版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年福建体育职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是()A.椭圆B.直线C.圆D.线段答案:对于在平面内,若动点M到F1、F2两点的距离之和等于6,而6正好等于两定点F1、F2的距离,则动点M的轨迹是以F1,F2为端点的线段.故选D.2.设F1,F2是双曲线的两个焦点,点P在双曲线上,且·=0,则|PF1|·|PF2|值等于()
A.2
B.2
C.4
D.8答案:A3.①学校为了了解高一学生的情况,从每班抽2人进行座谈;②一次数学竞赛中,某班有10人在110分以上,40人在90~100分,12人低于90分.现在从中抽取12人了解有关情况;③运动会服务人员为参加400m决赛的6名同学安排跑道.就这三件事,合适的抽样方法为()A.分层抽样,分层抽样,简单随机抽样B.系统抽样,系统抽样,简单随机抽样C.分层抽样,简单随机抽样,简单随机抽样D.系统抽样,分层抽样,简单随机抽样答案:①是从较多的一个总体中抽取样本,且总体之间没有差异,故用系统抽样,②是从不同分数的总体中抽取样本,总体之间的差异比较大,故用分层抽样,③是六名运动员选跑道,用简单随机抽样,故选D.4.若矩阵A=
72
69
67
65
62
59
81
74
68
64
59
52
85
79
76
72
69
64
228
219
211
204
195
183
是表示我校2011届学生高二上学期的期中成绩矩阵,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含义如下:i=1表示语文成绩,i=2表示数学成绩,i=3表示英语成绩,i=4表示语数外三门总分成绩j=k,k∈N*表示第50k名分数.若经过一定量的努力,各科能前进的名次是一样的.现小明的各科排名均在250左右,他想尽量提高三门总分分数,那么他应把努力方向主要放在哪一门学科上()
A.语文
B.数学
C.外语
D.都一样答案:B5.对于实数x、y,若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为______.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值为5,故为5.6.如图,菱形ABCD的对角线AC和BD相交于O点,E,F,G,H分别是AB,BC,CD,DA的中点,求证:E,F,G,H四个点在以O为圆心的同一个圆上.答案:连接OE,OF,OG,OH.∵四边形ABCD为菱形,∴AB=BC=CD=DA,且BD⊥AC.∵E、F、GH分别为AB、BC、CD、DA的中点,∴OE=OF=OG=OH=12AB,∴E、F、G、H四点在以O为圆心,12AB为半径的圆上.7.如果输入2,那么执行图中算法的结果是()A.输出2B.输出3C.输出4D.程序出错,输不出任何结果答案:第一步:输入n=2第二步:n=2+1=3第三步:n=3+1=4第四步:输出4故为C.8.已知直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则A1B1=A2B2是l1∥l2的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件答案:当A1B1=A2B2
时,两直线可能平行,也可能重合,故充分性不成立.当l1∥l2时,B1与B2可能都等于0,故A1B1=A2B2
不一定成立,故必要性不成立.综上,A1B1=A2B2是l1∥l2的既非充分又非必要条件,故选D.9.(参数方程与极坐标选讲)在极坐标系中,圆C的极坐标方程为:ρ2+2ρcosθ=0,点P的极坐标为(2,π2),过点P作圆C的切线,则两条切线夹角的正切值是______.答案:圆C的极坐标方程ρ2+2ρcosθ=0,化为普通方程为x2+y2+2x=0,即(x-1)2+y2=1.它表示以C(1,0)为圆心,以1为半径的圆.点P的极坐标为(2,π2),化为直角坐标为(0,2).设两条切线夹角为2θ,则sinθ=15,cosθ25,故tanθ=12.再由tan2θ=2tanθ1-tan2θ=43,故为43.10.两条直线x-y+6=0与x+y+6=0的夹角为()
A.
B.
C.0
D.答案:D11.设α和β为不重合的两个平面,给出下列命题:
(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;
(2)若α外一条直线l与α内的一条直线平行,则l和α平行;
(3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;
(4)直线l与α垂直的充分必要条件是l与α内的两条直线垂直.
上面命题,真命题的序号是______(写出所有真命题的序号)答案:由面面平行的判定定理可知,(1)正确.由线面平行的判定定理可知,(2)正确.对于(3)来说,α内直线只垂直于α和β的交线l,得不到其是β的垂线,故也得不出α⊥β.对于(4)来说,l只有和α内的两条相交直线垂直,才能得到l⊥α.也就是说当l垂直于α内的两条平行直线的话,l不一定垂直于α.12.若函数y=f(x)的定义域是[2,4],则y=f(log12x)的定义域是()A.[12,1]B.[4,16]C.[116,14]D.[2,4]答案:∵y=f(log12x),令log12x=t,∴y=f(log12x)=f(t),∵函数y=f(x)的定义域是[2,4],∴y=f(t)的定义域也为[2,4],即2≤t≤4,∴有2≤log12x≤4,解得:116≤x≤14,∵函数的定义域即解析式中自变量的取值范围,∴y=f(log12x)的定义域为116≤x≤14,即:[116,14].故选C.13.直线(a+1)x-(2a+5)y-6=0必过一定点,定点的坐标为(
)。答案:(-4,-2)14.用数学归纳法证明“<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是()
A.2k-1
B.2k-1
C.2k
D.2k+1答案:C15.已知a=(2,3),b=(1,2),(a+λb)⊥(a-b),则λ=______.答案:∵a=(2,3),b=(1,2),∴a2=(2,3)•(2,3)=4+9=13,b2=(1,2)•(1,2)=1+4=5∵(a+λb)⊥(a-b)∴(a+λb)•(a-b)=a2-λb2=13-5λ=0∴λ=135故为:13516.“因为指数函数y=ax是增函数(大前提),而y=()x是指数函数(小前提),所以y=()x是增函数(结论)”,上面推理的错误是()
A.大前提错导致结论错
B.小前提错导致结论错
C.推理形式错导致结论错
D.大前提和小前提错都导致结论错答案:A17.直线3x+4y-12=0和3x+4y+3=0间的距离是
______.答案:由两平行线间的距离公式得直线3x+4y-12=0和3x+4y+3=0间的距离是|-12-3|5=3,故为3.18.点M的直角坐标是,则点M的极坐标为()
A.(2,)
B.(2,-)
C.(2,)
D.(2,2kπ+)(k∈Z)答案:C19.已知双曲线的焦点在y轴,实轴长为8,离心率e=2,过双曲线的弦AB被点P(4,2)平分;
(1)求双曲线的标准方程;
(2)求弦AB所在直线方程;
(3)求直线AB与渐近线所围成三角形的面积.答案:(1)∵双曲线的焦点在y轴,∴设双曲线的标准方程为y2a2-x2b2=1;∵实轴长为8,离心率e=2,∴a=4,c=42,∴b2=c2-a2=16.或∵实轴长为8,离心率e=2,∴双曲线为等轴双曲线,a=b=4.∴双曲线的标准方程为y216-x216=1.(2)设弦AB所在直线方程为y-2=k(x-4),A,B的坐标为A(x1,y1),B(x2,y2).∴k=y1-y2x1-x2,x1+x22=4,y1+y22=2;∴y1216-x1216=1
y2216-x2216=1⇒y12-y2216-x12-x2216=0⇒(y1-y2)(y1+y2)16-(x1-x2)(x1+x2)16=0代入x1+x2=8,y1+y2=4,得(y1-y2)×416-(x1-x2)×816=0,∴y1-y2x1-x2×14-12=0,∴14k-12=0,∴k=2;所以弦AB所在直线方程为y-2=2(x-4),即2x-y-6=0.(3)等轴双曲线y216-x216=1的渐近线方程为y=±x.∴直线AB与渐近线所围成三角形为直角三角形.又渐近线与弦AB所在直线的交点坐标分别为(6,6),(2,-2),∴直角三角形两条直角边的长度分别为62、22;∴直线AB与渐近线所围成三角形的面积S=12×62×22=12.20.直线3x+4y-7=0与直线6x+8y+3=0之间的距离是()
A.
B.2
C.
D.答案:C21.设x+y+z=1,求F=2x2+3y2+z2的最小值.答案:∵1=(x+y+z)2=(12?2x+13?3y+1?z)2≤(12+13+1)(2x2+3y2+z2)∴F=2x2+3y2+z2≥611(8分)当且仅当2x12=3y13=z1且x+y+z=1,x=311,y=211,z=611F有最小值611(12分)22.数据:1,1,3,3的众数和中位数分别是()
A.1或3,2
B.3,2
C.1或3,1或3
D.3,3答案:A23.如图,椭圆C2x2a2+
y2b2=1的焦点为F1,F2,|A1B1|=7,S□B1A1B2A2=2S□B1F1B2F2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设n为过原点的直线,l是与n垂直相交与点P,与椭圆相交于A,B两点的直线|op|=1,是否存在上述直线l使OA•OB=0成立?若存在,求出直线l的方程;并说出;若不存在,请说明理由.答案:(Ⅰ)由题意可知a2+b2=7,∵S□B1A1B2A2=2S□B1F1B2F2,∴a=2c.解得a2=4,b2=3,c2=1.∴椭圆C的方程为x24+y33=1.(Ⅱ)设A、B两点的坐标分别为A(x1,y1),B(x2,y2),假设使OA•OB=0成立的直线l存在.(i)当l不垂直于x轴时,设l的方程为y=kx+m,由l与n垂直相交于P点,且|OP|=1得|m|1+
k2=1,即m2=k2+1,由OA•OB=0得x1x2+y1y2=0,将y=kx+m代入椭圆得(3+4k2)x2+8kmx+(4m2-12)=0,x1+x2=-8km3+4k2,①,x1x2=4m2-123+4k2,②0=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=x1x2+k2x1x2+km(x1+x2)+m2把①②代入上式并化简得(1+k2)(4m2-12)-8k2m2+m2(3+4k2)=0,③将m2=1+k2代入③并化简得-5(k2+1)=0矛盾.即此时直线l不存在.(ii)当l垂直于x轴时,满足|OP|=1的直线l的方程为x=1或x=-1,由A、B两点的坐标为(1,32),(1,-32)或(-1,32),(-1,-32).当x=1时,OA•OB=(1,32)•
(1,-32)=-54≠0.当x=-1时,OA•OB=(-1,32)•
(-1,-32)=-54≠0.∴此时直线l也不存在.综上所述,使OA•OB=0成立的直线l不成立.24.在下列四个命题中,正确的共有()
①坐标平面内的任何一条直线均有倾斜角和斜率;
②直线的倾斜角的取值范围是[0,π];
③若一条直线的斜率为tanα,则此直线的倾斜角为α;
④若一条直线的倾斜角为α,则此直线的斜率为tanα.
A.0个
B.1个
C.2个
D.3个答案:A25.以抛物线的焦点弦为直径的圆与其准线的位置关系是(
)
A.相切
B.相交
C.相离
D.以上均有可能答案:A26.对于函数f(x),若存在区间M=[a,b],(a<b),使得{y|y=f(x),x∈M}=M,则称区间M为函数f(x)的一个“稳定区间”现有四个函数:
①f(x)=ex②f(x)=x3③f(x)=sinπ2x④f(x)=lnx,其中存在“稳定区间”的函数有()A.①②B.②③C.③④D.②④答案:①对于函数f(x)=ex若存在“稳定区间”[a,b],由于函数是定义域内的增函数,故有ea=a,eb=b,即方程ex=x有两个解,即y=ex和y=x的图象有两个交点,这与即y=ex和y=x的图象没有公共点相矛盾,故①不存在“稳定区间”.②对于f(x)=x3存在“稳定区间”,如x∈[0,1]时,f(x)=x3∈[0,1].③对于f(x)=sinπ2x,存在“稳定区间”,如x∈[0,1]时,f(x)=sinπ2x∈[0,1].④对于f(x)=lnx,若存在“稳定区间”[a,b],由于函数是定义域内的增函数,故有lna=a,且lnb=b,即方程lnx=x有两个解,即y=lnx
和y=x的图象有两个交点,这与y=lnx和y=x的图象没有公共点相矛盾,故④不存在“稳定区间”.故选B.27.某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,则此样本的容量为()
A.40
B.80
C.160
D.320答案:B28.
点M分有向线段的比为λ,已知点M1(1,5),M2(2,3),λ=-2,则点M的坐标为()
A.(3,8)
B.(1,3)
C.(3,1)
D.(-3,-1)答案:C29.若图中的直线l1、l2、l3的斜率分别为k1、k2、k3,则()A.k1<k2<k3B.k2<k1<k3C.k3<k2<k1D.k1<k3<k2答案:因为直线的斜率是其倾斜角的正切值,当倾斜角大于90°小于180°时,斜率为负值,当倾斜角大于0°小于90°时斜率为正值,且正切函数在(0°,90°)上为增函数,由图象三条直线的倾斜角可知,k2<k1<k3.故选C.30.复数(12+32i)3i的值为______.答案:(12+32i)3i=(cosπ3+isinπ3)3cosπ2+isinπ2=cosπ+isinπcosπ2+
isinπ2=cosπ2+isinπ2=i,故为:i.31.如图,在△ABC中,D是AC的中点,E是BD的中点,AE交BC于F,则的值等于()
A.
B.
C.
D.
答案:A32.P是以F1,F2为焦点的椭圆上一点,过焦点F2作∠F1PF2外角平分线的垂线,垂足为M,则点M的轨迹是()
A.椭圆
B.圆
C.双曲线
D.双曲线的一支答案:B33.将一根长为3m的绳子在任意位置剪断,则剪得两段的长都不小于1m的概率是()A.14B.13C.12D.23答案:记“两段的长都不小于1m”为事件A,则只能在中间1m的绳子上剪断,剪得两段的长都不小于1m,所以事件A发生的概率
P(A)=13.故选B34.半径为1、2、3的三个圆两两外切.证明:以这三个圆的圆心为顶点的三角形是直角三角形.
答案:证明:设⊙O1、⊙O2、⊙O3的半径分别为1、2、3.因这三个圆两两外切,故有O1O2=1+2=3,O2O3=2+3=5,O1O3=1+3=4,则有O1O22+O1O32=32+42=52=O2O32根据勾股定理的逆定理,得到△O1O2O3为直角三角形.35.如图,花园中间是喷水池,喷水池周围的A、B、C、D区域种植草皮,要求相邻的区域种不同颜色的草皮,现有4种不同颜色的草皮可供选用,则共有______种不同的种植方法(以数字作答).答案:若AD相同,有4×(3+3×2)种种植方法,若AD不同,有4×3×(2+2×1)种种植方法∴共有4×(3+3×2)+4×3×(2+2×1)=36+48=84种不同方法.故为84.36.已知A(3,4,5),B(0,2,1),O(0,0,0),若,则C的坐标是()
A.(-,-,-)
B.(,-,-)
C.(-,-,)
D.(,,)答案:A37.一个正方体的展开图如图所示,A、B、C、D为原正方体的顶点,则在原来的正方体中()A.AB∥CDB.AB与CD相交C.AB⊥CDD.AB与CD所成的角为60°答案:将正方体的展开图,还原为正方体,AB,CD为相邻表面,且无公共顶点的两条面上的对角线∴AB与CD所成的角为60°故选D.38.制作一个面积为1
m2,形状为直角三角形的铁架框,有下列四种长度的铁管供选择,较经济的(既够用又耗材量少)是().A.5.2mB.5mC.4.8mD.4.6m答案:设一条直角边为x,则另一条直角边是2x,斜边长为x2+4x2故周长
l=x+2x+x2+4x2≥22+2≈4.82当且仅当x=2时等号成立,故较经济的(既够用又耗材量少)是5m故应选B.39.△ABC中,A(1,2),B(3,1),重心G(3,2),则C点坐标为______.答案:设点C(x,y)由重心坐标公式知3×3=1+3+x,6=2+1+y解得x=5,y=3故点C的坐标为(5,3)故为(5,3)40.如图,在△ABC中,设AB=a,AC=b,AP的中点为Q,BQ的中点为R,CR的中点恰为P.
(Ⅰ)若AP=λa+μb,求λ和μ的值;
(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,求平行四边形ANPM和三角形ABC的面积之比S平行四边形ANPMS△ABC.答案:(Ⅰ)∵在△ABC中,设AB=a,AC=b,AP的中点为Q,BQ的中点为R,CR的中点恰为P.AP=AR+AC2,AR=AQ+AB2,AQ=12AP,消去AR,AQ∵AP=λa+μb,可得AP=12(AQ+AB2)+12AC=14×12AP+14AB+12AC,可得AP=27AB+47AC=λa+μb,∴λ=27μ=47;(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,∵得AP=27AB+47AC,∴S平行四边形ANPMS平行四边形ABC=|AN|?|AM|?sin∠CAB12|AB|?|AC|?sin∠CAB=2?|AN||AB|?|AM||AC|=2×27×47=1649;41.(坐标系与参数方程选做题)在极坐标系(ρ,θ)(ρ>0,0≤θ<π2)中,曲线ρ=2sinθ与ρ=2cosθ的交点的极坐标为______.答案:两式ρ=2sinθ与ρ=2cosθ相除得tanθ=1,∵0≤θ<π2,∴θ=π4,∴ρ=2sinπ4=2,故交点的极坐标为(2,π4).故为:(2,π4).42.复数z=(2+i)(1+i)在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限答案:因为z=(2+i)(1+i)=2+3i+i2=1+3i,所以复数对应点的坐标为(1,3),所以位于第一象限.故选A.43.已知平行四边形的三个顶点A(-2,1),B(-1,3),C(3,4),求第四个顶点D的坐标.答案:若构成的平行四边形为ABCD1,即AC为一条对角线,设D1(x,y),则由AC中点也是BD1中点,可得
-2+32=x-121+42=y+32,解得
x=2y=2,∴D1(2,2).同理可得,若构成以AB为对角线的平行四边形ACBD2,则D2(-6,0);以BC为对角线的平行四边形ACD3B,则D3(4,6),∴第四个顶点D的坐标为:(2,2),或(-6,0),或(4,6).44.已知P是以F1,F2为焦点的椭圆(a>b>0)上的一点,若PF1⊥PF2,tan∠PF1F2=,则此椭圆的离心率为()
A.
B.
C.
D.答案:D45.点A(-,1)关于y轴的对称点A′的坐标为(
)
A.(-,-1)
B.(,-1)
C.(-,1)
D.(,1)答案:D46.2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.
某城市环保部门随机抽取了一居民区去年20天PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别PM2.5浓度
(微克/立方米)频数(天)频率
第一组(0,25]50.25第二组(25,50]100.5第三组(50,75]30.15第四组(75,100)20.1(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;
(Ⅱ)求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.答案:(Ⅰ)
设PM2.5的24小时平均浓度在(50,75]内的三天记为A1,A2,A3,PM2.5的24小时平均浓度在(75,100)内的两天记为B1,B2.所以5天任取2天的情况有:A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2,A3B1,A3B2共10种.
…(4分)其中符合条件的有:A1B1,A1B2,A2B1,A2B2,A3B1,A3B2共6种.
…(6分)所以所求的概率P=610=35.
…(8分)(Ⅱ)去年该居民区PM2.5年平均浓度为:12.5×0.25+37.5×0.5+62.5×0.15+87.5×0.1=40(微克/立方米).…(10分)因为40>35,所以去年该居民区PM2.5年平均浓度不符合环境空气质量标准,故该居民区的环境需要改进.
…(12分)47.正态曲线下、横轴上,从均值到+∞的面积为______答案:由正态曲线的对称性特点知,曲线与x轴之间的面积为1,所以从均数到的面积为整个面积的一半,即50%.填:0.5.48.圆心在x轴上,且过两点A(1,4),B(3,2)的圆的方程为______.答案:设圆心坐标为(m,0),半径为r,则圆的方程为(x-m)2+y2=r2,∵圆经过两点A(1,4)、B(3,2)∴(1-m)2+42=r2(3-m)2+22=r2解得:m=-1,r2=20∴圆的方程为(x+1)2+y2=20故为:(x+1)2+y2=2049.在同一坐标系中,y=ax与y=a+x表示正确的是()A.
B.
C.
D.
答案:由y=x+a得斜率为1排除C,由y=ax与y=x+a中a同号知若y=ax递增,则y=x+a与y轴的交点在y轴的正半轴上,由此排除B;若y=ax递减,则y=x+a与y轴的交点在y轴的负半轴上,由此排除D,知A是正确的;故选A.50.已知l1、l2是过点P(-2,0)的两条互相垂直的直线,且l1、l2与双曲线y2-x2=1各有两个交点,分别为A1、B1和A2、B2.
(1)求l1的斜率k1的取值范围;
(2)若|A1B1|=5|A2B2|,求l1、l2的方程.答案:(1)显然l1、l2斜率都存在,否则l1、l2与曲线不相交.设l1的斜率为k1,则l1的方程为y=k1(x+2).联立得y=k1(x+2),y2-x2=1,消去y得(k12-1)x2+22k12x+2k12-1=0.①根据题意得k12-1≠0,②△1>0,即有12k12-4>0.③完全类似地有1k21-1≠0,④△2>0,即有12•1k21-4>0,⑤从而k1∈(-3,-33)∪(33,3)且k1≠±1.(2)由弦长公式得|A1B1|=1+k2112k21-4(k21-1)2.⑥完全类似地有|A2B2|=1+1k2112-4k21(k21-1)2.⑦∵|A1B1|=5|A2B2|,∴k1=±2,k2=.+22.从而l1:y=2(x+2),l2:y=-22(x+2)或l1:y=-2(x+2),l2:y=22(x+2).第2卷一.综合题(共50题)1.已知非零向量,若与互相垂直,则=(
)
A.
B.4
C.
D.2答案:D2.点O是四边形ABCD内一点,满足OA+OB+OC=0,若AB+AD+DC=λAO,则λ=______.答案:设BC中点为E,连接OE.则OB+OC=2OE,又有已知OB+OC=AO,所以AO=2OE,A,O,E三点都在BC边的中线上,且|AO|=2|OE|,所以O为△ABC重心.AB+AD+DC=
AB+(AD+DC)=AB+AC=2AE=2×32AO=3AO,∴λ=3故为:3.3.(1)在数轴上求一点的坐标,使它到点A(9)与到点B(-15)的距离相等;
(2)在数轴上求一点的坐标,使它到点A(3)的距离是它到点B(-9)的距离的2倍.答案:(1)设该点为M(x),根据题意,得A、M两点间的距离为d(A,M)=|x-9|,B、M两点间的距离为d(M,B)=|-15-x|,结合题意,可得|x-9|=|-15-x|,∴x-9=15+x或x-9=-15-x,解之得x=-3,得M的坐标为-3故所求点的坐标为-3.(2)设该点为N(x'),则A、N两点间的距离为d(A,N)=|x'-3|,B、N两点间的距离为d(N,B)=|-9-x'|,根据题意有|x'-3|=2|9+x'|,∴x'-3=18+2x'或x'-3=-18-2x',解之得x'=-21,或x'=-5.故所求点的坐标是-21或-5.4.若某简单组合体的三视图(单位:cm)如图所示,说出它的几何结构特征,并求该几何体的表面积。答案:解:该几何体由球和圆台组成。球的半径为1,圆台的上下底面半径分别为1、4,高为4,母线长为5,S球=4πcm2,S台=π(12+42+1×5+4×5)=42πcm2,故S表=S球+S台=46πcm2。5.已知事件A与B互斥,且P(A)=0.3,P(B)=0.6,则P(A|.B)=______.答案:∵P(B)=0.6,∴P(.B)=0.4.又事件A与B互斥,且P(A)=0.3,∴P(A|.B)=P(A)P(.B)=0.30.4=34.故为:34.6.已知O、A、M、B为平面上四点,且,则()
A.点M在线段AB上
B.点B在线段AM上
C.点A在线段BM上
D.O、A、M、B四点一定共线答案:B7.设椭圆(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为,则此椭圆的方程为(
)
A.
B.
C.
D.答案:B8.已知x,y之间的一组数据:
x0123y1357则y与x的回归方程必经过()A.(2,2)B.(1,3)C.(1.5,4)D.(2,5)答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4∴这组数据的样本中心点是(1.5,4)根据线性回归方程一定过样本中心点,∴线性回归方程y=a+bx所表示的直线必经过点(1.5,4)故选C9.写出1×2×3×4×5×6的一个算法.答案:按照逐一相乘的程序进行第一步:计算1×2,得到2;第二步:将第一步的运算结果2与3相乘,得到6;第三步:将第二步的运算结果6与4相乘,得到24;第四步:将第三步的运算结果24与5相乘,得到120;第五步:将第四的运算结果120与6相乘,得到720;第六步:输出结果.10.点P1,P2是线段AB的2个三等分点,若P∈{P1,P2},则P分有线段AB的比λ的最大值和最小值分别为()
A.3,
B.3,
C.2,
D.2,1答案:C11.语句“若a>b,则a+c>b+c”是()
A.不是命题
B.真命题
C.假命题
D.不能判断真假答案:B12.如图为某平面图形用斜二测画法画出的直观图,则其原来平面图形的面积是(
)
A.4
B.
C.
D.8
答案:A13.两条直线l1:x-3y+2=0与l2:x-y+2=0的夹角的大小是______.答案:由于两条直线l1:x-3y+2=0与l2:x-y+2=0的斜率分别为33、1,设两条直线的夹角为θ,则tanθ=|k2-k11+k2•k1|=|1-331+1×33|=3-33+3=2-3,∴tan2θ=2tanθ1-tan2θ=33,∴2θ=π6,θ=π12,故为π12.14.已知直线l1:(k-3)x+(4-k)y+1=0,与l2:2(k-3)x-2y+3=0,平行,则k的值是______.答案:当k=3时两条直线平行,当k≠3时有2=-24-k≠3
所以
k=5故为:3或5.15.在四面体O-ABC中,OA=a,OB=b,OC=c,D为BC的中点,E为AD的中点,则OE=______(用a,b,c表示)答案:在四面体O-ABC中,OA=a,OB=b,OC=c,D为BC的中点,E为AD的中点,∴OE=12(OA+OD)=OA2+OD2=12a+12×12(OB+OC)=12a+14(b+c)=12a+14b+14c,故为:12a+14b+14c.16.如图所示,正四面体V—ABC的高VD的中点为O,VC的中点为M.
(1)求证:AO、BO、CO两两垂直;
(2)求〈,〉.答案:(1)证明略(2)45°解析:(1)
设=a,=b,=c,正四面体的棱长为1,则=(a+b+c),=(b+c-5a),=(a+c-5b),=(a+b-5c)∴·=(b+c-5a)·(a+c-5b)=(18a·b-9|a|2)=(18×1×1·cos60°-9)=0.∴⊥,∴AO⊥BO,同理⊥,BO⊥CO,∴AO、BO、CO两两垂直.(2)
=+=-(a+b+c)+=(-2a-2b+c).∴||==,||==,·=(-2a-2b+c)·(b+c-5a)=,∴cos〈,〉==,∵〈,〉∈(0,),∴〈,〉=45°.17.方程(x2-9)2(x2-y2)2=0表示的图形是()
A.4个点
B.2个点
C.1个点
D.四条直线答案:D18.参数方程(θ为参数)化为普通方程是()
A.2x-y+4=0
B.2x+y-4=0
C.2x-y+4=0,x∈[2,3]
D.2x+y-4=0,x∈[2,3]答案:D19.某次乒乓球比赛的决赛在甲乙两名选手之间举行,比赛采用五局三胜制,按以往比赛经验,甲胜乙的概率为23.
(1)求比赛三局甲获胜的概率;
(2)求甲获胜的概率;
(3)设甲比赛的次数为X,求X的数学期望.答案:记甲n局获胜的概率为Pn,n=3,4,5,(1)比赛三局甲获胜的概率是:P3=C33(23)3=827;(2)比赛四局甲获胜的概率是:P4=C23(23)3
(13)=827;比赛五局甲获胜的概率是:P5=C24(13)2(23)3=1681;甲获胜的概率是:P3+P4+P5=6481.(3)记乙n局获胜的概率为Pn′,n=3,4,5.P3′=C33(13)3=127,P4′=C23(13)3
(23)=227;P5′=C24(13)3(23)2=881;故甲比赛次数的分布列为:X345P(X)P3+P3′P4+P4′P5+P5′所以甲比赛次数的数学期望是:EX=3(127+827)+4(827+227)+5(1681+881
)=10727.20.已知圆M的方程为:(x+3)2+y2=100及定点N(3,0),动点P在圆M上运动,线段PN的垂直平分线交圆M的半径MP于Q点,设点Q的轨迹为曲线C,则曲线C的方程是______.答案:连接QN,如图由已知,得|QN|=|QP|,所以|QM|+|QN|=|QM|+|QN|=|MP|=10又|MN|=6,10>6,根据椭圆的定义,点Q的轨迹是M,N为焦点,以10为长轴长的椭圆,所以2a=10,2c=6,所以b=4,所以,点Q的轨迹方程为:x225+y216=1故为:x225+y216=121.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…,用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下图与故事情节相吻合的是()
A.
B.
C.
D.
答案:B22.已知双曲线的渐近线方程为2x±3y=0,F(0,-5)为双曲线的一个焦点,则双曲线的方程为()
A.
B.
C.
D.答案:B23.从一批羽毛球产品中任取一个,质量小于4.8
g的概率是0.3,质量不小于4.85
g的概率是0.32,那么质量在[4.8,4.85)g范围内的概率是()
A.0.62
B.0.38
C.0.7
D.0.68答案:B24.复数32i+11-i的虚部是______.答案:复数32i+11-i=32i+1+i(1-i)(1+i)=32i+1+i2=12+2i∴复数的虚部是2,故为:225.已知100件产品中有5件次品,从中任意取出3件产品,设A表示事件“3件产品全不是次品”,B表示事件“3件产品全是次品”,C表示事件“3件产品中至少有1件次品”,则下列结论正确的是()
A.B与C互斥
B.A与C互斥
C.任意两个事件均互斥
D.任意两个事件均不互斥答案:B26.对于平面几何中的命题:“夹在两条平行线之间的平行线段相等”,在立体几何中,类比上述命题,可以得到命题:“______”.答案:在由平面图形的性质向空间物体的性质进行类比时,我们常用由平面图形中线的性质类比推理出空间中面的性质,故由平面几何中的命题:“夹在两条平行线这间的平行线段相等”,我们可以推断在立体几何中:“夹在两个平行平面间的平行线段相等”这个命题是一个真命题.故为:“夹在两个平行平面间的平行线段相等”.27.如图,在棱长为2的正方体ABCD-A1B1C1D1中,以底面正方形ABCD的中心为坐标原点O,分别以射线OB,OC,AA1的指向为x轴、y轴、z轴的正方向,建立空间直角坐标系.试写出正方体八个顶点的坐标.答案:解设i,j,k分别是与x轴、y轴、z轴的正方向方向相同的单位坐标向量.因为底面正方形的中心为O,边长为2,所以OB=2.由于点B在x轴的正半轴上,所以OB=2i,即点B的坐标为(2,0,0).同理可得C(0,2,0),D(-2,0,0),A(0,-2,0).又OB1=OB+BB1=2i+2k,所以OB1=(2,0,2).即点B1的坐标为(2,0,2).同理可得C1(0,2,2),D1(-2,0,2),A1(0,-2,2).28.已知F1、F2为椭圆x225+y29=1的两个焦点,过F1的直线交椭圆于A、B两点.若|F2A|+|F2B|=12,则|AB|=______.答案:由椭圆的定义得|AF1|+|AF2|=10|BF1|+|BF2|=10两式相加得|AB|+|AF2|+|BF2|=20,即|AB|+12=20,∴|AB|=8.故:829.过点P(0,-2)的双曲线C的一个焦点与抛物线x2=-16y的焦点相同,则双曲线C的标准方程是()
A.
B.
C.
D.答案:C30.设圆O1和圆O2是两个定圆,动圆P与这两个定圆都相切,则圆P的圆心轨迹不可能是()
A.
B.
C.
D.
答案:A31.如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线上一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.
(1)求证:DE是⊙O的切线;
(2)若AB=6,AE=245,求BD和BC的长.答案:(1)证明:连接OC∵AC平分∠EAB∴∠EAC=∠BAC又在圆中OA=OC∴∠AC0=∠BAC∴∠EAC=∠ACO∴OC∥AE(内错角相等,两直线平行)则由AE⊥DC知OC⊥DC即DE是⊙O的切线.(2)∵∠D=∠D,∠E=∠OCD=90°∴△DCO∽△DEA∴BD=2∵Rt△EAC∽Rt△CAB.∴AC2=1445由勾股定理得BC=655.32.已知点A(1-t,1-t,t),B(2,t,t),则A、B两点距离的最小值为()
A.
B.
C.
D.2答案:A33.已知:|.a|=1,|.b|=2,<a,b>=60°,则|a+b|=______.答案:由题意|a+b|2=(a+b)2=a2+2b?a+b2=1+4+2×2×1×cos<a,b>=5+2=7∴|a+b|=7故为734.设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是()
A.若m∥n,m∥α,则n∥α
B.若α⊥β,m∥α,则m⊥β
C.若α⊥β,m⊥β,则m∥α
D.若m⊥n,m⊥α,n⊥β,则α⊥β答案:D35.复数i2000=______.答案:复数i2009=i4×500=i0=1故为:136.已知F1,F2为椭圆x2a2+y2b2=1(a>b>0)的两个焦点,过F2作椭圆的弦AB,若△AF1B的周长为16,椭圆的离心率为e=32,则椭圆的方程为______.答案:根据椭圆的定义,△AF1B的周长为16可知,4a=16,∴a=4,∵e=32,∴c=23,∴b=2,∴椭圆的方程为x216+y24=1,故为x216+y24=137.根据一组数据判断是否线性相关时,应选用()
A.散点图
B.茎叶图
C.频率分布直方图
D.频率分布折线图答案:A38.如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E.求∠DAC的度数与线段AE的长.答案:如图,连接OC,因BC=OB=OC=3,因此∠CBO=60°,由于∠DCA=∠CBO,所以∠DCA=60°,又AD⊥DC得∠DAC=30°;(5分)又因为∠ACB=90°,得∠CAB=30°,那么∠EAB=60°,从而∠ABE=30°,于是AE=12AB=3.(10分)39.某研究小组在一项实验中获得一组数据,将其整理得到如图所示的散点图,下列函数中,最能近似刻画y与t之间关系的是(
)
A.y=2t
B.y=2t2
C.y=t3
D.y=log2t
答案:D40.下面对算法描述正确的一项是:()A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同答案:算法的特点:有穷性,确定性,顺序性与正确性,不唯一性,普遍性算法可以用自然语言、图形语言,程序语言来表示,故A、B不对同一问题可以用不同的算法来描述,但结果一定相同,故D不对.C对.故应选C.41.在正方体ABCD-A1B1C1D1中,直线BC1与平面A1BD所成角的余弦值是______.答案:分别以DA、DC、DD1为x、y、z轴建立如图所示空间直角坐标系设正方体的棱长等于1,可得D(0,0,0),B(1,1,0),C1(0,1,1),A1(1,0,1),∴BC1=(-1,0,1),A1D=(-1,0,-1),BD=(-1,-1,0)设n=(x,y,z)是平面A1BD的一个法向量,则n•A1D=-x-z=0n•BD=-x-y=0,取x=1,得y=z=-1∴平面A1BD的一个法向量为n=(1,-1,-1)设直线BC1与平面A1BD所成角为θ,则sinθ=|cos<BC1,n>|=BC1•n|BC1|•n=63∴cosθ=1-sin2θ=33,即直线BC1与平面A1BD所成角的余弦值是33故为:3342.x+y+z=1,则2x2+3y2+z2的最小值为()
A.1
B.
C.
D.答案:C43.一个算法的流程图如图所示,则输出S的值为
.答案:根据程序框图,题意为求:s=1+2+3+4+5+6+7+8+9,计算得:s=45,故为:45.44.下列函数图象中,正确的是()
A.
B.
C.
D.
答案:C45.若回归直线方程中的回归系数b=0时,则相关系数r=______.答案:由于在回归系数b的计算公式中,与相关指数的计算公式中,它们的分子相同,故为:0.46.点P(4,-2)与圆x2+y2=4上任一点连线的中点轨迹方程是______.答案:设圆上任意一点为A(x1,y1),AP中点为(x,y),则x=x1+42y=y1-22,∴x1=2x-4y1=2y+2代入x2+y2=4得(2x-4)2+(2y+2)2=4,化简得(x-2)2+(y+1)2=1.故为:(x-2)2+(y+1)2=147.函数f(x)=2x2+1,&x∈[0,2],则函数f(x)的值域为()A.[1,32]B.[4,32]C.[2,32]D.[2,4]答案:∵f(x)=2x2+1,x∈[0,2],∴设y=2t,t=x2+1∈[1,5],∵y=2t是增函数,∴t=1时,ymin=2;t=5时,ymax=25=32.∴函数f(x)的值域为[2,32].故为:C.48.将某班的60名学生编号为:01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是______.答案:用系统抽样抽出的5个学生的号码从小到大成等差数列,随机抽得的一个号码为04则剩下的四个号码依次是16、28、40、52.故为:16、28、40、5249.若抛物线y2=4x上一点P到其焦点的距离为3,则点P的横坐标等于______.答案:∵抛物线y2=4x=2px,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=3=x+p2=3,∴x=2,故为:2.50.已知P(4,-9),Q(-2,3)且Y轴与线段PQ交于M,则Q分的比为()
A.-2
B.-
C.
D.3答案:B第3卷一.综合题(共50题)1.
已知抛物线y2=2px(p>0)的焦点为F,过F的直线交y轴正半轴于点P,交抛物线于A,B两点,其中点A在第一象限,若,,,则μ的取值范围是()
A.[1,]
B.[,2]
C.[2,3]
D.[3,4]答案:B2.(1)把二进制数化为十进制数;(2)把化为二进制数.答案:(1)45,(2)解析:(1)先把二进制数写成不同位上数字与2的幂的乘积之和的形式,再按照十进制的运算规则计算出结果;(2)根据二进制数“满二进一”的原则,可以用连续去除或所得商,然后取余数.(1)(2),,,,.所以..这种算法叫做除2余法,还可以用下面的除法算式表示;把上式中各步所得的余数从下到上排列,得到【名师指引】直接插入排序和冒泡排序是两种常用的排序方法,通过该例,我们对比可以发现,直接插入排序比冒泡排序更有效一些,执行的操作步骤更少一些..3.已知一直线斜率为3,且过A(3,4),B(x,7)两点,则x的值为()
A.4
B.12
C.-6
D.3答案:A4.一圆台上底半径为5cm,下底半径为10cm,母线AB长为20cm,其中A在上底面上,B在下底面上,从AB中点M,拉一条绳子,绕圆台的侧面一周转到B点,则这条绳子最短长为______cm.答案:画出圆台的侧面展开图,并还原成圆锥展开的扇形,且设扇形的圆心为O.有图得:所求的最短距离是MB',设OA=R,圆心角是α,则由题意知,10π=αR
①,20π=α(20+R)
②,由①②解得,α=π2,R=20,∴OM=30,OB'=40,则MB'=50cm.故为:50cm.5.命题“所以奇数的立方是奇数”的否定是()
A.所有奇数的立方不是奇数
B.不存在一个奇数,它的立方不是奇数
C.存在一个奇数,它的立方不是奇数
D.不存在一个奇数,它的立方是奇数答案:C6.平面向量a与b的夹角为,若a=(2,0),|b|=1,则|a+2b|=()
A.
B.2
C.4
D.12答案:B7.已知f(x+1)=x2+2x+3,则f(2)的值为______.答案:由f(x+1)=x2+2x+3,得f(1+1)=12+2×1+3=6,故为:6.8.若直线
3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a的值为()
A.-1
B.1
C.3
D.-3答案:B9.若以连续掷两次骰子分别得到的点数m、n作为点P的坐标,则点P落在圆x2+y2=16内的概率是______.答案:由题意知,本题是一个古典概型,试验发生包含的事件是连续掷两次骰子分别得到的点数m、n作为点P的坐标,共有6×6=36种结果,而满足条件的事件是点P落在圆x2+y2=16内,列举出落在圆内的情况:(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2),共有8种结果,根据古典概型概率公式得到P=836=29,故为:2910.(本题10分)设函数的定义域为A,的定义域为B.(1)求A;
(2)若,求实数a的取值范围答案:(1);(2)。解析:略11.某程序框图如图所示,该程序运行后输出的k的值是()A.4B.5C.6D.7答案:根据流程图所示的顺序,程序的运行过程中各变量值变化如下表:是否继续循环
S
K循环前/0
0第一圈
是
1
1第二圈
是
3
2第三圈
是
11
3第四圈
是
20594第五圈
否∴最终输出结果k=4故为A12.若x,y∈R,x>0,y>0,且x+2y=1,则xy的最大值为______.答案:∵x,y∈R,x>0,y>0,且x+2y=1,∴1=x+2y≥2x?2y,∴22×xy≤1,∴xy≤
122=24,所以xy≤18.当且仅当x=2yx+2y=1时,即x=12,y=14时,取等号.故为:18.13.某公司的管理机构设置是:设总经理一个,副总经理两个,直接对总经理负责,下设有6个部门,其中副总经理A管理生产部、安全部和质量部,副总经理B管理销售部、财务部和保卫部.请根据以上信息补充该公司的人事结构图,其中①、②处应分别填()
A.保卫部,安全部
B.安全部,保卫部
C.质检中心,保卫部
D.安全部,质检中心
答案:B14.如图,△ABC中,∠C=90°,∠A=30°,BC=1.在三角形内挖去半圆(圆心O在边AC上,半圆与BC、AB相切于点C、M,与AC交于N,见图中非阴影部分),则该半圆的半径长为______.答案:连接OM,则OM⊥AB.设⊙O的半径OM=OC=r.在Rt△OAM中,OA=OMsin30°=2r.在Rt△ABC中,AC=BCtan30°=3,∴3=AC=OA+OC=3r,∴r=33.故为33.15.已知圆C的极坐标方程是ρ=2sinθ,那么该圆的直角坐标方程为
______,半径长是
______.答案:把极坐标方程是ρ=2sinθ的两边同时乘以ρ得:ρ2=2ρsinθ,∴x2+y2=2y,即x2+(y-1)2=1,表示以(0,1)为圆心,半径等于1的圆,故为:x2+(y-1)2=1;1.16.“cosα=12”是“α=π3”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:∵“coa=12”?“a=π3+2kπ,k∈Z,或a=53π+2kπ,k∈Z”,“a=π3”?“coa=12”.故选D.17.直线kx-y=k-1与直线ky=x+2k的交点在第二象限内,则k的取值范围是
______.答案:联立两直线方程得kx-y=k-1①ky=x+2k②,由②得y=x+2kk③,把③代入①得:kx-x+2kk=k-1,当k+1≠0即k≠-1时,解得x=kk-1,把x=kk-1代入③得到y=2k-1k-1,所以交点坐标为(kk-1,2k-1k-1)因为直线kx-y=k-1与直线ky=x+2k的交点在第二象限内,得kk-1<02k-1k-1>
0解得0<k<1,k>1或k<12,所以不等式组的解集为0<k<12则k的取值范围是0<k<12故为:0<k<1218.用数学归纳法证明“<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是()
A.2k-1
B.2k-1
C.2k
D.2k+1答案:C19.某学校为了了解学生的日平均睡眠时间(单位:h),随机选择了n名同学进行调查,下表是这n名同学的日平均睡眠时间的频率分布表:
序号(i)分组(睡眠时间)频数(人数)频率1[4,5)40.082[5,6)x0.203[6,7)ay4[7,8)bz5[8,9]m0.O8(1)求n的值;若a=20,试确定x、y、z、m的值;
(2)统计方法中,同一组数据常用该组区间的中点值(例如[4,5)的中点值4.5)作为代表.若据此计算的这n名学生的日平均睡眠时间的平均值为6.68.求a、b的值.答案:(1)样本容量n=40.08=50,∴x=0.20×50=10,y=0.4,z=0.24,m=4(5分)(2)n=50,P(i=3)=a50,P(i=4)=b50平均时间为:4.5×0.08+5.5×0.2+6.5×a50+7.5×b50+8.5×0.08=6.68,即13a+15b=454
①(9分)又4+10+a+b+4=50,即a+b=32
②由①,②解得:a=13,b=1.(12分)20.赋值语句n=n+1的意思是()
A.n等于n+1
B.n+1等于n
C.将n的值赋给n+1
D.将n的值增加1,再赋给n,即n的值增加1答案:D21.如图,圆心角∠AOB=120°,P是AB上任一点(不与A,B重合),点C在AP的延长线上,则∠BPC等于______.
答案:解:设点E是优弧AB(不与A、B重合)上的一点,∵∠AOB=120°,∴∠AEB=60°,∵∠BPA=180°-∠AEB=180°-∠BPC,∴∠BPC=∠AEB.∴∠BPC=60°.故为60°.22.以下关于排序的说法中,正确的是(
)A.排序就是将数按从小到大的顺序排序B.排序只有两种方法,即直接插入排序和冒泡排序C.用冒泡排序把一列数从小到大排序时,最小的数逐趟向上漂浮D.用冒泡排序把一列数从小到大排序时,最大的数逐趟向上漂浮答案:C解析:由冒泡排序的特点知C正确.23.下列说法:
①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选择的模型比较合适;
②用相关指数可以刻画回归的效果,值越大说明模型的拟和效果越好;
③比较两个模型的拟和效果,可以比较残差平方和的大小,残差平方和越小的模型拟和效果越好.
其中说法正确的个数为()
A.0个
B.1个
C.2个
D.3个答案:C24.若向量a⊥b,且向量a=(2,m),b=(3,1)则m=______.答案:因为向量a=(2,m),b=(3,1),又a⊥b,所以2×3+m=0,所以m=-6.故为-6.25.用一枚质地均匀的硬币,甲、乙两人做抛掷硬币游戏,甲抛掷4次,记正面向上的次数为ξ;乙抛掷3次,记正面向上的次数为η.
(Ⅰ)分别求ξ和η的期望;
(Ⅱ)规定:若ξ>η,则甲获胜;否则,乙获胜.求甲获胜的概率.答案:(Ⅰ)由题意,ξ~B(4,0.5),η~B(3,0.5),所以Eξ=4×0.5=2,Eη=3×0.5=1.5…(4分)(Ⅱ)P(ξ=1)=C14(12)4=14,P(ξ=2)=C24(12)4=38,P(ξ=3)=C34(12)4=14,P(ξ=4)=C44(12)4=116P(η=0)=C03(12)3=18,P(η=1)=C13(12)3=38,P(η=2)=C23(12)3=38,P(η=3)=C33(12)3=18…(8分)甲获胜有以下情形:ξ=1,η=0;ξ=2,η=0,1;ξ=3,η=0,1,2;ξ=4,η=0,1,2,3则甲获胜的概率为P=14×18+38(18+38)+14(18+38+38)+116×1=12.…(13分)26.已知向量a=(0,-1,1),b=(4,1,0),|λa+b|=57且λ>0,则λ=______.答案:∵λa+b=λ(0,-1,1)+(4,1,0)=(4,1-λ,λ),|λa+b|=57,∴42+(1-λ)2+λ2=57,化为λ2-λ-20=0,又λ>0,解得λ=5.故为5.27.算法框图中表示判断的是()A.
B.
C.
D.
答案:∵在算法框图中,表示判断的是菱形,故选B.28.从装有2个红球和2个黒球的口袋内任取2个球,那么互斥而不对立的两个事件是()
A.至少有一个黒球与都是红球
B.至少有一个黒球与都是黒球
C.至少有一个黒球与至少有1个红球
D.恰有1个黒球与恰有2个黒球答案:D29.如图,一个正方体内接于一个球,过球心作一个截面,则截面的可能图形为(
)
A.①③
B.②④
C.①②③
D.②③④答案:C30.在半径为R的球内作一内接圆柱,这个圆柱的底面半径和高为何值时,它的侧面积最大?并求此最大值.答案:解
如图,设内接圆柱的高为h,圆柱的底面半径为r,则h2+4r2=4R2因为h2+4r2≥4rh,当且仅当h=2r时取等.所以4R2≥4rh,即rh≤R2所以,S侧=2πrh≤2πR2,当且仅当h=2r时取等.又因为h2+4r2=4R2,所以r=22R,h=2R时取等综上,当内接圆柱的底面半径为22R,高为2R时,它的侧面积最大,为2πR231.△ABC中,若有一个内角不小于120°,求证:最长边与最短边之比不小于3.答案:设最大角为∠A,最小角为∠C,则最大边为a,最小边为c因为A≥120°,所以B+C≤60°,且C≤B,所以2C≤B+C≤60°,C≤30°.所以ac=sinAsinC=sin(B+C)sinC≥sin2CsinC=2cosC≥3.32.在极坐标系中,过点p(3,)且垂直于极轴的直线方程为()
A.Pcosθ=
B.Psinθ=
C.P=cosθ
D.P=sinθ答案:A33.若圆C过点M(0,1)且与直线l:y=-1相切,设圆心C的轨迹为曲线E,A、B为曲线E上的两点,点P(0,t)(t>0),且满足AP=λPB(λ>1).
(I)求曲线E的方程;
(II)若t=6,直线AB的斜率为12,过A、B两点的圆N与抛物线在点A处共同的切线,求圆N的方程;
(III)分别过A、B作曲线E的切线,两条切线交于点Q,若点Q恰好在直线l上,求证:t与QA•QB均为定值.答案:【解】(Ⅰ)依题意,点C到定点M的距离等于到定直线l的距离,所以点C的轨迹为抛物线,曲线E的方程为x2=4y.(Ⅱ)直线AB的方程是y=12x+6,即x-2y+12=0.由{_x2=4y,x-2y+12=0,及AP=λPB(λ>1)知|AP|>|PB|,得A(6,9)和B(-4,4)由x2=4y得y=14x2,y′=12x.所以抛物线x2=4y在点A处切线的斜率为y'|x=6=3.直线NA的方程为y-9=-13(x-6),即y=-13x+11.①线段AB的中点坐标为(1,132),线段AB中垂线方程为y-132=-2(x-1),即y=-2x+172.②由①、②解得N(-32,232).于是,圆C的方程为(x+32)2+(y-232)2=(-4+32)2+(4-232)2,即(x+32)2+(y-232)2=1252.(Ⅲ)设A(x1,x124),B(x2,x224),Q(a,-1).过点A的切线方程为y-x214=x12(x-x1),即x12-2ax1-4=0.同理可得x22-2ax2-4=0,所以x1+x2=2a,x1x2=-4.又kAB=x124-x224x1-x2=x1+x24,所以直线AB的方程为y-x124=x1+x24(x-x
1),即y=x1+x24x-x1x24,亦即y=a2x+1,所以t=-1.而QA=(x1-a,x124+1),QB=(x2-a,x224+1),所以QA•QB=(x1-a)(x2-a)+(x214+1)(x224+1)=x1x2-a(x1+x2)+a2+x21x2216+(x1+x2)2-2x1x24+1=-4-2a2+a2+1+4a2+84+1=0.34.2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.
某城市环保部门随机抽取了一居民区去年20天PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别PM2.5浓度
(微克/立方米)频数(天)频率
第一组(0,25]50.25第二组(25,50]100.5第三组(50,75]30.15第四组(75,100)20.1(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;
(Ⅱ)求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.答案:(Ⅰ)
设PM2.5的24小时平均浓度在(50,75]内的三天记为A1,A2,A3,PM2.5的24小时平均浓度在(75,100)内的两天记为B1,B2.所以5天任取2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 04版工程监理合同条款
- 药用酸市场发展预测和趋势分析
- 2024年度环保型农药研发与生产销售合同
- 纸制餐桌用布市场分析及投资价值研究报告
- 2024年度洁具行业标准制定合同
- 2024年度环境污染防治技术服务合同
- 车轮毂市场需求与消费特点分析
- 牙用植入物市场需求与消费特点分析
- 手提箱市场发展现状调查及供需格局分析预测报告
- 2024年度医疗器械研发合作租赁合同
- 乙醚MSDS危险化学品安全技术说明书
- 柿单宁功能成效及其产品介绍综述
- 二手新能源汽车充电安全承诺书
- 缺铁性贫血 图文 优质课件
- 二0二三年度四年级上册Module9杨凤英Whathappenedtoyourhead教学设计
- 我的故乡-德江课件
- 《Treasure Island金银岛》课外阅读教学中的主题意义探究
- 初中数学北师大七年级下册(2023年新编) 三角形全等三角形基本模型之一线三等角教学设计
- 生活区、办公区验收表
- GB∕T 37138-2018 电力信息系统安全等级保护实施指南
- 化工生产装置开工方案资料
评论
0/150
提交评论