2023年渭南职业技术学院高职单招(数学)试题库含答案解析_第1页
2023年渭南职业技术学院高职单招(数学)试题库含答案解析_第2页
2023年渭南职业技术学院高职单招(数学)试题库含答案解析_第3页
2023年渭南职业技术学院高职单招(数学)试题库含答案解析_第4页
2023年渭南职业技术学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年渭南职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.正方体ABCD-A1B1C1D1的棱长为2,MN是它的内切球的一条弦(把球面上任意两点之间的线段称为球的弦),P为正方体表面上的动点,当弦MN最长时.PM•PN的最大值为______.答案:设点O是此正方体的内切球的球心,半径R=1.∵PM•PN≤|PM|

|PN|,∴当点P,M,N三点共线时,PM•PN取得最大值.此时PM•PN≤(PO-MO)•(PO+ON),而MO=ON,∴PM•PN≤PO2-R2=PO2-1,当且仅当点P为正方体的一个顶点时上式取得最大值,∴(PM•PN)max=(232)2-1=2.故为2.2.已知向量=(x,1),=(3,6),且⊥,则实数x的值为()

A.

B.-2

C.2

D.-答案:B3.若直线y=x+b与圆x2+y2=2相切,则b的值为

______.答案:由题意知,直线y=x+b与圆x2+y2=2相切,∴2=|b|2,解得b=±2.故为:±2.4.已知f(x)=2x,g(x)=3x.

(1)当x为何值时,f(x)=g(x)?

(2)当x为何值时,f(x)>1?f(x)=1?f(x)<1?

(3)当x为何值时,g(x)>3?g(x)=3?g(x)<3?答案:(1)作出函数f(x),g(x)的图象,如图所示.∵f(x),g(x)的图象都过点(0,1),且这两个图象只有一个公共点,∴当x=0时,f(x)=g(x)=1.(2)由图可知,当x>0时,f(x)>1;当x=0时,f(x)=1;当x<0时,f(x)<1.(3)由图可知:当x>1时,g(x)>3;当x=1时,g(x)=3;当x<1时,g(x)<3.5.已知随机变量ξ服从正态分布N(2,a2),且P(ξ<4)=0.8,则P(0<ξ<2)=()

A.0.6

B.0.4

C.0.3

D.0.2答案:C6.已知一个球与一个正三棱柱的三个侧面和两个底面相切,若这个球的体积是32π3,则这个三棱柱的体积是______.答案:由43πR3=32π3,得R=2.∴正三棱柱的高h=4.设其底面边长为a,则13?32a=2.∴a=43.∴V=34(43)2?4=483.故为:4837.200辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速不低于60km/h的汽车数量为

______辆.答案:时速不低于60km/h的汽车的频率为(0.028+0.01)×10=0.38∴时速不低于60km/h的汽车数量为200×0.38=76故为:768.若函数f(2x+1)=x2-2x,则f(3)=______.答案:解法一:(换元法求解析式)令t=2x+1,则x=t-12则f(t)=(t-12)2-2t-12=14t2-32t+54∴f(x)=14x2-32x+54∴f(3)=-1解法二:(凑配法求解析式)∵f(2x+1)=x2-2x=14(2x+1)2-32(2x+1)+54∴f(x)=14x2-32x+54∴f(3)=-1解法三:(凑配法求解析式)∵f(2x+1)=x2-2x令2x+1=3则x=1此时x2-2x=-1∴f(3)=-1故为:-19.根据如图所示的伪代码,可知输出的结果a为______.答案:由题设循环体要执行3次,图知第一次循环结束后c=a+b=2,a=1.b=2,第二次循环结束后c=a+b=3,a=2.b=3,第三次循环结束后c=a+b=5,a=3.b=5,第四次循环结束后不满足循环的条件是b<4,程序输出的结果为3故为:3.10.设A、B、C、D是半径为r的球面上的四点,且满足AB⊥AC、AD⊥AC、AB⊥AD,则S△ABC+S△ABD+S△ACD的最大值是[

]A、r2

B、2r2

C、3r2

D、4r2答案:B11.设双曲线的渐近线为:y=±32x,则双曲线的离心率为______.答案:由题意ba=32或ab=32,∴e=ca=132或133,故为132,133.12.化简5(2a-2b)+4(2b-2a)=______.答案:5(2a-2b)+4(2b-2a)=10a-10b+8b-8a=2a-2b故为:2a-2b13.在正方形ABCD中,已知它的边长为1,设=,=,=,则|++|的值为(

A.0

B.3

C.2+

D.2答案:D14.(本小题满分12分)

如图,已知椭圆C1的中心在圆点O,长轴左、右端点M、N在x轴上,椭圆C1的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C1交于两点,这四点按纵坐标从大到小依次为A、B、C、D.

(I)设e=,求|BC|与|AD|的比值;

(II)当e变化时,是否存在直线l,使得BO//AN,并说明理由.答案:(II)t=0时的l不符合题意,t≠0时,BO//AN当且仅当BO的斜率kBO与AN的斜率kAN相等,即,解得。因为,又,所以,解得。所以当时,不存在直线l,使得BO//AN;当时,存在直线l使得BO//AN。解析:略15.P是直线3x+y+1=0上一点,P到点Q(0,2)距离的最小值是______.答案:过点Q作直线的垂线段,当P是垂足时,线段PQ最短,故最小距离是点Q(0,2)到直线3x+y+1=0的距离d,d=|0+2+1|3+1=32=1.5.∴P到点Q(0,2)距离的最小值是1.5;故为1.5.16.①某寻呼台一小时内收到的寻呼次数X;

②长江上某水文站观察到一天中的水位X;

③某超市一天中的顾客量X.

其中的X是连续型随机变量的是()

A.①

B.②

C.③

D.①②③答案:B17.设P1(4,-3),P2(-2,6),且P在P1P2的延长线上,使||=2||,则点P的坐标

()

A.(-8,15)

B.(0,3)

C.(-,)

D.(1,)答案:A18.用数学归纳法证明不等式成立,起始值至少应取为()

A.7

B.8

C.9

D.10答案:B19.在空间直角坐标系中,已知A,B两点的坐标分别是A(2,3,5),B(3,1,4),则这两点间的距离|AB|=______.答案:∵A,B两点的坐标分别是A(2,3,5),B(3,1,4),∴|AB|=(3-2)2+(1-3)2+(4-5)2,=1+4+1=6,故为:6.20.已知a=(1,-2,1),a+b=(3,-6,3),则b等于()A.(2,-4,2)B.(-2,4,-2)C.(-2,0,-2)D.(2,1,-3)答案:∵a+b=(3,-6,3),∴b=a+b-a=(3,-6,3)-(1,-2,1)=(2,-4,2).故选A.21.平面向量、的夹角为60°,=(2,0),=1,则=(

A.

B.

C.3

D.7答案:B22.两个正方体M1、M2,棱长分别a、b,则对于正方体M1、M2有:棱长的比为a:b,表面积的比为a2:b2,体积比为a3:b3.我们把满足类似条件的几何体称为“相似体”,下列给出的几何体中是“相似体”的是()

A.两个球

B.两个长方体

C.两个圆柱

D.两个圆锥答案:A23.曲线x=sin2ty=sint(t为参数)的普通方程为______.答案:因为曲线x=sin2ty=sint(t为参数)∴sint=y,代入x=sin2t,可得x=y2,其中-1≤y≤1.故为:x=y2,(-1≤y≤1).24.在我市新一轮农村电网改造升级过程中,需要选一个电阻调试某村某设备的线路,但调试者手中必有阻值分别为0.5KΩ,1KΩ,1.3KΩ,2KΩ,3KΩ,5KΩ,5.5KΩ等七种阻值不等的定值电阻,他用分数法进行优选试验时,依次将电阻从小到大安排序号,如果第1个试点与第2个试点比较,第1个试点是一个好点,则第3个试点值的阻值为[

]A、1KΩ

B、1.3KΩ

C、5KΩ

D、1KΩ或5KΩ答案:C25.一个长方体共一顶点的三个面的面积分别是2、3、6,这个长方体的体积是()A.6B.6C.32D.23答案:可设长方体同一个顶点上的三条棱长分别为a,b,c,则有ab=2、bc=3、ca=6,解得:a=2,b=1,c=3故这个长方体的体积是6故为B26.关于斜二测画法画直观图说法不正确的是()

A.在实物图中取坐标系不同,所得的直观图有可能不同

B.平行于坐标轴的线段在直观图中仍然平行于坐标轴

C.平行于坐标轴的线段长度在直观图中仍然保持不变

D.斜二测坐标系取的角可能是135°答案:C27.一圆形纸片的圆心为点O,点Q是圆内异于O点的一定点,点A是圆周上一点.把纸片折叠使点A与Q重合,然后展平纸片,折痕与OA交于P点.当点A运动时点P的轨迹是()A.圆B.椭圆C.双曲线D.抛物线答案:如图所示,由题意可知:折痕l为线段AQ的垂直平分线,∴|AP|=|PQ|,而|OP|+|PA|=|OA|=R,∴|PO|+|PQ|=R定值>|OQ|.∴当点A运动时点P的轨迹是以点O,D为焦点,长轴长为R的椭圆.故选B.28.如图,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,与⊙O交于B,C两点,圆心O在∠PAC的内部,点M是BC的中点.

(Ⅰ)证明A,P,O,M四点共圆;

(Ⅱ)求∠OAM+∠APM的大小.答案:证明:(Ⅰ)连接OP,OM.因为AP与⊙O相切于点P,所以OP⊥AP.因为M是⊙O的弦BC的中点,所以OM⊥BC.于是∠OPA+∠OMA=180°.由圆心O在∠PAC的内部,可知四边形M的对角互补,所以A,P,O,M四点共圆.(Ⅱ)由(Ⅰ)得A,P,O,M四点共圆,所以∠OAM=∠OPM.由(Ⅰ)得OP⊥AP.由圆心O在∠PAC的内部,可知∠OPM+∠APM=90°.又∵A,P,O,M四点共圆∴∠OPM=∠OAM所以∠OAM+∠APM=90°.29.若集合A={x|x2-4x-5<0,x∈Z},B={x|y=log0.5x>-3,x∈Z},记x0为抛掷一枚骰子出现的点数,则x0∈A∩B的概率等于______.答案:由x2-4x-5<0,x∈Z,解得:-1<x<5,x∈Z,∴x=0,1,2,3,4.即A={0,1,2,3,4},B={x|y=log0.5x>-3,x∈Z}={1,2,3,4,5,6,7},∴A∩B={1,2,3,4},而x0为抛掷一枚骰子出现的点数可能有6种,∴P=46=23,故为:23.30.如图,从圆O外一点P作圆O的割线PAB、PCD,AB是圆O的直径,若PA=4,PC=5,CD=3,则∠CBD=______.答案:由割线长定理得:PA?PB=PC?PD即4×PB=5×(5+3)∴PB=10∴AB=6∴R=3,所以△OCD为正三角形,∠CBD=12∠COD=30°.31.某校现有高一学生210人,高二学生270人,高三学生300人,学校学生会用分层抽样的方法从这三个年级的学生中随机抽取n名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为()

A.10

B.9

C.8

D.7答案:A32.证明不等式1+12+13+…+1n<2n(n∈N*)答案:证法一:(1)当n=1时,不等式左端=1,右端=2,所以不等式成立;(2)假设n=k(k≥1)时,不等式成立,即1+12+13+…+1k<2k,则1+12+13+…+1k+1<2k+1k+1=2k(k+1)+1k+1<k+(k+1)+1k+1=2k+1,∴当n=k+1时,不等式也成立.综合(1)、(2)得:当n∈N*时,都有1+12+13+…+1n<2n.证法二:设f(n)=2n-(1+12+13+…+1n),那么对任意k∈N*

都有:f(k+1)-f(k)=2(k+1-k)-1k+1=1k+1[2(k+1)-2k(k+1)-1]=1k+1•[(k+1)-2k(k+1)+k]=(k+1-k)2k+1>0∴f(k+1)>f(k)因此,对任意n∈N*

都有f(n)>f(n-1)>…>f(1)=1>0,∴1+12+13+…+1n<2n.33.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标“△”的面的方位()

A.南

B.北

C.西

D.下

答案:B34.设A(1,-1,1),B(3,1,5),则线段AB的中点在空间直角坐标系中的位置是()

A.在y轴上

B.在xOy面内

C.在xOz面内

D.在yOz面内答案:C35.函数y=ax2+1的图象与直线y=x相切,则a=______.答案:设切点为(x0,y0),∵y′=2ax,∴k=2ax0=1,①又∵点(x0,y0)在曲线与直线上,即y0=ax20+1y0=x0,②由①②得a=14.故为14.36.已知圆C:x2+y2-4x-6y+12=0的圆心在点C,点A(3,5),求:

(1)过点A的圆的切线方程;

(2)O点是坐标原点,连接OA,OC,求△AOC的面积S.答案:(1)⊙C:(x-2)2+(y-3)2=1.当切线的斜率不存在时,对直线x=3,C(2,3)到直线的距离为1,满足条件;当k存在时,设直线y-5=k(x-3),即y=kx+5-3k,∴|-k+2|k2+1=1,得k=34.∴得直线方程x=3或y=34x+114.(2)|AO|=9+25=34,l:5x-3y=0,d=134,S=12d|AO|=12.37.|a|=4,a与b的夹角为30°,则a在b方向上的投影为______.答案:a在b方向上的投影为|a|cos30°=4×32=23故为:2338.设b是a的相反向量,则下列说法错误的是()

A.a与b的长度必相等

B.a与b的模一定相等

C.a与b一定不相等

D.a是b的相反向量答案:C39.圆ρ=5cosθ-5sinθ的圆心的极坐标是()

A.(-5,-)

B.(-5,)

C.(5,)

D.(-5,)答案:A40.把函数y=4x的图象按平移到F′,F′的函数解析式为y=4x-2-2,则向量的坐标等于_____答案:(2,-2)解析:把函数y=4x的图象按平移到F′,F′的函数解析式为y=4x-2-2,则向量的坐标等于_____41.直线(t为参数)和圆x2+y2=16交于A,B两点,则AB的中点坐标为()

A.(3,-3)

B.(-,3)

C.(,-3)

D.(3,-)答案:D42.下列命题:

①用相关系数r来刻画回归的效果时,r的值越大,说明模型拟合的效果越好;

②对分类变量X与Y的随机变量的K2观测值来说,K2越小,“X与Y有关系”可信程度越大;

③两个随机变量相关性越强,则相关系数的绝对值越接近1;

其中正确命题的序号是

______.(写出所有正确命题的序号)答案:①是由于r可能是负值,要改为|r|的值越大,说明模型拟合的效果越好,故①错误,②对分类变量X与Y的随机变量的K2观测值来说,K2越大,“X与Y有关系”可信程度越大;故②正确③两个随机变量相关性越强,则相关系数的绝对值越接近1;故③正确,故为:③43.点(1,1)在圆(x-a)2+(y+a)2=4的内部,则a的取值范围是(

A.-1<a<1

B.0<a<1

C.a<-1或a>1

D.a=±1答案:A44.如图,CD是⊙O的直径,AE切⊙O于点B,连接DB,若∠D=20°,则∠DBE的大小为()

A.20°

B.40°

C.60°

D.70°答案:D45.已知|a|=1,|b|=2,a与b的夹角为60°,则a+b在a方向上的投影为______.答案:∵|a|=1,|b|=2,a与b的夹角为60°,∴a?b=a|×|b|×cos60°=1由此可得(a+b)2=|a|2+2a?b+|b|2=1+2+4=7∴|a+b|=7.设a+b与a的夹角为θ,则∵(a+b)?a=|a|2+a?b=2∴cosθ=(a+b)?a|a+b|?|a|=277,可得向量a+b在a方向上的投影为|a+b|cosθ=7×277=2故为:246.等于()

A.a

B.a2

C.a3

D.a4答案:B47.不等式的解集是

.答案:[0,2]解析:本小题主要考查根式不等式的解法,去掉根号是解根式不等式的基本思路,也考查了转化与化归的思想.原不等式等价于解得0≤x≤2.48.电子跳蚤游戏盘是如图所示的△ABC,AB=8,AC=9,BC=10,如果跳蚤开始时在BC边的点P0处,BP0=4.跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1=CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2=AP1;第三步从P2跳到BC边的P3(第3次落点)处,且BP3=BP2;跳蚤按上述规则一直跳下去,第n次落点为Pn(n为正整数),则点P2010与C间的距离为______答案:∵由题意可以发现每边各有两点,其中BC边上P0,P6,P12…重合,P3,P9,P15…重合,AC边上P1,P7,P13…重合,P4,P10,P16…重合,AB边上P2,P8,P14…重合,P5,P11,P17…重合.发现规律2010为六的倍数所以与P0重合,∴与C点之间的距离为6故为:649.已知中心在原点,对称轴为坐标轴,长半轴长与短半轴长的和为92,离心率为35的椭圆的标准方程为______.答案:由题意可得a+b=92e=ca=35a2=b2+c2,解得a2=50b2=32.∴椭圆的标准方程为x250+y232=1或y250+x232=1.故为x250+y232=1或y250+x232=1.50.如果x2+ky2=2表示焦点在y轴上的椭圆,则实数k的取值范围是

______.答案:根据题意,x2+ky2=2化为标准形式为x22+y22k=1;根据题意,其表示焦点在y轴上的椭圆,则有2k>2;解可得0<k<1;故为0<k<1.第2卷一.综合题(共50题)1.

圆ρ=(cosθ+sinθ)的圆心的极坐标是()

A.(1,)

B.(,)

C.(,)

D.(2,)

答案:A2.不等式>1–log2x的解是(

A.x≥2

B.x>1

C.1xx>2答案:B3.老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学和进行作业检查,这种抽样方法是()

A.随机抽样

B.分层抽样

C.系统抽样

D.以上都是答案:C4.下面哪个不是算法的特征()A.抽象性B.精确性C.有穷性D.唯一性答案:根据算法的概念,可知算法具有抽象性、精确性、有穷性等,同一问题,可以有不同的算法,故选D.5.在复平面上,设点A,B,C对应的复数分别为i,1,4+2i,过A、B、C作平行四边形ABCD,则平行四边形对角线BD的长为______.答案:∵点A,B,C对应的复数分别为i,1,4+2i∴A(0,1),B(1,0),C(4,2)设D(x,y)∴AD=BC=(3,2)∴D(3,3)∴对角线BD的长度是4+9=13故为:136.用反证法证明命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”则假设的内容是()

A.a,b都能被5整除

B.a,b都不能被5整除

C.a,b不能被5整除

D.a,b有1个不能被5整除答案:B7.10件产品中有7件正品,3件次品,则在第一次抽到次品条件下,第二次抽到次品的概率______.答案:根据题意,在第一次抽到次品后,有2件次品,7件正品;则第二次抽到次品的概率为29;故为29.8.写出系数矩阵为1221,且解为xy=11的一个线性方程组是______.答案:由题意得:线性方程组为:x+2y=32x+y=3解之得:x=1y=1;故所求的一个线性方程组是x+2y=32x+y=3故为:x+2y=32x+y=3.9.平面向量a与b的夹角为60°,a=(2,0),|b|=1

则|a+2b|=______.答案:∵平面向量a与b的夹角为60°,a=(2,0),|b|=1

∴|a+2b|=(a+2b)2=a2+4×a?b+4b2=4+4×2×1×cos60°+4=23.故为:23.10.用随机数表法从100名学生(男生35人)中选20人作样本,男生甲被抽到的可能性为()A.15B.2035C.35100D.713答案:由题意知,本题是一个等可能事件的概率,试验发生包含的事件是用随机数表法从100名学生选一个,共有100种结果,满足条件的事件是抽取20个,∴根据等可能事件的概率公式得到P=20100=15,故选A.11.如图是一个空间几何体的三视图,试用斜二测画法画出它的直观图.(尺寸不作严格要求,但是凡是未用铅笔作图不得分,随手画图也不得分)答案:由题可知题目所述几何体是正六棱台,画法如下:画法:(1)、画轴画x轴、y轴、z轴,使∠x′O′y′=45°,∠x′O′z′=90°

(图1)(2)、画底面以O′为中心,在XOY坐标系内画正六棱台下底面正方形的直观图ABCDEF.在z′轴上取线段O′O1等于正六棱台的高;过O1

画O1M、O1N分别平行O’x′、O′y′,再以O1为中心,画正六棱台上底面正方形的直观图A′B′C′E′F′(3)、成图连接AA′、BB′、CC′、DD′、EE′、FF′,并且加以整理,就得到正六棱台的直观图

(如图2).12.甲、乙两位运动员在5场比赛的得分情况如茎叶图所示,记甲、乙两人的平均得分分别为.x甲,.x乙,则下列判断正确的是()A..x甲>.x乙;甲比乙成绩稳定B..x甲>.x乙;乙比甲成绩稳定C..x甲<.x乙;甲比乙成绩稳定D..x甲<.x乙;乙比甲成绩稳定答案:5场比赛甲的得分为16、17、28、30、34,5场比赛乙的得分为15、26、28、28、33∴.x甲=15(16+17+28+30+34)=25,.x乙=15(15+26+28+28+33)=26s甲2=15(81+64+9+25+81)=52,s乙2=15(121+4+4+49)=35.6∴.x甲<.x乙,乙比甲成绩稳定故选D.13.圆心在原点且圆周被直线3x+4y+15=0分成1:2两部分的圆的方程为

______.答案:如图,因为圆周被直线3x+4y+15=0分成1:2两部分,所以∠AOB=120°.而圆心到直线3x+4y+15=0的距离d=1532+42=3,在△AOB中,可求得OA=6.所以所求圆的方程为x2+y2=36.故为:x2+y2=3614.如图,AB是半圆O的直径,C是AB延长线上一点,CD切半圆于D,CD=4,AB=3BC,则AC的长是______.答案:∵CD是圆O的切线,∴由切割线定理得:CD2=CB×CA,∵AB=3BC,设BC=x,由CA=4x,又CD=4∴16=x×4x,x=2∴则AC的长是8.故填:8.15.如图,PA切圆O于点A,割线PBC经过圆心O,OB=PB=1,OA绕点O逆时针旋转600到OD,则PD的长为()

A.3

B.

C.

D.

答案:D16.在同一坐标系中,y=ax与y=a+x表示正确的是()A.

B.

C.

D.

答案:由y=x+a得斜率为1排除C,由y=ax与y=x+a中a同号知若y=ax递增,则y=x+a与y轴的交点在y轴的正半轴上,由此排除B;若y=ax递减,则y=x+a与y轴的交点在y轴的负半轴上,由此排除D,知A是正确的;故选A.17.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为(

A.

B.

C.3

D.2答案:C18.从装有5只红球和5只白球的袋中任意取出3只球,有如下几对事件:

①“取出两只红球和一只白球”与“取出一只红球和两只白球”;

②“取出两只红球和一只白球”与“取出3只红球”;

③“取出3只红球”与“取出的3只球中至少有一只白球”;

④“取出3只红球”与“取出3只白球”.

其中是对立事件的有______(只填序号).答案:对于①“取出两只红球和一只白球”与“取出一只红球和两只白球”,由于它们不能同时发生,故是互斥事件.但由于它们的并事件不是必然事件,故它们不是对立事件.对于②“取出两只红球和一只白球”与“取出3只红球”,由于它们不能同时发生,故是互斥事件.但由于它们的并事件不是必然事件,故它们不是对立事件.对于③“取出3只红球”与“取出的3只球中至少有一只白球”,它们不可能同时发生,而且它们的并事件是必然事件,故它们是对立事件.④“取出3只红球”与“取出3只白球”.由于它们不能同时发生,故是互斥事件.但由于它们的并事件不是必然事件,故它们不是对立事件.故为③.19.若A是圆x2+y2=16上的一个动点,过点A向y轴作垂线,垂足为B,则线段AB中点C的轨迹方程为()

A.x2+2y2=16

B.x2+4y2=16

C.2x2+y2=16

D.4x2+y2=16答案:D20.与直线2x+y+1=0的距离为的直线的方程是()

A.2x+y=0

B.2x+y-2=0

C.2x+y=0或2x+y-2=0

D.2x+y=0或2x+y+2=0答案:D21.某次乒乓球比赛的决赛在甲乙两名选手之间举行,比赛采用五局三胜制,按以往比赛经验,甲胜乙的概率为23.

(1)求比赛三局甲获胜的概率;

(2)求甲获胜的概率;

(3)设甲比赛的次数为X,求X的数学期望.答案:记甲n局获胜的概率为Pn,n=3,4,5,(1)比赛三局甲获胜的概率是:P3=C33(23)3=827;(2)比赛四局甲获胜的概率是:P4=C23(23)3

(13)=827;比赛五局甲获胜的概率是:P5=C24(13)2(23)3=1681;甲获胜的概率是:P3+P4+P5=6481.(3)记乙n局获胜的概率为Pn′,n=3,4,5.P3′=C33(13)3=127,P4′=C23(13)3

(23)=227;P5′=C24(13)3(23)2=881;故甲比赛次数的分布列为:X345P(X)P3+P3′P4+P4′P5+P5′所以甲比赛次数的数学期望是:EX=3(127+827)+4(827+227)+5(1681+881

)=10727.22.已知||=2,||=,∠AOB=150°,点C在∠AOB内,且∠AOC=30°,设(m,n∈R),则=()

A.

B.

C.

D.答案:B23.向量化简后等于()

A.

B.

C.

D.答案:C24.已知直线ax+by+c=0(a,b,c都是正数)与圆x2+y2=1相切,则以a,b,c为三边长的三角形()

A.是锐角三角形

B.是钝角三角形

C.是直角三角形

D.不存在答案:C25.在(x+2y)n的展开式中第六项与第七项的系数相等,求展开式中二项式系数最大的项.答案:∵在(x+2y)n的展开式中第六项与第七项的系数相等,∴Cn525=Cn626,∴n=8,∴二项式共有9项,最中间一项的系数最大即展开式中二项式系数最大的项是第5项.26.已知点(3,1)和(-4,6)在直线3x-2y+a=0的两侧,则实数a的取值范围是(

A.a<-7或a>24

B.a=7或a=24

C.-7<a<24

D.-24<a<7答案:C27.设F为拋物线y2=ax(a>0)的焦点,点P在拋物线上,且其到y轴的距离与到点F的距离之比为1:2,则|PF|等于()

A.

B.a

C.

D.答案:D28.直线m的倾斜角为30°,则此直线的斜率等于()A.12B.1C.33D.3答案:因为直线的斜率k和倾斜角θ的关系是:k=tanθ∴倾斜角为30°时,对应的斜率k=tan30°=33故选:C.29.一个口袋内有4个不同的红球,6个不同的白球,

(1)从中任取4个球,红球的个数不比白球少的取法有多少种?

(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?答案:解(1)由题意知本题是一个分类计数问题,将取出4个球分成三类情况取4个红球,没有白球,有C44种取3个红球1个白球,有C43C61种;取2个红球2个白球,有C42C62,∴C44+C43C61+C42C62=115种(2)设取x个红球,y个白球,则x+y=5(0≤x≤4)2x+y≥7(0≤y≤6)∴x=2y=3或x=3y=2或x=4y=1∴符合题意的取法种数有C42C63+C43C62+C44C61=186种30.

如图,已知PA为⊙O的切线,PBC为⊙O的割线,PA=6,PB=BC,⊙O的半径OC=5,那么弦BC的弦心距OM=()

A.4

B.3

C.5

D.6

答案:A31.已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:由平面与平面垂直的判定定理知如果m为平面α内的一条直线,m⊥β,则α⊥β,反过来则不一定所以“α⊥β”是“m⊥β”的必要不充分条件.故选B.32.用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是______.答案:不妨设在第1组中随机抽到的号码为x,则在第16组中应抽出的号码为120+x.设第1组抽出的号码为x,则第16组应抽出的号码是8×15+x=126,∴x=6.故为:6.33.圆(x+3)2+(y-1)2=25上的点到原点的最大距离是()

A.5-

B.5+

C

D.10答案:B34.如图,空间四边形ABCD中,M、G分别是BC、CD的中点,则AB+12BC+12BD等()A.ADB.GAC.AGD.MG答案:∵M、G分别是BC、CD的中点,∴12BC=BM,12BD=MC∴AB+12BC+12BD=AB+BM+MC=AM+MC=AC故选C35.已知0<k<4,直线l1:kx-2y-2k+8=0和直线l:2x+k2y-4k2-4=0与两坐标轴围成一个四边形,则使得这个四边形面积最小的k值为______.答案:如图所示:直线l1:kx-2y-2k+8=0即k(x-2)-2y+8=0,过定点B(2,4),与y轴的交点C(0,4-k),直线l:2x+k2y-4k2-4=0,即2x-4+k2(y-4)=0,过定点(2,4),与x轴的交点A(2k2+2,0),由题意知,四边形的面积等于三角形ABD的面积和梯形OCBD的面积之和,故所求四边形的面积为12×4×(2k2+2-2)+2×(4-k+4)2=4k2-k+8,∴k=18时,所求四边形的面积最小,故为18.36.若图中的直线l1,l2,l3的斜率为k1,k2,k3则()

A.k1<k2<k3

B.k3<k1<k2

C.k2<k1<k3

D.k3<k2<k1

答案:C37.函数f(x)=x2+ax+3,

(1)若f(1-x)=f(1+x),求a的值;

(2)在第(1)的前提下,当x∈[-2,2]时,求f(x)的最值,并说明当f(x)取最值时的x的值;

(3)若f(x)≥a恒成立,求a的取值范围.答案:(1)∵f(1+x)=f(1-x)∴y=f(x)的图象关于直线x=1对称∴-a2=1即a=-2(2)a=-2时,函数f(x)=x2-2x+3在区间[-2,1]上递减,在区间[1,2]上递增,∴当x=-2时,fmax(x)=f(-2)=11当x=1时,fmin(x)=f(1)=2(3)∵x∈R时,有x2+ax+3-a≥0恒成立,须△=a2-4(3-a)≤0,即a2+4a-12≤0,所以-6≤a≤2.38.在(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是______.(用数字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是C31+C41+C51+…+C71=25故为:2539.用反证法证明命题“如果a>b,那么a3>b3“时,下列假设正确的是()

A.a3<b3

B.a3<b3或a3=b3

C.a3<b3且a3=b3

D.a3>b3答案:B40.在数学归纳法证明多边形内角和定理时,第一步应验证()

A.n=1成立

B.n=2成立

C.n=3成立

D.n=4成立答案:C41.若一元二次方程ax2+2x+1=0有一个正根和一个负根,则有

A.a<0

B.a>0

C.a<-1

D.a>1答案:A42.若命题P(n)对n=k成立,则它对n=k+2也成立,又已知命题P(2)成立,则下列结论正确的是()

A.P(n)对所有自然数n都成立

B.P(n)对所有正偶数n成立

C.P(n)对所有正奇数n都成立

D.P(n)对所有大于1的自然数n成立答案:B43.若点(a,9)在函数y=3x的图象上,则tanaπ6=______.答案:将(a,9)代入到y=3x中,得3a=9,解得a=2.∴tanaπ6=tanπ3=3故为:344.已知a>b>0,则3a,3b,4a由小到大的顺序是______.答案:由于指数函数y=3x在R上是增函数,且a>b>0,可得3a>3b.由于幂函数y=xa在(0,+∞)上是增函数,故有3a<4a,故3a,3b,4a由小到大的顺序是3b<3a<4a.,故为3b<3a<4a.45.圆柱的底面积为S,侧面展开图为正方形,那么这个圆柱的侧面积为()A.πSB.2πSC.3πSD.4πS答案:设圆柱的底面半径是R,母线长是l,∵圆柱的底面积为S,侧面展开图为正方形,∴πR2=S,且l=2πR,∴圆柱的侧面积为2πRl=4πS.故选D.46.对于一组数据的两个函数模型,其残差平方和分别为153.4

和200,若从中选取一个拟合程度较好的函数模型,应选残差平方和为______的那个.答案:残差的平方和是用来描述n个点与相应回归直线在整体上的接近程度残差的平方和越小,拟合效果越好,由于153.4<200,故拟合效果较好的是残差平方和是153.4的那个模型.故为:153.4.47.如图,PA、PB、DE分别与⊙O相切,若∠P=40°,则∠DOE等于()度.

A.40

B.50

C.70

D.80

答案:C48.设z是复数,a(z)表示zn=1的最小正整数n,则对虚数单位i,a(i)=()A.8B.6C.4D.2答案:a(i)=in=1,则最小正整数n为4.故选C.49.已知数列{an}前n项的和为Sn,且满足an=n2

(n∈N*).

(Ⅰ)求s1、s2、s3的值;

(Ⅱ)用数学归纳法证明sn=n(n+1)(2n+1)6

(n∈N*).答案:(Ⅰ)∵an=n2,n∈N*∴s1=a1=1,s2=a1+a2=1+4=5,s3=a1+a2+a3=1+4+9=14.…(6分)(Ⅱ)证明:(1)当n=1时,左边=s1=1,右边=1×(1+1)(2+1)6=1,所以等式成立.…(8分)(2)假设n=k(k∈N*)时结论成立,即Sk=k(k+1)(2k+1)6,…(10分)那么,Sk+1=Sk+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6即n=k+1时,等式也成立.…(13分)根据(1)(2)可知对任意的正整数n∈N*都成立.…(14分)50.已知a=(2,-1,1),b=(-1,4,-2),c=(λ,5,1),若向量a,b,c共面,则λ=______.答案:∵a、b、c三向量共面,∴c=xa+yb,x,y∈R,∴(λ,5,1)=(2x,-x,x)+(-y,4y,-2y)=(2x-y,-x+4y,x-2y),∴2x-y=λ,-x+4y=5,x-2y=1,解得x=7,y=3,λ=11;故为;

11.第3卷一.综合题(共50题)1.关于x的方程(m+3)x2-4mx+2m-1=0的两根异号,且负数根的绝对值比正数根大,那么实数m的取值范围是()

A.-3<m<0

B.0<m<3

C.m<-3或m>0

D.m<0或m>3答案:A2.参数方程表示什么曲线?答案:见解析解析:解:显然,则即得,即3.设x+y+z=1,求F=2x2+3y2+z2的最小值.答案:∵1=(x+y+z)2=(12?2x+13?3y+1?z)2≤(12+13+1)(2x2+3y2+z2)∴F=2x2+3y2+z2≥611(8分)当且仅当2x12=3y13=z1且x+y+z=1,x=311,y=211,z=611F有最小值611(12分)4.在平面直角坐标系中,已知向量a=(-1,2),又点A(8,0),B(n,t),C(ksinθ,t)(0≤θ≤π2).

(1)若AB⊥a,且|AB|=5|OA|(O为坐标原点),求向量OB;

(2)若向量AC与向量a共线,当k>4,且tsinθ取最大值4时,求OA•OC.答案:(1)∵点A(8,0),B(n,t),∴AB=(n-8,t),∵AB⊥a,∴AB•a=(n-8,t)•(-1,2)=0,得n=2t+8.则AB=(2t,t),又|AB|=5|OA|,|OA|=8.∴(2t)2+t2=5×64,解得t=±8,当t=8时,n=24;当t=-8时,n=-8.∴OB=(24,8)或OB=(-8,-8).(2)∵向量AC与向量a共线,∴t=-2ksinθ+16,tsinθ=(-2ksinθ+16)sinθ=-2k(sinθ-4k)2+32k.∵k>4,∴0<4k<1,故当sinθ=4k时,tsinθ取最大值32k,有32k=4,得k=8.这时,sinθ=12,k=8,tsinθ=4,得t=8,则OC=(4,8).∴OA•OC=(8,0)•(4,8)=32.5.(1+x2)5的展开式中x2的系数()A.10B.5C.52D.1答案:含x2项为C25(x2)2=10×x24=52x2,故选项为为C.6.如图:已知圆上的弧

AC=

BD,过C点的圆的切线与BA的延长线交于E点,证明:

(Ⅰ)∠ACE=∠BCD.

(Ⅱ)BC2=BE×CD.答案:(Ⅰ)因为AC=BD,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故BCBE=CDBC.即BC2=BE×CD.(10分)7.某校有老师300人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n的样本,已知从女学生中抽取的人数为80,则n=()

A.171

B.184

C.200

D.392答案:C8.已知0≤θ<2π,复数icosθ+isinθ>0,则θ的值是()A.π2B.3π2C.(0,π)内的任意值D.(0,π2)∪(3π2,2π)内的任意值答案:复数icosθ+isinθ>0,可得icosθ+sinθ>0,因为0≤θ<2π,所以θ=π2.故选A.9.在测量某物理量的过程中,因仪器和观察的误差,使得n次测量分别得到a1,a2,…,an,共n个数据.我们规定所测量的“量佳近似值”a是这样一个量:与其他近似值比较,a与各数据的差的平方和最小.依此规定,从a1,a2,…,an推出的a=______.答案:∵所测量的“量佳近似值”a是与其他近似值比较,a与各数据的差的平方和最小.根据均值不等式求平方和的最小值知这些数的底数要尽可能的接近,∴a是所有数字的平均数,∴a=a1+a2+…+ann,故为:a1+a2+…+ann10.某几何体的三视图如图所示,则这个几何体的体积是______.答案:由三视图可知该几何体为是一平放的直三棱柱,底面是边长为2的正三角形,棱柱的侧棱为3,也为高.V=Sh=34×22

×3=33故为:33.11.已知a=5-12,则不等式logax>loga5的解集是______.答案:∵0<a<1,∴f(x)=logax在(0,+∞)上单调递减∵logax>loga5∴0<x<5故为:(0,5)12.直线l1:y=ax+b,l2:y=bx+a

(a≠0,b≠0,a≠b),在同一坐标系中的图形大致是()

A.

B.

C.

D.

答案:C13.某程序图如图所示,该程序运行后输出的结果是______.答案:由图知运算规则是对S=2S,故第一次进入循环体后S=21,第二次进入循环体后S=22=4,第三次进入循环体后S=24=16,第四次进入循环体后S=216>2012,退出循环.故该程序运行后输出的结果是:k=4+1=5.故为:514.已知点B是点A(2,-3,5)关于平面xOy的对称点,则|AB|=()

A.10

B.

C.

D.38答案:A15.两弦相交,一弦被分为12cm和18cm两段,另一弦被分为3:8,求另一弦长______.答案:设另一弦长xcm;由于另一弦被分为3:8的两段,故两段的长分别为311xcm,811xcm,有相交弦定理可得:311x?811x=12?18解得x=33故为:33cm16.若不等式(﹣1)na<2+对任意n∈N*恒成立,则实数a的取值范围是

[

]A.[﹣2,)

B.(﹣2,)

C.[﹣3,)

D.(﹣3,)答案:A17.在边长为1的正方形ABCD中,若AB=a,BC=b,AC=c.则|a+b+2c|的值是______.答案:由题意可得|a|=|b|=1,|c|=2,a+

b=c,∴|a+b+2c|=|3c|=32,故为32.18.在(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是______.(用数字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是C31+C41+C51+…+C71=25故为:2519.曲线与坐标轴的交点是(

)A.B.C.D.答案:B解析:当时,,而,即,得与轴的交点为;当时,,而,即,得与轴的交点为20.在同一平面直角坐标系中,直线变成直线的伸缩变换是()A.B.C.D.答案:A解析:解:设直线上任意一点(x′,y′),变换前的坐标为(x,y),则根据直线变成直线则伸缩变换是,选A21.(选做题)(几何证明选讲选做题)如图,直角三角形ABC中,∠B=90°,AB=4,以BC为直径的圆交AC边于点D,AD=2,则∠C的大小为______.答案:∵∠B=90°,AB=4,BC为圆的直径∴AB与圆相切,由切割线定理得,AB2=AD?AC∴AC=8故∠C=30°故为:30°22.用秦九韶算法求多项式f(x)=8x7+5x6+3x4+2x+1,当x=2时的值.答案:根据秦九韶算法,把多项式改写成如下形式f(x)=8x7+5x6+0?x5+3?x4+0?x3+0?x2+2x+1=((((((8x+5)x+0)x+3)x+0)x+0)x+2)x+1v0=8,v1=8×2+5=21v2=21×2+0=42,v3=42×2+3=87v4=87×2+0=174,v5=174×2+0=348v6=348×2+2=698,v7=698×2+1=1397.∴当x=2时,多项式的值为1397.23.(坐标系与参数方程选做题)过点(2,π3)且平行于极轴的直线的极坐标方程为______.答案:法一:先将极坐标化成直角坐标表示,(2,π3)化为(1,3),过(1,3)且平行于x轴的直线为y=3,再化成极坐标表示,即ρsinθ=3.法二:在极坐标系中,直接构造直角三角形由其边角关系得方程ρsinθ=3.设A(ρ,θ)是直线上的任一点,A到极轴的距离AH=2sinπ3=3,直接构造直角三角形由其边角关系得方程ρsinθ=3.故为:ρsinθ=324.下列点在x轴上的是()

A.(0.1,0.2,0.3)

B.(0,0,0.001)

C.(5,0,0)

D.(0,0.01,0)答案:C25.若A是圆x2+y2=16上的一个动点,过点A向y轴作垂线,垂足为B,则线段AB中点C的轨迹方程为()

A.x2+2y2=16

B.x2+4y2=16

C.2x2+y2=16

D.4x2+y2=16答案:D26.已知=2+i,则复数z=()

A.-1+3i

B.1-3i

C.3+i

D.3-i答案:B27.①平行向量一定相等;②不相等的向量一定不平行;③相等向量一定共线;④共线向量一定相等;⑤长度相等的向量是相等向量;⑥平行于同一个向量的两个向量是共线向量,其中正确的命题是______.答案:∵平行向量即为共线向量其定义是方向相同或相反;相等向量的定义是模相等、方向相同;①平行向量不一定相等;故错;②不相等的向量也可能不平行;故错;③相等向量一定共线;正确;④共线向量不一定相等;故错;⑤长度相等的向量方向相反时不是相等向量;故错;⑥平行于零向量的两个向量是不一定是共线向量,故错.其中正确的命题是③.故为:③.28.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A.B为焦点的椭圆”,那么()A.甲是乙成立的充分不必要条件B.甲是乙成立的必要不充分条件C.甲是乙成立的充要条件D.甲是乙成立的非充分非必要条件答案:命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A.B为焦点的椭圆∵当一个动点到两个顶点距离之和等于定值时,再加上这个和大于两个定点之间的距离,可以得到动点的轨迹是椭圆,没有加上的条件不一定推出,而点P的轨迹是以A.B为焦点的椭圆,一定能够推出|PA|+|PB|是定值,∴甲是乙成立的必要不充分条件故选B.29.袋中装着标有数字1,2,3,4,5的小球各2个,现从袋中任意取出3个小球,假设每个小球被取出的可能性都相等.

(Ⅰ)求取出的3个小球上的数字分别为1,2,3的概率;

(Ⅱ)求取出的3个小球上的数字恰有2个相同的概率;

(Ⅲ)用X表示取出的3个小球上的最大数字,求P(X≥4)的值.答案:(I)记“取出的3个小球上的数字分别为1,2,3”的事件记为A,则P(A)=C12C12C12C310=8120=115;(Ⅱ)记“取出的3个小球上的数字恰有2个相同”的事件记为A,则P(B)=C15C18C310=40120=13;(Ⅲ)用X表示取出的3个小球上的最大数字,则X≥4包含取出的3个小球上的最大数字为4或5两种情况,当取出的3个小球上的最大数字为4时,P(X=4)=C12C26+C22C16C310=36120=310;当取出的3个小球上的最大数字为5时,P(X=5)=C12C28+C22C18C310=64120=815故P(X≥4)=56.30.下面对算法描述正确的一项是:()A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同答案:算法的特点:有穷性,确定性,顺序性与正确性,不唯一性,普遍性算法可以用自然语言、图形语言,程序语言来表示,故A、B不对同一问题可以用不同的算法来描述,但结果一定相同,故D不对.C对.故应选C.31.直线y=x-1的倾斜角是()

A.30°

B.120°

C.60°

D.150°

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论