题意,对x分3种情况讨论:①当x<0时,原不等式可化为-2x+1<-x+1,解得x>0,又x<0,则x不存在,此时,不等式的解集为∅.②当0≤x<12时,原不等式可化为-2x+1<x+1,解得x>0,又0≤x<12,此时其解集为{x|0<x<12}.③当x≥12

时,原不等式可化为2x-1<x+1,解得12≤x<2,又由x≥12,此时其解集为{x|12≤x<2},∅∪{x|0<x<12

}∪{x|12≤x<2

}={x|0<x<2};综上,原不等式的解集为{x|0<x<2}.10.已知双曲线的焦点在y轴,实轴长为8,离心率e=2,过双曲线的弦AB被点P(4,2)平分;

(1)求双曲线的标准方程;

(2)求弦AB所在直线方程;

(3)求直线AB与渐近线所围成三角形的面积.答案:(1)∵双曲线的焦点在y轴,∴设双曲线的标准方程为y2a2-x2b2=1;∵实轴长为8,离心率e=2,∴a=4,c=42,∴b2=c2-a2=16.或∵实轴长为8,离心率e=2,∴双曲线为等轴双曲线,a=b=4.∴双曲线的标准方程为y216-x216=1.(2)设弦AB所在直线方程为y-2=k(x-4),A,B的坐标为A(x1,y1),B(x2,y2).∴k=y1-y2x1-x2,x1+x22=4,y1+y22=2;∴y1216-x1216=1

y2216-x2216=1⇒y12-y2216-x12-x2216=0⇒(y1-y2)(y1+y2)16-(x1-x2)(x1+x2)16=0代入x1+x2=8,y1+y2=4,得(y1-y2)×416-(x1-x2)×816=0,∴y1-y2x1-x2×14-12=0,∴14k-12=0,∴k=2;所以弦AB所在直线方程为y-2=2(x-4),即2x-y-6=0.(3)等轴双曲线y216-x216=1的渐近线方程为y=±x.∴直线AB与渐近线所围成三角形为直角三角形.又渐近线与弦AB所在直线的交点坐标分别为(6,6),(2,-2),∴直角三角形两条直角边的长度分别为62、22;∴直线AB与渐近线所围成三角形的面积S=12×62×22=12.11.如图,在复平面内,点A表示复数z的共轭复数,则复数z对应的点是()A.AB.BC.CD.D答案:两个复数是共轭复数,两个复数的实部相同,下部相反,对应的点关于x轴对称.所以点A表示复数z的共轭复数的点是B.故选B.12.已知m,n为正整数.

(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;

(Ⅱ)对于n≥6,已知(1-1n+3)n<12,求证(1-mn+3)n<(12)m,m=1,2…,n;

(Ⅲ)求出满足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整数n.答案:解法1:(Ⅰ)证:用数学归纳法证明:当x=0时,(1+x)m≥1+mx;即1≥1成立,x≠0时,证:用数学归纳法证明:(ⅰ)当m=1时,原不等式成立;当m=2时,左边=1+2x+x2,右边=1+2x,因为x2≥0,所以左边≥右边,原不等式成立;(ⅱ)假设当m=k时,不等式成立,即(1+x)k≥1+kx,则当m=k+1时,∵x>-1,∴1+x>0,于是在不等式(1+x)k≥1+kx两边同乘以1+x得(1+x)k•(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2≥1+(k+1)x,所以(1+x)k+1≥1+(k+1)x.即当m=k+1时,不等式也成立.综合(ⅰ)(ⅱ)知,对一切正整数m,不等式都成立.(Ⅱ)证:当n≥6,m≤n时,由(Ⅰ)得(1-1n+3)m≥1-mn+3>0,于是(1-mn+3)n≤(1-1n+3)nm=[(1-1n+3)n]m<(12)m,m=1,2,n.(Ⅲ)由(Ⅱ)知,当n≥6时,(1-1n+3)n+(1-2n+3)n++(1-nn+3)n<12+(12)^++(12)n=1-12n<1,∴(n+2n+3)n+(n+1n+3)n++(3n+3)n<1.即3n+4n+…+(n+2)n<(n+3)n.即当n≥6时,不存在满足该等式的正整数n.故只需要讨论n=1,2,3,4,5的情形:当n=1时,3≠4,等式不成立;当n=2时,32+42=52,等式成立;当n=3时,33+43+53=63,等式成立;当n=4时,34+44+54+64为偶数,而74为奇数,故34+44+54+64≠74,等式不成立;当n=5时,同n=4的情形可分析出,等式不成立.综上,所求的n只有n=2,3.解法2:(Ⅰ)证:当x=0或m=1时,原不等式中等号显然成立,下用数学归纳法证明:当x>-1,且x≠0时,m≥2,(1+x)m>1+mx.①(ⅰ)当m=2时,左边=1+2x+x2,右边=1+2x,因为x≠0,所以x2>0,即左边>右边,不等式①成立;(ⅱ)假设当m=k(k≥2)时,不等式①成立,即(1+x)k>1+kx,则当m=k+1时,因为x>-1,所以1+x>0.又因为x≠0,k≥2,所以kx2>0.于是在不等式(1+x)k>1+kx两边同乘以1+x得(1+x)k•(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,所以(1+x)k+1>1+(k+1)x.即当m=k+1时,不等式①也成立.综上所述,所证不等式成立.(Ⅱ)证:当n≥6,m≤n时,∵(1-1n+3)n<12,∴[(1-1n+3)m]n<(12)m,而由(Ⅰ),(1-1n+3)m≥1-mn+3>0,∴(1-mn+3)n≤[(1-1n+3)m]n<(12)m.(Ⅲ)假设存在正整数n0≥6使等式3n0+4n0++(n0+2)n0=(n0+3)n0成立,即有(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=1.②又由(Ⅱ)可得(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=(1-n0n0+3)n0+(1-n0-1n0+3)n0++(1-1n0+3)n0<(12)n0+(12)n0-1++12=1-12n0<1,与②式矛盾.故当n≥6时,不存在满足该等式的正整数n.下同解法1.13.如图,AB是⊙O的直径,AD是⊙O的切线,点C在⊙O上,BC∥OD,AB=2,OD=3,则BC的长为______.答案:∵OD∥BC,∴∠AOD=∠B;∵AD是⊙O的切线,∴BA⊥AD,即∠OAD=∠ACB=90°,∴Rt△AOD∽Rt△CBA,∴BCOA=ABOD,即BC1=23,故BC=23.14.有一个容量为80的样本,数据的最大值是140,最小值是51,组距为10,则可以分为(

A.10组

B.9组

C.8组

D.7组答案:B15.定义xn+1yn+1=1011xnyn,n∈N*为向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一个矩阵变换,其中O是坐标原点.已知OP1=(1,0),则OP2010的坐标为______.答案:由题意,xn+1=xnyn+1=xn+yn∴向量的横坐标不变,纵坐标构成以0为首项,1为公差的等差数列∴OP2010的坐标为(1,2009)故为(1,2009)16.请写出所给三视图表示的简单组合体由哪些几何体组成.______.答案:由已知中的三视图我们可以判断出该几何体是由一个底面面积相等的圆锥和圆柱组合而成故为:圆柱体,圆锥体17.在△ABC中,D为AB上一点,M为△ABC内一点,且满足AD=34AB,AM=AD+35BC,则△AMD与△ABC的面积比为()A.925B.45C.916D.920答案:AP=AD+DP=AD+35BC,DP=35BC.∴三角形ADP的高三角形ABC=ADAB=34,∴S△APDS△ABC=35?34=920.故选D.18.已知直线l的参数方程为x=3+12ty=7+32t(t为参数),曲线C的参数方程为x=4cosθy=4sinθ(θ为参数).

(I)将曲线C的参数方程转化为普通方程;

(II)若直线l与曲线C相交于A、B两点,试求线段AB的长.答案:(I)由x=4cosθy=4sinθ得x2=16cos2θy2=16sin2θ故圆的方程为x2+y2=16.(II)把x=3+12ty=7+32t代入方程x2+y2=16,得t2+83t+36=0∴线段AB的长为|AB|=|t1-t2|=(t1+t2)2-4t1t2=43.19.由1、2、3可以组成______个没有重复数字的两位数.答案:没有重复数字的两位数共有3×2=6个故为:620.设F1,F2分别是椭圆E:x2+y2b2=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列,则|AB|的长为______.答案:∵|AF2|,|AB|,|BF2|成等差数列∴|AF2|+|BF2|=2|AB|,又椭圆E:x2+y2b2=1(0<b<1)中a=1∴|AF2|+|AB|+|BF2|=4,∴3|AB|=4,∴|AB|=43故为:4321.已知x、y的取值如下表所示:

x0134y2.24.34.86.7若从散点图分析,y与x线性相关,且

y=0.95x+

a,则

a的值等于()A.2.6B.6.3C.2D.4.5答案:∵.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5,∴这组数据的样本中心点是(2,4.5)∵y与x线性相关,且y=0.95x+a,∴4.5=0.95×2+a,∴a=2.6,故选A.22.已知直线3x+2y-3=0和6x+my+1=0互相平行,则它们之间的距离是()

A.

B.

C.

D.答案:B23.下列图象中不能作为函数图象的是()A.

B.

C.

D.

答案:根据函数的概念:如果在一个变化过程中,有两个变量x、y,对于x的每一个值,y都有唯一确定的值与之对应,这时称y是x的函数.结合选项可知,只有选项B中是一个x对应1或2个y故选B.24.若点P分向量AB的比为34,则点A分向量BP的比为()A.-34B.34C.-73D.73答案:由题意可得APPB=|AP||PB|=34,故

A分BP的比为BAAP=-|BA||AP|=-4+33=-73,故选C.25.已知方程(1+k)x2-(1-k)y2=1表示焦点在x轴上的双曲线,则k的取值范围为(

A.-1<k<1

B.k>1

C.k<-1

D.k>1或k<-1答案:A26.一射手对靶射击,直到第一次命中为止每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目ξ的期望为()

A.2.44

B.3.376

C.2.376

D.2.4答案:C27.设a,b∈R,ab≠0,则直线ax-y+b=0和曲线bx2+ay2=ab的大致图形是()

A.

B.

C.

D.

答案:B28.给出函数f(x)的一条性质:“存在常数M,使得|f(x)|≤M|x|对于定义域中的一切实数x均成立.”则下列函数中具有这条性质的函数是()A.y=1xB.y=x2C.y=x+1D.y=xsinx答案:根据|sinx|≤1可知|y|=|xsinx|=|x||sinx|≤|x|永远成立故选D.29.用反证法证明:“方程ax2+bx+c=0,且a,b,c都是奇数,则方程没有整数根”正确的假设是方程存在实数根x0为()

A.整数

B.奇数或偶数

C.正整数或负整数

D.自然数或负整数答案:A30.在正方形ABCD中,已知它的边长为1,设=,=,=,则|++|的值为(

A.0

B.3

C.2+

D.2答案:D31.两圆相交于点A(1,3)、B(m,-1),两圆的圆心均在直线x-y+c=0上,则m+c的值为(

A.3

B.2

C.-1

D.0答案:A32.设k>1,则关于x,y的方程(1-k)x2+y2=k2-1所表示的曲线是()

A.长轴在x轴上的椭圆

B.长轴在y轴上的椭圆

C.实轴在x轴上的双曲线

D.实轴在y轴上的双曲线答案:D33.阅读下面的程序框图,该程序运行后输出的结果为______.答案:循环前,S=0,A=1,第1次判断后循环,S=1,A=2,第2次判断并循环,S=3,A=3,第3次判断并循环,S=6,A=4,第4次判断并循环,S=10,A=5,第5次判断并循环,S=15,A=6,第6次判断并退出循环,输出S=15.故为:15.34.(1+2x)6的展开式中x4的系数是______.答案:展开式的通项为Tr+1=2rC6rxr令r=4得展开式中x4的系数是24C64=240故为:24035.在极坐标系中,点(2,π6)到直线ρsinθ=2的距离等于______.答案:在极坐标系中,点(2

π6)化为直角坐标为(3,1),直线ρsinθ=2化为直角坐标方程为y=2,(3,1),到y=2的距离1,即为点(2

π6)到直线ρsinθ=2的距离1,故为:1.36.根据下列条件,求圆的方程:

(1)过点A(1,1),B(-1,3)且面积最小;

(2)圆心在直线2x-y-7=0上且与y轴交于点A(0,-4),B(0,-2).答案:(1)过A、B两点且面积最小的圆就是以线段AB为直径的圆,∴圆心坐标为(0,2),半径r=12|AB|=12(-1+1)2+(1-3)2=12×8=2,∴所求圆的方程为x2+(y-2)2=2;(2)由圆与y轴交于点A(0,-4),B(0,-2)可知,圆心在直线y=-3上,由2x-y-7=0y=-3,解得x=2y=-3,∴圆心坐标为(2,-3),半径r=5,∴所求圆的方程为(x-2)2+(y+3)2=5.37.六个不同大小的数按如图形式随机排列,设第一行这个数为M1,M2,M3分别表示第二、三行中最大数,则满足M1<M2<M3所有排列的个数______.答案:首先M3一定是6个数中最大的,设这六个数分别为a,b,c,d,e,f,不妨设a>b>c>d>e>f.因为如果a在第三行,则a一定是M3,若a不在第三行,则a一定是M1或M2,此时无法满足M1<M2<M3,故a一定在第三行.故

M2一定是b,c,d中一个,否则,若M2是e,则第二行另一个数只能是f,那么第一行的数就比e大,无法满足M1<M2<M3.当M2是b时,此时,a在第三行,b在第二行,其它数任意排,所有的排法有C31

C21

A44=144(种),当M2是c时,此时a和b必须在第三行,c在第二行,其它数任意排,所有的排法有A32

C21

A33=72(种),当M2是d时,此时,a,b,c在第三行,d在第二行,其它数任意排,所有的排法有A33

C21

A22=24(种),故满足M1<M2<M3所有排列的个数为:24+72+144=240种,故为:240.38.在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0),若ξ在(0,2)内取值的概率为0.6,则ξ在(0,1)内取值的概率为()

A.0.1

B.0.2

C.0.3

D.0.4答案:C39.“a=18”是“对任意的正数x,2x+ax≥1的”()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:当“a=18”时,由基本不等式可得:“对任意的正数x,2x+ax≥1”一定成立,即“a=18”?“对任意的正数x,2x+ax≥1”为真命题;而“对任意的正数x,2x+ax≥1的”时,可得“a≥18”即“对任意的正数x,2x+ax≥1”?“a=18”为假命题;故“a=18”是“对任意的正数x,2x+ax≥1的”充分不必要条件故选A40.在数列{an}中,a1=1,an+1=2an2+an(n∈N+),

(1)求a1,a2,a3并猜想数列{an}的通项公式;

(2)证明上述猜想.答案:(1)a1=1.a2=2a12+a1=22+1=23.a3=2a22+a2=2×232+23=12(2)猜想an=2n+1.证明:当n=1时显然成立.假设当n=k(k≥1)时成立,即ak=2k+1则当n=k+1时,ak+1=2ak2+ak=2×2k+12+2k+1=42k+4=2(k+1)+1所以an=2n+1.41.若关于x的一元二次实系数方程x2+px+q=0有一个根为1+i(i是虚数单位),则p+q的值是()

A.-1

B.0

C.2

D.-2答案:B42.如果一个圆锥的正视图是边长为2的等边三角形,则该圆锥的表面积是______.答案:由已知,圆锥的底面直径为2,母线为2,则这个圆锥的表面积是12×2π×2+π?12=3π.故:3π.43.在空间直角坐标系O-xyz中,已知=(1,2,3),=(2,1,2),=(1,1,2),点Q在直线OP上运动,则当取得最小值时,点Q的坐标为()

A.(,,)

B.(,,)

C.(,,)

D.(,,)答案:C44.已知f(n)=1+12+13+L+1n(n∈N*),用数学归纳法证明f(2n)>n2时,f(2k+1)-f(2k)等于______.答案:因为假设n=k时,f(2k)=1+12+13+…+12k,当n=k+1时,f(2k+1)=1+12+13+…+12k+12k+1+…+12k+1∴f(2k+1)-f(2k)=12k+1+12k+2+…+12k+1故为:12k+1+12k+2+…+12k+145.在空间中,有如下命题:

①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线;

②若平面α∥平面β,则平面α内任意一条直线m∥平面β;

③若平面α与平面β的交线为m,平面α内的直线n⊥直线m,则直线n⊥平面β.

其中正确命题的个数为()个.

A.0

B.1

C.2

D.3答案:B46.下列说法中正确的是()

A.以直角三角形的一边为轴旋转所得的旋转体是圆锥

B.以直角梯形的一腰为轴旋转所得的旋转体是圆台

C.圆柱、圆锥、圆台的底面都是圆

D.圆锥侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的底面圆的半径答案:C47.已知O、A、M、B为平面上四点,且,则()

A.点M在线段AB上

B.点B在线段AM上

C.点A在线段BM上

D.O、A、M、B四点一定共线答案:B48.有3名同学要争夺2个比赛项目的冠军,冠军获得者共有______种可能.答案:第一个项目的冠军有3种情况,第二个项目的冠军也有3种情况,根据分步计数原理,冠军获得者共有3×3=9种可能,故为9.49.在极坐标系中,若等边三角形ABC(顶点A,B,C按顺时针方向排列)的顶点A,B的极坐标分别为(2,π6),(2,7π6),则顶点C的极坐标为______.答案:如图所示:由于A,B的极坐标(2,π6),(2,7π6),故极点O为线段AB的中点.故等边三角形ABC的边长为4,AB边上的高(即点C到AB的距离)OC等于23.设点C的极坐标为(23,π6+π2),即(23,2π3),故为(23,2π3).50.已知矩阵A=abcd,若矩阵A属于特征值3的一个特征向量为α1=11,属于特征值-1的一个特征向量为α2=1-1,则矩阵A=______.答案:由矩阵A属于特征值3的一个特征向量为α1=11可得abcd11=311,即a+b=3c+d=3;(4分)由矩阵A属于特征值2的一个特征向量为α2=1-1,可得abcd1-1=(-1)1-1,即a-b=-1c-d=1,(6分)解得a=1b=2c=2d=1,即矩阵A=1221.(10分)故为:1221.第2卷一.综合题(共50题)1.如图,已知AB是⊙O的直径,AB⊥CD于E,切线BF交AD的延长线于F,若AB=10,CD=8,则切线BF的长是

______.答案:连接OD,AB⊥CD于E,根据垂径定理得到DE=4,在直角△ODE中,根据勾股定理得到OE=3,因而AE=8,易证△ABF∽△AED,得到DEBF=AEAB=810,解得BF=5.2.正方体ABCD-A1B1C1D1的棱长为2,MN是它的内切球的一条弦(把球面上任意两点之间的线段称为球的弦),P为正方体表面上的动点,当弦MN最长时.PM•PN的最大值为______.答案:设点O是此正方体的内切球的球心,半径R=1.∵PM•PN≤|PM|

|PN|,∴当点P,M,N三点共线时,PM•PN取得最大值.此时PM•PN≤(PO-MO)•(PO+ON),而MO=ON,∴PM•PN≤PO2-R2=PO2-1,当且仅当点P为正方体的一个顶点时上式取得最大值,∴(PM•PN)max=(232)2-1=2.故为2.3.抛物线x2+y=0的焦点位于()

A.y轴的负半轴上

B.y轴的正半轴上

C.x轴的负半轴上

D.x轴的正半轴上答案:A4.已知O是正方形ABCD对角线的交点,在以O,A,B,C,D这5点中任意一点为起点,另一点为终点的所有向量中,

(1)与BC相等的向量有

______;

(2)与OB长度相等的向量有

______;

(3)与DA共线的向量有

______.答案:如图:(1)与BC相等的向量有AD.(2)与OB长度相等的向量有OA、OC、OD、AO、CO、DO.(3)与DA共线的向量有

CB、BC.5.“△ABC中,若∠C=90°,则∠A、∠B都是锐角”的否命题为()

A.△ABC中,若∠C≠90°,则∠A、∠B都不是锐角

B.△ABC中,若∠C≠90°,则∠A、∠B不都是锐角

C.△ABC中,若∠C≠90°,则∠A、∠B都不一定是锐角

D.以上都不对答案:B6.为了让学生更多地了解“数学史”知识,某中学高二年级举办了一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动,共有800名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据下面的频率分布表,解答下列问题:

序号

(i)分组

(分数)本组中间值

(Gi)频数

(人数)频率

(Fi)1(60,70)65①0.122[70,80)7520②3[80,90)85③0.244[90,100]95④⑤合

计501(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);

(2)为鼓励更多的学生了解“数学史”知识,成绩不低于85分的同学能获奖,请估计在参赛的800名学生中大概有多少同学获奖?

(3)请根据频率分布表估计该校高二年级参赛的800名同学的平均成绩.答案:(1)①为6,②为0.4,③为12,④为12⑤为0.24.(5分)(2)(12×0.24+0.24)×800=288,即在参加的800名学生中大概有288名同学获奖.(9分)(3)65×0.12+75×0.4+85×0.24+95×0.24=81(4)估计平均成绩为81分.(12分)7.下列命题:

①用相关系数r来刻画回归的效果时,r的值越大,说明模型拟合的效果越好;

②对分类变量X与Y的随机变量的K2观测值来说,K2越小,“X与Y有关系”可信程度越大;

③两个随机变量相关性越强,则相关系数的绝对值越接近1;

其中正确命题的序号是

______.(写出所有正确命题的序号)答案:①是由于r可能是负值,要改为|r|的值越大,说明模型拟合的效果越好,故①错误,②对分类变量X与Y的随机变量的K2观测值来说,K2越大,“X与Y有关系”可信程度越大;故②正确③两个随机变量相关性越强,则相关系数的绝对值越接近1;故③正确,故为:③8.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()

A.

B.

C.

D.答案:C9.如图为某公司的组织结构图,则后勤部的直接领导是______.

答案:有已知中某公司的组织结构图,可得专家办公室直接领导:财务部,后勤部和编辑部三个部门,故后勤部的直接领导是专家办公室.故为:专家办公室.10.5本不同的书全部分给3个学生,每人至少一本,共有()种分法.

A.60

B.150

C.300

D.210答案:B11.(2的c的•湛江一模)已知⊙O的方程为x2+y2=c,则⊙O上的点到直线x=2+45ty=c-35t(t为参数)的距离的最大值为______.答案:∵直线x=2+45t一=1-35t(t为参数)∴3x+4一=10,∵⊙e的方程为x2+一2=1,圆心为(0,0),设直线3x+4一=k与圆相切,∴|k|5=1,∴k=±5,∴直线3x+4一=k与3x+4一=10,之间的距离就是⊙e上的点到直线的距离的最大值,∴d=|10±5|5,∴d的最大值是155=3,故为:3.12.选修4-4参数方程与极坐标

在平面直角坐标系xOy中,动圆x2+y2-8xcosθ-6ysinθ+7cos2θ+8=0(θ∈R)的圆心为P(x0,y0),求2x0-y0的取值范围.答案:将圆的方程整理得:(x-4cosθ)2+(y-3sinθ)2=1由题设得x0=4cosθy0=3sinθ(θ为参数,θ∈R).所以2x0-y0=8cosθ-3sinθ=73cos(θ+φ),所以

-73≤2x0-y0≤73.13.已知a=20.5,,,则a,b,c的大小关系是()

A.a>c>b

B.a>b>c

C.c>b>a

D.c>a>b答案:B14.如图,已知△ABC,过顶点A的圆与边BC切于BC的中点P,与边AB、AC分别交于点M、N,且CN=2BM,点N平分AC.则AM:BM=()

A.2

B.4

C.6

D.7

答案:D15.已知正方形的边长为2,AB=a,BC=b,AC=c,则|a+b+c|=()A.0B.2C.2D.4答案:由题意可得:AB+BC=AC,所以c=a+b,所以|a+b+c|=2|c|.因为正方形的边长为2,所以|AC|=|c|=2,所以|a+b+c|=2|c|=4.故选D.16.若90°<θ<180°,曲线x2+y2sinθ=1表示()

A.焦点在x轴上的双曲线

B.焦点在y轴上的双曲线

C.焦点在x轴上的椭圆

D.焦点在y轴上的椭圆答案:D17.要使直线y=kx+1(k∈R)与焦点在x轴上的椭圆x27+y2a=1总有公共点,实数a的取值范围是______.答案:要使方程x27+y2a=1表示焦点在x轴上的椭圆,需a<7,由直线y=kx+1(k∈R)恒过定点(0,1),所以要使直线y=kx+1(k∈R)与椭圆x27+y2a=1总有公共点,则(0,1)应在椭圆上或其内部,即a>1,所以实数a的取值范围是[1,7).故为[1,7).18.设是的相反向量,则下列说法一定错误的是()

A.∥

B.与的长度相等

C.是的相反向量

D.与一定不相等答案:D19.抛掷两个骰子,若至少有一个1点或一个6点出现,就说这次试验失败.那么,在3次试验中成功2次的概率为()

A.

B.

C.

D.答案:D20.已知a=(5,4),b=(3,2),则与2a-3b同向的单位向量为

______.答案:∵a=(5,4),b=(3,2),∴2a-3b=(1,2)设与2a-3b平行的单位向量为e=(x,y),则2a-3b=λe,|e|=1∴(1,2)=(λx,λy);x2+y2=1∴1=λx2=λyx2+y2=1解之x=55y=255或x=-55y=-255故为e=±(55,255)21.已知α、β均为锐角,若p:sinα<sin(α+β),q:α+β<π2,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件答案:当sinα<sin(α+β)时,α+β<π2不一定成立故sinα<sin(α+β)?α+β<π2,为假命题;而若α+β<π2,则由正弦函数在(0,π2)单调递增,易得sinα<sin(α+β)成立即α+β<π2?sinα<sin(α+β)为真命题故p是q的必要而不充分条件故选B.22.某一批花生种子,如果每1粒发芽的概率为,那么播下4粒种子恰有2粒发芽的概率是(

A.

B.

C.

D.答案:B23.a、b、c∈R,则下列命题为真命题的是______.

①若a>b,则ac2>bc2

②若ac2>bc2,则a>b

③若a<b<0,则a2>ab>b2

④若a<b<0,则1a<1b.答案:当c=0时,ac2=bc2,故①不成立;若ac2>bc2,则c2≠0,即c2>0,则a>b,故②成立;若a<b<0,则a2>ab且ab>b2,故a2>ab>b2,故③成立;若a<b<0,则ab>0,故aab<bab,即1a>1b,故④不成立故②③为真命题故为:②③24.不等式|x-2|+|x+1|<5的解集为()

A.(-∞,-2)∪(3,+∞)

B.(-∞,-1)∪(2,+∞)

C.(-2,3)

D.(-∞,+∞)答案:C25.已知G是△ABC的重心,O是平面ABC外的一点,若λOG=OA+OB+OC,则λ=______.答案:如图,正方体中,OA+OB+OC=OD=3OG,∴λ=3.故为3.26.根据一组数据判断是否线性相关时,应选用(

A.散点图

B.茎叶图

C.频率分布直方图

D.频率分布折线图答案:A27.α为第一象限角是sinαcosα>0的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:若α为第一象限角,则sinα>0,cosα>0,所以sinαcosα>0,成立.若sinαcosα>0,则①sinα>0,cosα>0,此时α为第一象限角.或②sinα<0,cosα<0,此时α为第三象限角.所以α为第一象限角是sinαcosα>0的充分不必要条件.故选A.28.命题“存在x∈Z使x2+2x+m≤0”的否定是()

A.存在x∈Z使x2+2x+m>0

B.不存在x∈Z使x2+2x+m>0

C.对任意x∈Z使x2+2x+m≤0

D.对任意x∈Z使x2+2x+m>0答案:D29.设曲线C的参数方程为(θ为参数),直线l的方程为x-3y+2=0,则曲线C上到直线l距离为的点的个数为()

A.1

B.2

C.3

D.4答案:B30.已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为1.

(Ⅰ)当直线BD过点(0,1)时,求直线AC的方程;

(Ⅱ)当∠ABC=60°时,求菱形ABCD面积的最大值.答案:(Ⅰ)由题意得直线BD的方程为y=x+1.因为四边形ABCD为菱形,所以AC⊥BD.于是可设直线AC的方程为y=-x+n.由x2+3y2=4y=-x+n得4x2-6nx+3n2-4=0.因为A,C在椭圆上,所以△=-12n2+64>0,解得-433<n<433.设A,C两点坐标分别为(x1,y1),(x2,y2),则x1+x2=3n2,x1x2=3n2-44,y1=-x1+n,y2=-x2+n.所以y1+y2=n2.所以AC的中点坐标为(3n4,n4).由四边形ABCD为菱形可知,点(3n4,n4)在直线y=x+1上,所以n4=3n4+1,解得n=-2.所以直线AC的方程为y=-x-2,即x+y+2=0.(Ⅱ)因为四边形ABCD为菱形,且∠ABC=60°,所以|AB|=|BC|=|CA|.所以菱形ABCD的面积S=32|AC|2.由(Ⅰ)可得|AC|2=(x1-x2)2+(y1-y2)2=-3n2+162,所以S=34(-3n2+16)(-433<n<433).所以当n=0时,菱形ABCD的面积取得最大值43.31.若某简单组合体的三视图(单位:cm)如图所示,说出它的几何结构特征,并求该几何体的表面积。答案:解:该几何体由球和圆台组成。球的半径为1,圆台的上下底面半径分别为1、4,高为4,母线长为5,S球=4πcm2,S台=π(12+42+1×5+4×5)=42πcm2,故S表=S球+S台=46πcm2。32.空间中,若向量=(5,9,m),=(1,-1,2),=(2,5,1)共面,则m=()

A.2

B.3

C.4

D.5答案:C33.大家知道,在数列{an}中,若an=n,则sn=1+2+3+…+n=12n2+12n,若an=n2,则

sn=12+22+32+…+n2=13n3+12n2+16n,于是,猜想:若an=n3,则sn=13+23+33+…+n3=an4+bn3+cn2+dn.

问:(1)这种猜想,你认为正确吗?

(2)不管猜想是否正确,这个结论是通过什么推理方法得到的?

(3)如果结论正确,请用数学归纳法给予证明.答案:(1)猜想正确;(2)这是一种类比推理的方法;(3)由类比可猜想,a=14,n=1时,a+b+c+d=1;n=2时,16a+8b+4c+d=9;n=3时,81a+27b+9c+d=36故解得a=14,b=12,c=14,∴sn=13+23+33+…+n3=14n4+12n3+14n2用数学归纳法证明:①n=1时,结论成立;②假设n=k时,结论成立,即13+23+33+…+k3=14k4+12k3+14k2=[k(k+1)2]2则n=k+1时,左边=13+23+33+…+k3+(k+1)3=14k4+12k3+14k2+(k+1)3=[k(k+1)2]2+(k+1)3=(k+12)2(k2+4k+4)=[(k+1)(k+2)2]2=右边,结论成立由①②可知,sn=13+23+33+…+n3=14n4+12n3+14n2,成立34.用“斜二测画法”作正三角形ABC的水平放置的直观图△A′B′C′,则△A′B′C′与△ABC的面积之比为______.答案:设正三角形的标出为:1,正三角形的高为:32,所以正三角形的面积为:34;按照“斜二测画法”画法,△A′B′C′的面积是:12×1×34×sin45°=616;所以△A′B′C′与△ABC的面积之比为:61634=24,故为:2435.设点P(t2+2t,1)(t>0),则|OP|(O为坐标原点)的最小值是()A.3B.5C.3D.5答案:解析:由已知得|OP|=(t2+2t)

2+1≥(2t2×2t)2+1=5,当t=2时取得等号.故选D.36.设一次试验成功的概率为p,进行100次独立重复试验,当p=______时,成功次数的标准差的值最大,其最大值为______.答案:由独立重复试验的方差公式可以得到Dξ=npq≤n(p+q2)2=n4,等号在p=q=12时成立,∴Dξ=100×12×12=25,σξ=25=5.故为:12;537.已知=(1,2),=(-3,2),k+与-3垂直时,k的值为(

A.17

B.18

C.19

D.20答案:C38.曲线x=sin2ty=sint(t为参数)的普通方程为______.答案:因为曲线x=sin2ty=sint(t为参数)∴sint=y,代入x=sin2t,可得x=y2,其中-1≤y≤1.故为:x=y2,(-1≤y≤1).39.(理)

设O为坐标原点,向量OA=(1,2,3),OB=(2,1,2),OP=(1,1,2),点Q在直线OP上运动,则当QA•QB取得最小值时,点Q的坐标为______.答案:∵OP=(1,1,2),点Q在直线OP上运动,设OQ=λOP=(λ,λ,2λ)又∵向量OA=(1,2,3),OB=(2,1,2),∴QA=(1-λ,2-λ,3-2λ),QB=(2-λ,1-λ,2-2λ)则QA•QB=(1-λ)×(2-λ)+(2-λ)×(1-λ)+(3-2λ)×(2-2λ)=6λ2-16λ+10易得当λ=43时,QA•QB取得最小值.此时Q的坐标为(43,43,83)故为:(43,43,83)40.在平面直角坐标系xOy中,设F1(-4,0),F2(4,0),方程x225+y29=1的曲线为C,关于曲线C有下列命题:

①曲线C是以F1、F2为焦点的椭圆的一部分;

②曲线C关于x轴、y轴、坐标原点O对称;

③若P是上任意一点,则PF1+PF2≤10;

④若P是上任意一点,则PF1+PF2≥10;

⑤曲线C围成图形的面积为30.

其中真命题的序号是______.答案:∵x225+y29=1即为|x|5+|y|3=1表示四条线段,如图故①④错,②③对对于⑤,图形的面积为3×52×4=30,故⑤对.故为②③⑤41.用黄金分割法寻找最佳点,试验区间为[1000,2000],若第一个二个试点为好点,则第三个试点应选在(

)。答案:123642.“因为指数函数y=ax是增函数(大前提),而y=()x是指数函数(小前提),所以y=()x是增函数(结论)”,上面推理的错误是()

A.大前提错导致结论错

B.小前提错导致结论错

C.推理形式错导致结论错

D.大前提和小前提错都导致结论错答案:A43.对任意实数x,y,定义运算x*y为:x*y=ax+by+cxy,其中a,b,c为常数,等式右端运算为通常的实数加法和乘法,现已知1*2=3,2*3=4,并且有一个非零实数m,使得对于任意的实数都有x*m=x,则d的值为(

A.4

B.1

C.0

D.不确定答案:A44.(选做题)参数方程中当t为参数时,化为普通方程为(

)。答案:x2-y2=145.已知P是以F1,F2为焦点的椭圆(a>b>0)上的一点,若PF1⊥PF2,tan∠PF1F2=,则此椭圆的离心率为()

A.

B.

C.

D.答案:D46.如图,O是正方形ABCD对角线的交点,四边形OAED,OCFB都是正方形,在图中所示的向量中:

(1)与AO相等的向量有

______;

(2)写出与AO共线的向量有

______;

(3)写出与AO的模相等的向量有

______;

(4)向量AO与CO是否相等?答

______.答案:(1)与AO相等的向量有BF(2)与AO共线的向量有DE,CO,BF(3)与AO的模相等的向量有DE,

DO,AE,CO,CF,BF,BO(4)模相等,方向相反故AO与CO不相等47.六个不同大小的数按如图形式随机排列,设第一行这个数为M1,M2,M3分别表示第二、三行中最大数,则满足M1<M2<M3所有排列的个数______.答案:首先M3一定是6个数中最大的,设这六个数分别为a,b,c,d,e,f,不妨设a>b>c>d>e>f.因为如果a在第三行,则a一定是M3,若a不在第三行,则a一定是M1或M2,此时无法满足M1<M2<M3,故a一定在第三行.故

M2一定是b,c,d中一个,否则,若M2是e,则第二行另一个数只能是f,那么第一行的数就比e大,无法满足M1<M2<M3.当M2是b时,此时,a在第三行,b在第二行,其它数任意排,所有的排法有C31

C21

A44=144(种),当M2是c时,此时a和b必须在第三行,c在第二行,其它数任意排,所有的排法有A32

C21

A33=72(种),当M2是d时,此时,a,b,c在第三行,d在第二行,其它数任意排,所有的排法有A33

C21

A22=24(种),故满足M1<M2<M3所有排列的个数为:24+72+144=240种,故为:240.48.如右图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,求不同着色方法共有多少种?(以数字作答).答案:本题是一个分类和分步综合的题目,根据题意可分类求第一类用三种颜色着色,由乘法原理C14C41

C12=24种方法;第二类,用四种颜色着色,由乘法原理有2C14C41

C12

C11=48种方法.从而再由加法原理得24+48=72种方法.即共有72种不同的着色方法.49.在平面直角坐标系内第二象限的点组成的集合为______.答案:∵平面直角坐标系内第二象限的点,横坐标小于0,纵坐标大于0,∴在平面直角坐标系内第二象限的点组成的集合为{(x,y)|x<0且y>0},故为:{(x,y)|x<0且y>0}.50.证明不等式1+12+13+…+1n<2n(n∈N*)答案:证法一:(1)当n=1时,不等式左端=1,右端=2,所以不等式成立;(2)假设n=k(k≥1)时,不等式成立,即1+12+13+…+1k<2k,则1+12+13+…+1k+1<2k+1k+1=2k(k+1)+1k+1<k+(k+1)+1k+1=2k+1,∴当n=k+1时,不等式也成立.综合(1)、(2)得:当n∈N*时,都有1+12+13+…+1n<2n.证法二:设f(n)=2n-(1+12+13+…+1n),那么对任意k∈N*

都有:f(k+1)-f(k)=2(k+1-k)-1k+1=1k+1[2(k+1)-2k(k+1)-1]=1k+1•[(k+1)-2k(k+1)+k]=(k+1-k)2k+1>0∴f(k+1)>f(k)因此,对任意n∈N*

都有f(n)>f(n-1)>…>f(1)=1>0,∴1+12+13+…+1n<2n.第3卷一.综合题(共50题)1.将y=sin2x的图象向右按作最小的平移,使平移后的图象在[k,k+](kz)上递减,试求平移后的函数解析式和.答案:y=-cos2x,

=(,0)解析:将y=sin2x的图象向右按作最小的平移,使平移后的图象在[k,k+](kz)上递减,试求平移后的函数解析式和.2.已知函数f(x)=f(x+1)(x<4)2x(x≥4),则f(log23)=______.答案:因为1<log23<2,所以4<log23+3<5,所以f(log23)=f(log23+3)=f(log224)=2log224=24.故为:24.3.电子手表厂生产某批电子手表正品率为,次品率为,现对该批电子手表进行测试,设第X次首次测到正品,则P(1≤X≤2013)等于()

A.1-()2012

B.1-()2013

C.1-()2012

D.1-()2013答案:B4.圆心为(-2,3),且与y轴相切的圆的方程是()A.x2+y2+4x-6y+9=0B.x2+y2+4x-6y+4=0C.x2+y2-4x+6y+9=0D.x2+y2-4x+6y+4=0答案:根据圆心坐标(-2,3)到y轴的距离d=|-2|=2,则所求圆的半径r=d=2,所以圆的方程为:(x+2)2+(y-3)2=4,化为一般式方程得:x2+y2+4x-6y+9=0.故选A5.△ABC是边长为1的正三角形,那么△ABC的斜二测平面直观图△A′B′C′的面积为(

A.

B.

C.

D.答案:D6.某校有学生1

200人,为了调查某种情况打算抽取一个样本容量为50的样本,问此样本若采用简单随便机抽样将如何获得?答案:本题可以采用抽签法来抽取样本,首先把该校学生都编上号0001,0002,0003…用抽签法做1200个形状、大小相同的号签,然后将这些号签放到同一个箱子里,进行均匀搅拌,抽签时,每次从中抽一个号签,连续抽取50次,就得到一个容量为50的样本.7.将参数方程x=1+2cosθy=2sinθ(θ为参数)化成普通方程为

______.答案:由题意得,x=1+2cosθy=2sinθ⇒x-1=2cosθy=2sinθ,将参数方程的两个等式两边分别平方,再相加,即可消去含θ的项,所以有(x-1)2+y2=4.8.某几何体的三视图如图所示,则这个几何体的体积是______.答案:由三视图可知该几何体为是一平放的直三棱柱,底面是边长为2的正三角形,棱柱的侧棱为3,也为高.V=Sh=34×22

×3=33故为:33.9.命题“每一个素数都是奇数”的否定是______.答案:原命题“每一个素数都是奇数”是一个全称命题它的否定是一个特称命题,即“有的素数不是奇数”故为:有的素数不是奇数10.对某种电子元件进行寿命跟踪调查,所得样本频率分布直方图如图,由图可知:一批电子元件中,寿命在100~300小时的电子元件的数量与寿命在300~600小时的电子元件的数量的比大约是()A.12B.13C.14D.16答案:由于已知的频率分布直方图中组距为100,寿命在100~300小时的电子元件对应的矩形的高分别为:12000,32000则寿命在100~300小时的电子元件的频率为:100?(12000+32000)=0.2寿命在300~600小时的电子元件对应的矩形的高分别为:1400,1250,32000则寿命在300~600小时子元件的频率为:100?(1400+1250+32000)=0.8则寿命在100~300小时的电子元件的数量与寿命在300~600小时的电子元件的数量的比大约是0.2:0.8=14故选C11.若a、b是直线,α、β是平面,a⊥α,b⊥β,向量m在a上,向量n在b上,m=(0,3,4),n=(3,4,0),则α、β所成二面角中较小的一个余弦值为______.答案:由题意,∵m=(0,3,4),n=(3,4,0),∵cos<m,n>=m?n|m||n|=125?5=1225∵a⊥α,b⊥β,向量m在a上,向量n在b上,∴α、β所成二面角中较小的一个余弦值为1225故为122512.已知函数f(x)=ax,(a>0,a≠1)的图象经过点P(12,12),则常数a的值为()A.2B.4C.12D.14答案:∵函数f(x)=ax,(a>0,a≠1)的图象经过点P(12,12),∴a12=12,?a=14.故选D.13.从甲乙丙三人中任选两名代表,甲被选中的概率为()A.12B.13C.23D.1答案:从3个人中选出2个人当代表,则所有的选法共有3种,即:甲乙、甲丙、乙丙,其中含有甲的选法有两种,故甲被选中的概率是23,故选C.14.某厂2011年的产值为a万元,预计产值每年以7%的速度增加,则该厂到2022年的产值为______万元.答案:2011年产值为a,增长率为7%,2012年产值为a+a×7%=a(1+7%),2013年产值为a(1+7%)+a(1+7%)×7%=a(1+7%)2,…,2022年的产值为a(1+7%)11.故为:a(1+7%)11.15.已知集合A={0,1,2},集合B={x|x=2a,a∈A},则A∩B=()A.{0}B.{2}C.{0,2}D.{1,4}答案:B={0,2,4},∴A∩B={0,2},故选C16.若a>0,b>0,则不等式-b<aA.<x<0或0<x<

答案:D解析:试题分析:17.解下列关于x的不等式

(1)

(2)答案:(1)(2)原不等式的解集为解析:(1)

解:(2)

解:分析该题要设法去掉绝对值符号,可由去分类讨论当时原不等式等价于

故得不等式的解集为所以原不等式的解集为18.|a|=2,|b|=3,|a+b|=4,则a与b的夹角是______.答案:∵|a+b|=4,∴a2+2a?b+b2=16∴a?b=32∴cos<a,b>=a?b|.a|×|.b|=322×3=14∵<a,b>∈[0°,180°]∴.a与.b的夹角为arccos14故为arccos1419.用0、1、2、3、4、5这6个数字,可以组成无重复数字的五位偶数的个数为______(用数字作答).答案:末尾是0时,有A55=120种;末尾不是0时,有2种选择,首位有4种选择,中间有A44,故有2×4×A44=192种故共有120+192=312种.故为:31220.如果方程x2+(m-1)x+m2-2=0的两个实根一个小于1,另一个大于1,那么实数m的取值范围是()

A.

B.(-2,0)

C.(-2,1)

D.(0,1)答案:C21.已知抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且AF=λFB(λ>0).过A、B两点分别作抛物线的切线,设其交点为M.

(I)证明FM.AB为定值;

(II)设△ABM的面积为S,写出S=f(λ)的表达式,并求S的最小值.答案:(1)设A(x1,y1),B(x2,y2),M(xo,yo),焦点F(0,1),准线方程为y=-1,显然AB斜率存在且过F(0,1)设其直线方程为y=kx+1,联立4y=x2消去y得:x2-4kx-4=0,判别式△=16(k2+1)>0.x1+x2=4k,x1x2=-4于是曲线4y=x2上任意一点斜率为y'=x2,则易得切线AM,BM方程分别为y=(12)x1(x-x1)+y1,y=(12)x2(x-x2)+y2,其中4y1=x12,4y2=x22,联立方程易解得交点M坐标,xo=x1+x22=2k,yo=x1x24=-1,即M(x1+x22,-1)从而,FM=(x1+x22,-2),AB(x2-x1,y2-y1)FM•AB=12(x1+x2)(x2-x1)-2(y2-y1)=12(x22-x12)-2[14(x22-x12)]=0,(定值)命题得证.这就说明AB⊥FM.(Ⅱ)由(Ⅰ)知在△ABM中,FM⊥AB,因而S=12|AB||FM|.|FM|=(x1+x22)2+(-2)2=14x12+14x22+12x1x2+4=λ+1λ+2=λ+1λ.因为|AF|、|BF|分别等于A、B到抛物线准线y=-1的距离,所以|AB|=|AF|+|BF|=y1+y2+2=λ+1λ+2=(λ+1λ)2.于是S=12|AB||FM|=12(λ+1λ)3,由λ+1λ≥2知S≥4,且当λ=1时,S取得最小值4.22.已知四边形ABCD中,AB=12DC,且|AD|=|BC|,则四边形ABCD的形状是______.答案:∵AB=12DC,∴AB∥DC,且|AB|=12|DC|,即线段AB平行于线段CD,且线段AB长度是线段CD长度的一半∴四边形ABCD为以AB为上底、CD为下底的梯形,又∵|AD|=|BC|,∴梯形ABCD的两腰相等,因此四边形ABCD是等腰梯形.故为:等腰梯形23.已知|log12x+4i|≥5,则实数x

的取值范围是______.答案:由题意,得(log12x)2+42≥5?|log12x|≥3?0<x≤18或x≥8.∴则实数x

的取值范围是0<x≤18或x≥8.故为:0<x≤18或x≥8.24.已知a、b均为单位向量,它们的夹角为60°,那么|a+3b|等于______.答案:解;∵a,b均为单位向量,∴|a|=1,|b|=1又∵两向量的夹角为60°,∴a?b=|a||b|cos60°=12∴|a+3b|=|a|2+(3b)2+6a?b=1+9+3=13故为1325.关于生活中的圆锥曲线,有下面几个结论:

(1)标准田径运动场的内道是一个椭圆;

(2)接受卫星转播的电视信号的天线设备,其轴截面与天线设备的交线是抛物线;

(3)大型热电厂的冷却通风塔,其轴截面与通风塔的交线是双曲线;

(4)地球围绕太阳运行的轨迹可以近似地看成一个椭圆.

其中正确命题的序号是______(把你认为正确命题的序号都填上).答案:(1)标准田径运动场的内道是有直道和弯道部分是半圆组成,不是椭圆.故错误(2)接受卫星转播的电视信号的天线设备,其轴截面与天线设备的交线是抛物线.故正确.(3)大型热电厂的冷却通风塔,其轴截面与通风塔的交线是双曲线.故正确.(4)地球围绕太阳运行的轨迹可以近似地看成一个椭圆.故正确.故为:(2)(3)(4)26.在平面直角坐标系xOy中,点P(x,y)是椭圆x23+y2=1上的一个动点,求S=x+y的最大值.答案:因椭圆x23+y2=1的参数方程为x=3cos?y=sin?(?为参数)故可设动点P的坐标为(3cos?,sin?),其中0≤?<2π.因此S=x+y=3cos?+sin?=2(32cos?+12sin?)=2sin(?+π3)所以,当?=π6时,S取最大值2.27.从装有两个白球和两个黄球的口袋中任取2个球,以下给出了三组事件:

①至少有1个白球与至少有1个黄球;

②至少有1个黄球与都是黄球;

③恰有1个白球与恰有1个黄球.

其中互斥而不对立的事件共有()组.

A.0

B.1

C.2

D.3答案:A28.已知动点M到定点F(1,0)的距离比M到定直线x=-2的距离小1.

(1)求证:M点的轨迹是抛物线,并求出其方程;

(2)大家知道,过圆上任意一点P,任意作互相垂直的弦PA、PB,则弦AB必过圆心(定点).受此启发,研究下面问题:

1过(1)中的抛物线的顶点O任意作互相垂直的弦OA、OB,问:弦AB是否经过一个定点?若经过,请求出定点坐标,否则说明理由;2研究:对于抛物线上某一定点P(非顶点),过P任意作互相垂直的弦PA、PB,弦AB是否经过定点?答案:(1)证明:由题意可知:动点M到定点F(1,0)的距离等于M到定直线x=-1的距离根据抛物线的定义可知,M的轨迹是抛物线所以抛物线方程为:y2=4x(2)(i)设A(x1,y1),B(x2,y2),lAB:y=kx+b,(b≠0)由y=kx+by2=4x消去y得:k2x2+(2bk-4)kx+b2=0,x1x2=b2k2.∵OA⊥OB,∴OA•OB=0,∴x1x2+y1y2=0,y1y2=4bk所以x1x2+(x1x2)2=0,b≠0,∴b=-2k,∴直线AB过定点M(1,0),(ii)设p(x0,y0)设AB的方程为y=mx+n,代入y2=2x得y2-2my=-2n=0∴y1+y2=2m,y1y2-2n其中y1,y2分别是A,B的纵坐标∵AP⊥PB∴kmax•kmin=-1即y1-y0x1-x0•y2-y0x2-x0=1∴(y1+y0)(y2+y0)=-4•y1y2+(y1+y2)y0+y02-4=0(-2n)+2my0+2x0+4=0,=my0+x0+2直线PQ的方程为x=my+my0+x0+2,即x=m(y+y0)+x0+2,它一定过点(x0+2,-y0)29.已知a=(2,-1,1),b=(-1,4,-2),c=(λ,5,1),若向量a,b,c共面,则λ=______.答案:∵a、b、c三向量共面,∴c=xa+yb,x,y∈R,∴(λ,5,1)=(2x,-x,x)+(-y,4y,-2y)=(2x-y,-x+4y,x-2y),∴2x-y=λ,-x+4y=5,x-2y=1,解得x=7,y=3,λ=11;故为;

11.30.已知离心率为63的椭圆C:x2a

2+y2b2=1(a>b>0)经过点P(3,1).

(1)求椭圆C的方程;

(2)过左焦点F1且不与x轴垂直的直线l交椭圆C于M、N两点,若OM•ON=463tan∠MON(O为坐标原点),求直线l的方程.答案:(1)依题意,离心率为63的椭圆C:x2a

2+y2b2=1(a>b>0)经过点P(3,1).∴3a

2+1b2=1,且e2=c2a2=a2-b2a2=23解得:a2=6,b2=2故椭圆方程为x26+y22=1…(4分)(2)椭圆的左焦点为F1(-2,0),则直线l的方程可设为y=k(x+2)代入椭圆方程得:(3k2+1)x2+12k2x+12k2-6=0设M(x1,y1),N(x2,y2),∴x1+x2=-12k23k2+1,x1•x2=12k2-63k2+1…(6分)由OM•ON=463tan∠MON得:|OM|•|ON|sin∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论