版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年眉山职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.阅读下面的程序框图,则输出的S=()A.14B.20C.30D.55答案:∵S1=0,i1=1;S2=1,i2=2;S3=5,i3=3;S4=14,i4=4;S5=30,i=5>4退出循环,故为C.2.设a,b∈R,ab≠0,则直线ax-y+b=0和曲线bx2+ay2=ab的大致图形是()
A.
B.
C.
D.
答案:B3.三棱锥P-ABC中,M为BC的中点,以为基底,则可表示为()
A.
B.
C.
D.答案:D4.函数f(x)为偶函数,其图象与x轴有四个交点,则该函数的所有零点之和为()A.4B.2C.1D.0答案:因为函数f(x)为偶函数,所以函数图象关于y轴对称.又其图象与x轴有四个交点,所以四个交点关于y轴对称,不妨设四个交点的横坐标为x1,x2,x3,x4,则根据对称性可知x1+x2+x3+x4=0.故选D.5.已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m的值为()
A.0
B.-8
C.2
D.10答案:B6.已知圆C:x2+y2-4x-6y+12=0的圆心在点C,点A(3,5),求:
(1)过点A的圆的切线方程;
(2)O点是坐标原点,连接OA,OC,求△AOC的面积S.答案:(1)⊙C:(x-2)2+(y-3)2=1.当切线的斜率不存在时,对直线x=3,C(2,3)到直线的距离为1,满足条件;当k存在时,设直线y-5=k(x-3),即y=kx+5-3k,∴|-k+2|k2+1=1,得k=34.∴得直线方程x=3或y=34x+114.(2)|AO|=9+25=34,l:5x-3y=0,d=134,S=12d|AO|=12.7.参数方程(t是参数)表示的图象是()
A.射线
B.直线
C.圆
D.双曲线答案:A8.下表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程.y=0.7x+0.35,那么表中m的值为______.
x3456y2.5m44.5答案:∵根据所给的表格可以求出.x=3+4+5+64=4.5,.y=2.5+m+4+4.54=11+m4∵这组数据的样本中心点在线性回归直线上,∴11+m4=0.7×4.5+0.35,∴m=3,故为:39.两名女生,4名男生排成一排,则两名女生不相邻的排法共有______
种(以数字作答)答案:由题意,先排男生,再插入女生,可得两名女生不相邻的排法共有A44?A25=480种故为:48010.用反证法证明“a+b=1”时的反设为()
A.a+b>1且a+b<1
B.a+b>1
C.a+b>1或a+b<1
D.a+b<1答案:C11.(本小题满分10分)如图,D、E分别是AB、AC边上的点,且不与顶点重合,已知为方程的两根
(1)证明四点共圆
(2)若求四点所在圆的半径答案:(1)见解析;(2)解析:解:(Ⅰ)如图,连接DE,依题意在中,,由因为所以,∽,四点C、B、D、E共圆。(Ⅱ)当时,方程的根因而,取CE中点G,BD中点F,分别过G,F做AC,AB的垂线,两垂线交于点H,连接DH,因为四点C、B、D、E共圆,所以,H为圆心,半径为DH.,,所以,,点评:此题考查平面几何中的圆与相似三角形及方程等概念和性质。注意把握判定与性质的作用。12.两个正方体M1、M2,棱长分别a、b,则对于正方体M1、M2有:棱长的比为a:b,表面积的比为a2:b2,体积比为a3:b3.我们把满足类似条件的几何体称为“相似体”,下列给出的几何体中是“相似体”的是()
A.两个球
B.两个长方体
C.两个圆柱
D.两个圆锥答案:A13.在平面直角坐标系xOy中,点P(x,y)是椭圆x23+y2=1上的一个动点,求S=x+y的最大值.答案:因椭圆x23+y2=1的参数方程为x=3cos?y=sin?(?为参数)故可设动点P的坐标为(3cos?,sin?),其中0≤?<2π.因此S=x+y=3cos?+sin?=2(32cos?+12sin?)=2sin(?+π3)所以,当?=π6时,S取最大值2.14.已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是()
A.圆
B.椭圆
C.双曲线的一支
D.抛物线答案:A15.若函数y=f(x)是函数y=ax(a>0且a≠1)的反函数,且y=f(x)的图象过点(2,1),则f(x)=______.答案:因为函数y=f(x)是函数y=ax(a>0且a≠1)的反函数,且y=f(x)的图象过点(2,1),所以函数y=ax经过(1,2),所以a=2,所以函数y=f(x)=log2x.故为:log2x.16.已知a、b均为单位向量,它们的夹角为60°,那么|a+3b|=()
A.
B.
C.
D.4答案:C17.当a>0时,不等式组的解集为(
)。答案:当a>时为;当a=时为{};当0<a<时为[a,1-a]18.梯形ABCD中,AB∥CD,AB=2CD,E、F分别是AD,BC的中点,M、N在EF上,且EM=MN=NF,若AB=a,BC=b,则AM=______(用a,b表示).答案:连结CN并延长交AB于G,因为AB∥CD,AB=2CD,M、N在EF上,且EM=MN=NF,所以G为AB的中点,所以AC=12a+b,又E、F分别是AD,BC的中点,M、N在EF上,且EM=MN=NF,所以M为AC的中点,所以AM=12AC,所以AM=14a+12b.故为:14a+12b.19.已知曲线C的方程是x2+y2+6ax-8ay=0,那么下列各点中不在曲线C上的是()
A.(0,0)
B.(2a,4a)
C.(3a,3a)
D.(-3a,-a)答案:B20.若直线l经过点M(1,5),且倾斜角为2π3,则直线l的参数方程为______.答案:由于过点(a,b)倾斜角为α的直线的参数方程为x=a+t•cosαy=b+t•sinα(t是参数),∵直线l经过点M(1,5),且倾斜角为2π3,故直线的参数方程是x=1+t•cos2π3y=5+t•sin2π3即x=1-12ty=5+32t(t为参数).故为:x=1-12ty=5+32t(t为参数).21.设集合A={(x,y)|x+y=6,x∈N,y∈N},使用列举法表示集合A.答案:集合A中的元素是点,点的横坐标,纵坐标都是自然数,且满足条件x+y=6.所以用列举法表示为:A={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.22.(选做题)(几何证明选讲选做题)如图,直角三角形ABC中,∠B=90°,AB=4,以BC为直径的圆交AC边于点D,AD=2,则∠C的大小为______.答案:∵∠B=90°,AB=4,BC为圆的直径∴AB与圆相切,由切割线定理得,AB2=AD?AC∴AC=8故∠C=30°故为:30°23.以数集A={a,b,c,d}中的四个元素为边长的四边形只能是()A.平行四边形B.矩形C.菱形D.梯形答案:∵数集A={a,b,c,d}中的四个元素互不相同,∴以数集A={a,b,c,d}中的四个元素为边长的四边形,四条边不相等∴四边形只可能是梯形故选D.24.甲射击运动员击中目标为事件A,乙射击运动员击中目标为事件B,则事件A,B为()
A.互斥事件
B.独立事件
C.对立事件
D.不相互独立事件答案:B25.从一批产品中取出三件,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是()
A.A与C互斥
B.B与C互斥
C.任两个均互斥
D.任两个均不互斥答案:B26.已知抛物线y=14x2,则过其焦点垂直于其对称轴的直线方程为______.答案:抛物线y=14x2的标准方程为x2=4y的焦点F(0,1),对称轴为y轴所以抛物线y=14x2,则过其焦点垂直于其对称轴的直线方程为y=1故为y=1.27.已知随机变量X的分布列为:P(X=k)=,k=1,2,…,则P(2<X≤4)等于()
A.
B.
C.
D.答案:A28.已知平面直角坐标系内三点O(0,0),A(1,1),B(4,2)
(Ⅰ)求过O,A,B三点的圆的方程,并指出圆心坐标与圆的半径.
(Ⅱ)求过点C(-1,0)与条件(Ⅰ)的圆相切的直线方程.答案:(Ⅰ)∵O(0,0),A(1,1),B(4,2),∴线段OA中点坐标为(12,12),线段OB的中点坐标为(2,1),kOA=1,kOB=12,∴线段OA垂直平分线的方程为y-12=-(x-12),线段OB垂直平分线的方程为y-1=12(x-2),联立两方程解得:x=4y=-3,即圆心(4,-3),半径r=42+(-3)2=5,则所求圆的方程为x2+y2-8x+6y=0,圆心是(4,-3)、半径r=5;(Ⅱ)分两种情况考虑:当切线方程斜率不存在时,直线x=-1满足题意;当斜率存在时,设为k,切线方程为y=k(x+1),即kx-y+k=0,∴圆心到切线的距离d=r,即|5k+3|k2+1=5,解得:k=815,此时切线方程为y=815(x+1),综上,所求切线方程为x=-1或y=815(x+1).29.设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是()
A.若m∥n,m∥α,则n∥α
B.若α⊥β,m∥α,则m⊥β
C.若α⊥β,m⊥β,则m∥α
D.若m⊥n,m⊥α,n⊥β,则α⊥β答案:D30.直线l过抛物线y2=2px(p>0)的焦点,且与抛物线交于A、B两点,若线段AB的长是8,AB的中点到y轴的距离是2,则此抛物线方程是()A.y2=12xB.y2=8xC.y2=6xD.y2=4x答案:设A(x1,y1),B(x2,y2),根据抛物线定义,x1+x2+p=8,∵AB的中点到y轴的距离是2,∴x1+x22=2,∴p=4;∴抛物线方程为y2=8x故选B31.设方程lgx+x=3的实数根为x0,则x0所在的一个区间是()A.(3,+∝)B.(2,3)C.(1,2)D.(0,1)答案:由lgx+x=3得:lgx=3-x.分别画出等式:lgx=3-x两边对应的函数图象:如图.由图知:它们的交点x0在区间(2,3)内,故选B.32.命题“若A∩B=A,则A∪B=B”的逆否命题是()A.若A∪B=B,则A∩B=AB.若A∩B≠A,则A∪B≠BC.若A∪B≠B,则A∩B≠AD.若A∪B≠B,则A∩B=A答案:∵“A∩B=A”的否定是“A∩B≠A”,∴命题“若A∩B=A,则A∪B=B”的逆否命题是“若A∪B≠B,则A∩B≠A”.故选C.33.设U={三角形},M={直角三角形},N={等腰三角形},则M∩N=______.答案:∵M={直角三角形},N={等腰三角形},∴M∩N={直角三角形且等腰三角形}={等腰直角三角形}故为{等腰直角三角形}34.如图,若直线l1,l2,l3的斜率分别为k1,k2,k3,则k1,k2,k3三个数从小到大的顺序依次是______.答案:由函数的图象可知直线l1,l2,l3的斜率满足k1<0<k3<k2所以k1,k2,k3三个数从小到大的顺序依次是k1,k3,k2故为:k1,k3,k2.35.下列命题中,错误的是()
A.平行于同一条直线的两个平面平行
B.平行于同一个平面的两个平面平行
C.一个平面与两个平行平面相交,交线平行
D.一条直线与两个平行平面中的一个相交,则必与另一个相交答案:A36.已知两点A(2,1),B(3,3),则直线AB的斜率为()
A.2
B.
C.
D.-2答案:A37.直线kx-y+1=3k,当k变动时,所有直线都通过定点()
A.(0,0)
B.(0,1)
C.(3,1)
D.(2,1)答案:C38.下列输入语句正确的是()
A.INPUT
x,y,z
B.INPUT“x=”;x,“y=”;y
C.INPUT
2,3,4
D.INPUT
x=2答案:A39.已知a、b是不共线的向量,AB=λa+b,AC=a+μb(λ,μ∈R),则A、B、C三点共线的充要条件是______.答案:由于AB,AC有公共点A,∴若A、B、C三点共线则AB与AC共线即存在一个实数t,使AB=tAC即λ=at1=μt消去参数t得:λμ=1反之,当λμ=1时AB=1μa+b此时存在实数1μ使AB=1μAC故AB与AC共线又由AB,AC有公共点A,∴A、B、C三点共线故A、B、C三点共线的充要条件是λμ=140.已知:如图,⊙O1与⊙O2外切于C点,AB一条外公切线,A、B分别为切点,连接AC、BC.设⊙O1的半径为R,⊙O2的半径为r,若tan∠ABC=,则的值为()
A.
B.
C.2
D.3
答案:C41.下列有关相关指数R2的说法正确的有()
A.R2的值越大,说明残差平方和越小
B.R2越接近1,表示回归效果越差
C.R2的值越小,说明残差平方和越小
D.如果某数据可能采取几种不同回归方程进行回归分析,一般选择R2小的模型作为这组数据的模型答案:A42.“∵四边形ABCD为矩形,∴四边形ABCD的对角线相等”,补充以上推理的大前提为()
A.正方形都是对角线相等的四边形
B.矩形都是对角线相等的四边形
C.等腰梯形都是对角线相等的四边形
D.矩形都是对边平行且相等的四边形答案:B43.已知0<α<π2,方程x2sinα+y2cosα=1表示焦点在y轴上的椭圆,则α的取值范围______.答案:方程x2sinα+y2cosα=1化成标准形式得:x21sinα+y21cosα=1.∵方程表示焦点在y轴上的椭圆,∴1cosα>1sinα>0,解之得sinα>cosα>0∵0<α<π2,∴π4<α<π2,即α的取值范围是(π4,π2)故为:(π4,π2)44.表示随机事件发生的可能性大小的数叫做该事件的______.答案:根据概率的定义:表示随机事件发生的可能性大小的数叫做该事件的概率;一个随机事件发生的可能性很大,那么P的值接近1又不等于1,故为:概率.45.已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为1.
(Ⅰ)当直线BD过点(0,1)时,求直线AC的方程;
(Ⅱ)当∠ABC=60°时,求菱形ABCD面积的最大值.答案:(Ⅰ)由题意得直线BD的方程为y=x+1.因为四边形ABCD为菱形,所以AC⊥BD.于是可设直线AC的方程为y=-x+n.由x2+3y2=4y=-x+n得4x2-6nx+3n2-4=0.因为A,C在椭圆上,所以△=-12n2+64>0,解得-433<n<433.设A,C两点坐标分别为(x1,y1),(x2,y2),则x1+x2=3n2,x1x2=3n2-44,y1=-x1+n,y2=-x2+n.所以y1+y2=n2.所以AC的中点坐标为(3n4,n4).由四边形ABCD为菱形可知,点(3n4,n4)在直线y=x+1上,所以n4=3n4+1,解得n=-2.所以直线AC的方程为y=-x-2,即x+y+2=0.(Ⅱ)因为四边形ABCD为菱形,且∠ABC=60°,所以|AB|=|BC|=|CA|.所以菱形ABCD的面积S=32|AC|2.由(Ⅰ)可得|AC|2=(x1-x2)2+(y1-y2)2=-3n2+162,所以S=34(-3n2+16)(-433<n<433).所以当n=0时,菱形ABCD的面积取得最大值43.46.设集合A={x|},则A∩B等于(
)
A.
B.
C.
D.答案:B47.在等腰直角三角形ABC中,若M是斜边AB上的点,则AM小于AC的概率为()A.14B.12C.22D.32答案:记“AM小于AC”为事件E.在线段AB上截取,则当点M位于线段AC内时,AM小于AC,将线段AB看做区域D,线段AC看做区域d,于是AM小于AC的概率为:ACAB=22.故选C.48.已知正数x,y,且x+4y=1,则xy的最大值为()
A.
B.
C.
D.答案:C49.
圆ρ=(cosθ+sinθ)的圆心的极坐标是()
A.(1,)
B.(,)
C.(,)
D.(2,)
答案:A50.已知某种从太空飞船中带回的植物种子每粒成功发芽的概率都为,某植物研究所分两个小组分别独立开展该种子的发芽试验,每次试验种一粒种子,假定某次试验种子发芽,则称该次试验是成功的,如果种子没有发芽,则称该次试验是失败的.
(1)第一个小组做了三次试验,求至少两次试验成功的概率;
(2)第二个小组进行试验,到成功了4次为止,求在第四次成功之前共有三次失败,且恰有两次连续失败的概率.答案:(1)(2)解析:(1)第一个小组做了三次试验,至少两次试验成功的概率是P(A)=·+=.(2)第二个小组在第4次成功前,共进行了6次试验,其中三次成功三次失败,且恰有两次连续失败,其中各种可能的情况种数为=12.因此所求的概率为P(B)=12×·=.第2卷一.综合题(共50题)1.在平面直角坐标系中,横坐标、纵坐标均为有理数的点称为有理点.试根据这一定义,证明下列命题:若直线y=kx+b(k≠0)经过点M(2,1),则此直线不能经过两个有理点.答案:证明:假设此直线上有两个有理点A(x1,y1),B(x2,y2),其中x1、y1、x2、y2均为有理数,则有y1=kx1+b,y2=kx2+b,两式相减,得y1-y2=k(x1-x2).∵斜率k存在,∴x1≠x2,得k=y1-y2x1-x2.而有理数经过四则运算后还是有理数,故k为有理数.又由y1=kx1+b知,b也是有理数.又∵点M(2,1)在此直线上,∴1=2k+b,于是有2=1-bk(k≠0).此式左端为无理数,右端为有理数,显然矛盾,故此直线不能经过两个有理点.2.已知点A(1,0,-3)和向量AB=(-1,-2,0),则点B的坐标为______.答案:设B(x,y,z),根据向量的坐标运算,AB=(x,y,z)
-
(1,0,-3)=(x-1,y,z+3)=(-1,-2,0)∴x=0,y=-2,z=-3.故为:(0,-2,-3).3.若直线y=x+b与圆x2+y2=2相切,则b的值为(
)
A.±4
B.±2
C.±
D.±2
答案:B4.若a1-i=1-bi,其中a,b都是实数,i是虚数单位,则|a+bi|=______.答案:a1-i=a(1+i)(1-i)(1+i)=a2+a2i=1-bi∴a=2,b=-1∴|a+bi|=a2+b2=5故为:5.5.已知x∈{1,2,x2},则实数x=______.答案:∵x∈{1,2,x2},分情况讨论可得:①x=1此时集合为{1,2,1}不合题意②x=2此时集合为{1,2,4}合题意③x=x2解得x=0或x=1当x=0时集合为{1,2,0}合题意故为0或2.6.在极坐标系中,曲线ρ=2cosθ所表示图形的面积为______.答案:将原极坐标方程为p=2cosθ,化成:p2=2ρcosθ,其直角坐标方程为:∴x2+y2=2x,是一个半径为1的圆,其面积为π.故填:π.7.已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是()
A.圆
B.椭圆
C.双曲线的一支
D.抛物线答案:A8.若3π2<α<2π,则直线xcosα+ysinα=1必不经过()A.第一象限B.第二象限C.第三象限D.第四象限答案:令x=0,得y=sinα<0,令y=0,得x=cosα>0,直线过(0,sinα),(cosα,0)两点,因而直线不过第二象限.故选B9.如图,一个正方体内接于一个球,过球心作一个截面,则截面的可能图形为(
)
A.①③
B.②④
C.①②③
D.②③④答案:C10.有一段“三段论”推理是这样的:对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点,因为函数f(x)=x3在x=0处的导数值f'(0)=0,所以,x=0是函数f(x)=x3的极值点.以上推理中()
A.大前提错误
B.小前提错误
C.推理形式错误
D.结论正确答案:A11.“a>2且b>2”是“a+b>4且ab>4”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件答案:若a>2且b>2,则必有a+b>4且ab>4成立,故充分性易证若a+b>4且ab>4,如a=8,b=1,此时a+b>4且ab>4成立,但不能得出a>2且b>2,故必要性不成立由上证明知“a>2且b>2”是“a+b>4且ab>4”的充分不必要条件,故选A12.两圆相交于点A(1,3)、B(m,-1),两圆的圆心均在直线x-y+c=0上,则m+c的值为(
)
A.3
B.2
C.-1
D.0答案:A13.设集合A={(x,y)|x+y=6,x∈N,y∈N},使用列举法表示集合A.答案:集合A中的元素是点,点的横坐标,纵坐标都是自然数,且满足条件x+y=6.所以用列举法表示为:A={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.14.如图所示的方格纸中有定点O,P,Q,E,F,G,H,则=()
A.
B.
C.
D.
答案:C15.点(1,2)到原点的距离为()
A.1
B.5
C.
D.2答案:C16.下列命题中正确的是()
A.若,则
B.若,则
.若,则
D.若,则答案:C17.P在⊙O外,PC切⊙O于C,PAB交⊙O于A、B,则()
A.∠PCB=∠B
B.∠PAC=∠P
C.∠PCA=∠B
D.∠PAC=∠BCA答案:C18.若根据10名儿童的年龄
x(岁)和体重
y(㎏)数据用最小二乘法得到用年龄预报体重的回归方程是
y=2x+7,已知这10名儿童的年龄分别是
2、3、3、5、2、6、7、3、4、5,则这10名儿童的平均体重是()
A.17㎏
B.16㎏
C.15㎏
D.14㎏答案:C19.如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p、q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列命题:
①若p=q=0,则“距离坐标”为(0,0)的点有且仅有1个;
②若pq=0,且p+q≠0,则“距离坐标”为(p,q)的点有且仅有2个;
③若pq≠0,则“距离坐标”为(p,q)的点有且仅有4个.
上述命题中,正确命题的个数是()A.0B.1C.2D.3答案:①正确,此点为点O;②不正确,注意到p,q为常数,由p,q中必有一个为零,另一个非零,从而可知有且仅有4个点,这两点在其中一条直线上,且到另一直线的距离为q(或p);③正确,四个交点为与直线l1相距为p的两条平行线和与直线l2相距为q的两条平行线的交点;故选C.20.如图,曲线C1、C2、C3分别是函数y=ax、y=bx、y=cx的图象,则()
A.a<b<c
B.a<c<B
C.c<b<a
D.b<c<a
答案:C21.已知|a|=1,|b|=2,a与b的夹角为60°,则a+b在a方向上的投影为______.答案:∵|a|=1,|b|=2,a与b的夹角为60°,∴a?b=a|×|b|×cos60°=1由此可得(a+b)2=|a|2+2a?b+|b|2=1+2+4=7∴|a+b|=7.设a+b与a的夹角为θ,则∵(a+b)?a=|a|2+a?b=2∴cosθ=(a+b)?a|a+b|?|a|=277,可得向量a+b在a方向上的投影为|a+b|cosθ=7×277=2故为:222.已知平面内一动点P到F(1,0)的距离比点P到y轴的距离大1.
(1)求动点P的轨迹C的方程;
(2)过点F的直线交轨迹C于A,B两点,交直线x=-1于M点,且MA=λ1AF,MB=λ2BF,求λ1+λ2的值.答案:(1)由题意知动点P到F(1,0)的距离与直线x=-1的距离相等,由抛物线定义知,动点P在以F(1,0)为焦点,以直线x=-1为准线的抛物线上,方程为y2=4x.(2)由题设知直线的斜线存在,设直线AB的方程为:y=k(x-1),设A(x1,y1),B(x2,y2),由y=k(x-1)y2=4x,得k2x2-2(k2+2)x+k2=0,∵x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得k2x2-2(k2+2)x+k2=0,∴x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得λ1=-1-2x2-1,同理λ2=-1-2x2-1,∴λ1+λ2=-2-2(1x1-1+1x2-1)=0.23.如图,设P、Q为△ABC内的两点,且AP=25AB+15AC,AQ=23AB+14AC,则△ABP的面积与△ABQ的面积之比为()A.15B.45C.14D.13答案:设AM=25AB,AN=15AC则AP=AM+AN由平行四边形法则知NP∥AB
所以△ABP的面积△ABC的面积=|AN||AC|=15同理△ABQ的面积△ABC的面积=14故△ABP的面积△ABQ的面积=45为:45故选B.24.已知:关于x的方程2x2+kx-1=0
(1)求证:方程有两个不相等的实数根;
(2)若方程的一个根是-1,求另一个根及k值.答案:(1)证明:2x2+kx-1=0,△=k2-4×2×(-1)=k2+8,无论k取何值,k2≥0,所以k2+8>0,即△>0,∴方程2x2+kx-1=0有两个不相等的实数根.(2)设2x2+kx-1=0的另一个根为x,则x-1=-k2,(-1)•x=-12,解得:x=12,k=1,∴2x2+kx-1=0的另一个根为12,k的值为1.25.8的值为()
A.2
B.4
C.6
D.8答案:B26.已知向量,,则“=λ,λ∈R”成立的必要不充分条件是()
A.+=
B.与方向相同
C.⊥
D.∥答案:D27.在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1).
(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;
(2)设实数t满足(AB-tOC)•OC=0,求t的值.答案:(1)(方法一)由题设知AB=(3,5),AC=(-1,1),则AB+AC=(2,6),AB-AC=(4,4).所以|AB+AC|=210,|AB-AC|=42.故所求的两条对角线的长分别为42、210.(方法二)设该平行四边形的第四个顶点为D,两条对角线的交点为E,则:E为B、C的中点,E(0,1)又E(0,1)为A、D的中点,所以D(1,4)故所求的两条对角线的长分别为BC=42、AD=210;(2)由题设知:OC=(-2,-1),AB-tOC=(3+2t,5+t).由(AB-tOC)•OC=0,得:(3+2t,5+t)•(-2,-1)=0,从而5t=-11,所以t=-115.或者:AB•OC=tOC2,AB=(3,5),t=AB•OC|OC|2=-11528.若直线y=x+b与圆x2+y2=2相切,则b的值为
______.答案:由题意知,直线y=x+b与圆x2+y2=2相切,∴2=|b|2,解得b=±2.故为:±2.29.在空间直角坐标系中,已知两点P1(-1,3,5),P2(2,4,-3),则|P1P2|=()
A.
B.3
C.
D.答案:A30.写出系数矩阵为1221,且解为xy=11的一个线性方程组是______.答案:由题意得:线性方程组为:x+2y=32x+y=3解之得:x=1y=1;故所求的一个线性方程组是x+2y=32x+y=3故为:x+2y=32x+y=3.31.O、A、B、C为空间四个点,又为空间的一个基底,则()
A.O、A、B、C四点共线
B.O、A、B、C四点共面,但不共线
C.O、A、B、C四点中任意三点不共线
D.O、A、B、C四点不共面答案:D32.一个箱中原来装有大小相同的
5
个球,其中
3
个红球,2
个白球.规定:进行一次操
作是指“从箱中随机取出一个球,如果取出的是红球,则把它放回箱中;如果取出的是白
球,则该球不放回,并另补一个红球放到箱中.”
(1)求进行第二次操作后,箱中红球个数为
4
的概率;
(2)求进行第二次操作后,箱中红球个数的分布列和数学期望.答案:(1)设A1表示事件“第一次操作从箱中取出的是红球”,B1表示事件“第一次操作从箱中取出的是白球”,A2表示事件“第二次操作从箱中取出的是红球”,B2表示事件“第二次操作从箱中取出的是白球”.则A1B2表示事件“第一次操作从箱中取出的是红球,第二次操作从箱中取出的是白球”.由条件概率计算公式得P(A1B2)=P(A1)P(B2|A1)=35×25=625.B1A2表示事件“第一次操作从箱中取出的是白球,第二次操作从箱中取出的是红球”.由条件概率计算公式得P(B1A2)=P(B1)P(A2|B1)=25×45=825.A1B2+B1A2表示“进行第二次操作后,箱中红球个数为
4”,又A1B2与B1A2是互斥事件.∴P(A1B2+B1A2)=P(A1B2)+P(B1A2)=625+825=1425.(2)设进行第二次操作后,箱中红球个数为X,则X=3,4,5.P(X=3)35×35=925,P(X=4)=1425,P(X=5)=25×15=225.进行第二次操作后,箱中红球个数X的分布列为:进行第二次操作后,箱中红球个数X的数学期望EX=3×925+4×1425+5×225=9325.33.(每题6分共12分)解不等式
(1)(2)答案:(1)(2)解析:本试题主要是考查了分式不等式和一元二次不等式的求解,以及含有根式的二次不等式的求解运用。(1)移向,通分,合并,将分式化为整式,然后得到解集。(2)首先分析函数式有意义的x的取值,然后保证两边都有意义的时候,且都为正,两边平方求解得到。解:(2)当8-x<0显然成立。当8-x》0时,则两边平方可得。所以34.关于x的方程(m+3)x2-4mx+2m-1=0的两根异号,且负数根的绝对值比正数根大,那么实数m的取值范围是()
A.-3<m<0
B.0<m<3
C.m<-3或m>0
D.m<0或m>3答案:A35.求证:不论λ取什么实数时,直线(2λ-1)x+(λ+3)y-(λ-11)=0都经过一个定点,并求出这个定点的坐标.答案:证明:直线(2λ-1)x+(λ+3)y-(λ-11)=0即λ(2x+y-1)+(-x+3y+11)=0,根据λ的任意性可得2x+y-1=0-x+3y+11=0,解得x=2y=-3,∴不论λ取什么实数时,直线(2λ-1)x+(λ+3)y-(λ-11)=0都经过一个定点(2,-3).36.已知椭圆的焦点为F1,F2,A在椭圆上,B在F1A的延长线上,且|AB|=|AF2|,则B点的轨迹形状为()
A.椭圆
B.双曲线
C.圆
D.两条平行线答案:C37.直线l:y-1=k(x-1)和圆C:x2+y2-2y=0的关系是()
A.相离
B.相切或相交
C.相交
D.相切答案:C38.已知方程x2+y2+4x-2y-4=0,则x2+y2的最大值是()A.95B.45C.14-65D.14+65答案:由方程x2+y2+4x-2y-4=0得到圆心为(-2,1),半径为3,设圆上一点为(x,y)圆心到原点的距离是(-2)2+1
2=5圆上的点到原点的最大距离是5+3故x2+y2的最大值是为(5+3)2=14+65故选D39.若函数y=f(x)的定义域是[12,2],则函数y=f(log2x)的定义域为______.答案:由题意知12≤log2x≤2,即log22≤log2x≤log24,∴2≤x≤4.故为:[2,4].40.已知点A(3,0),B(0,3),C(cosα,sinα),O(0,0),若,α∈(0,π),则与的夹角为()
A.
B.
C.
D.答案:D41.如图算法输出的结果是______.答案:当I=1时,满足循环的条件,进而循环体执行循环则S=2,I=4;当I=4时,满足循环的条件,进而循环体执行循环则S=4,I=7;当I=7时,满足循环的条件,进而循环体执行循环则S=8,I=10;当I=10时,满足循环的条件,进而循环体执行循环则S=16,I=13;当I=13时,不满足循环的条件,退出循环,输出S值16故为:1642.已知直线l1:3x-y+2=0,l2:3x+3y-5=0,则直线l1与l2的夹角是______.答案:因为直线l1的斜率为3,故倾斜角为60°,直线l2的斜率为-3,倾斜角为120°,故两直线的夹角为60°,即两直线的夹角为π3,故为
π3.43.设O是坐标原点,F是抛物线y2=2px(p>0)的焦点,A是抛物线上的一点,FA与x轴正向的夹角为60°,则|OA|为______.答案:过A作AD⊥x轴于D,令FD=m,则FA=2m,p+m=2m,m=p.∴OA=(p2+p)2+(3p)2=212p.故为:212p44.如图所示,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,点F是AE的中点.求AB与平面BDF所成角的正弦值.答案:AB与平面BDF所成角的正弦值为.解析:以点B为原点,BA、BC、BE所在的直线分别为x,y,z轴,建立如图所示的空间直角坐标系,则B(0,0,0),A(2,0,0),C(0,2,0),D(0,2,1),E(0,0,2),F(1,0,1).∴=(0,2,1),=(1,-2,0).设平面BDF的一个法向量为n=(2,a,b),∵n⊥,n⊥,∴即解得a=1,b=-2.∴n=(2,1,-2).设AB与平面BDF所成的角为,则法向量n与的夹角为-,∴cos(-)===,即sin=,故AB与平面BDF所成角的正弦值为.45.已知a>0,b>0,直线l与x轴、y轴分别交于A(a,0),B(0,b),且过点(1,2),O为原点.求△OAB面积的最小值.答案:∵a>0,b>0,直线l与x轴、y轴分别交于A(a,0),B(0,b),∴直线l的方程为xa+yb=1,又直线l过点(1,2),∴1a+2b=1,由基本不等式得1≥22ab,∴ab≥8,△OAB面积为:12ab≥12×8=4,当且仅当1a=2b=12,即a=2且b=4时,等号成立.故△OAB面积的最小值是4.46.已知集合A={1,2,3},集合B={4,5},映射f:A→B,且满足1对应的元素是4,则这样的映射有()A.2个B.4个C.8个D.9个答案:∵满足1对应的元素是4,集合A中还有两个元素2和3,2可以和4对应,也可以和5对应,3可以和4对应,也可以和5对应,每个元素有两种不同的对应,∴共有2×2=4种结果,故选B.47.如图,在半径为7的⊙O中,弦AB,CD相交于点P,PA=PB=2,PD=1,则圆心O到弦CD的距离为______.答案:由相交弦定理得,AP×PB=CP×PD,∴2×2=CP•1,解得:CP=4,又PD=1,∴CD=5,又⊙O的半径为7,则圆心O到弦CD的距离为d=r2-(CD2)2=7-(52)2=32.故为:32.48.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是______.答案:由茎叶图可得甲组共有9个数据中位数为45乙组共9个数据中位数为46故为45、4649.椭圆的长轴长为10,短轴长为8,则椭圆上的点到椭圆中心的距离的取值范围是______.答案:椭圆上的点到圆心的最小距离为短半轴的长度,最大距离为长半轴的长度因为椭圆的长轴长为10,短轴长为8,所以椭圆上的点到圆心的最小距离为4,最大距离为5所以椭圆上的点到椭圆中心距离的取值范围是[4,5]故为:[4,5]50.若一点P的极坐标是(r,θ),则它的直角坐标如何?答案:由题意可知x=rcosθ,y=rsinθ.所以点P的极坐标是(r,θ)的直角坐标为:(rcosθ,rsinθ).第3卷一.综合题(共50题)1.已知数列{an}的前n项和Sn=an2+bn=c
(a、b、c∈R),则“c=0”是“{an}是等差数列”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件答案:数列{an}的前n项和Sn=an2+bn+c根据等差数列的前n项和的公式,可以看出当c=0时,Sn=an2+bn表示等差数列的前n项和,则数列是一个等差数列,当数列是一个等差数列时,表示前n项和时,c=0,故前者可以推出后者,后者也可以推出前者,∴前者是后者的充要条件,故选C.2.口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以ξ表示取出的球的最大号码,则Eξ的值是()A.4B.4.5C.4.75D.5答案:由题意,ξ的取值可以是3,4,5ξ=3时,概率是1C35=110ξ=4时,概率是C23C35=310(最大的是4其它两个从1、2、3里面随机取)ξ=5时,概率是C24C35=610(最大的是5,其它两个从1、2、3、4里面随机取)∴期望Eξ=3×110+4×310+5×610=4.5故选B.3.给出下列四个命题:
①若两个向量相等,则它们的起点相同,终点相同;
②在平行四边形ABCD中,一定有;
③若则
④若则
其中正确的命题个数是()
A.1
B.2
C.3
D.4答案:C4.如果直线l1,l2的斜率分别为二次方程x2-4x+1=0的两个根,那么l1与l2的夹角为()
A.
B.
C.
D.答案:A5.某地区教育主管部门为了对该地区模拟考试成绩进行分析,抽取了总成绩介于350分到650分之间的10000名学生成绩,并根据这10000名学生的总成绩画了样本的频率分布直方图.为了进一步分析学生的总成绩与各科成绩等方面的关系,要从这10000名学生中,再用分层抽样方法抽出200人作进一步调查,则总成绩在[400,500)内共抽出()
A.100人
B.90人
C.65人
D.50人
答案:B6.编号为A、B、C、D、E的五个小球放在如图所示的五个盒子中,要求每个盒子只能放一个小球,且A不能放1,2号,B必需放在与A相邻的盒子中,则不同的放法有()种.A.42B.36C.30D.28答案:根据题意,A不能放1,2号,则A可以放在3、4、5号盒子,分2种情况讨论:①当A在4、5号盒子时,B有1种放法,剩下3个有A33=6种不同放法,此时,共有2×1×6=12种情况;②当A在3号盒子时,B有3种放法,剩下3个有A33=6种不同放法,此时,共有1×3×6=18种情况;由加法原理,计算可得共有12+18=30种不同情况;故选C.7.若A(-1,0,1),B(1,4,7)在直线l上,则直线l的一个方向向量为()
A.(1,2,3)
B.(1,3,2)
C.(2,1,3)
D.(3,2,1)答案:A8.设a=lg2+lg5,b=ex(x<0),则a与b的大小关系是?答案:a═lg2+lg5=lg10=1又b=ex,由指数函数的性质知,当x<0时,0<b<1∴a>b9.已知两曲线参数方程分别为x=5cosθy=sinθ(0≤θ<π)和x=54t2y=t(t∈R),它们的交点坐标为______.答案:曲线参数方程x=5cosθy=sinθ(0≤θ<π)的直角坐标方程为:x25+y2=1;曲线x=54t2y=t(t∈R)的普通方程为:y2=45x;解方程组:x25+y2=1y2=45x得:x=1y=255∴它们的交点坐标为(1,255).故为:(1,255).10.命题“存在x0∈R,2x0≤0”的否定是()
A.不存在x0∈R,2x0>0
B.存在x0∈R,2x0≥0
C.对任意的x∈R,2x≤0
D.对任意的x∈R,2x>0答案:D11.在△ABC中,∠ABC=60°,AB=2,BC=3,在BC上任取一点D,使△ABD为钝角三角形的概率为()A.16B.13C.12D.23答案:由题意知本题是一个等可能事件的概率,试验发生包含的事件对应的是长度为3的一条线段,满足条件的事件是组成钝角三角形,包括两种情况第一种∠ADB为钝角,这种情况的分界是∠ADB=90°的时候,此时BD=1∴这种情况下,满足要求的0<BD<1.第二种∠OAD为钝角,这种情况的分界是∠BAD=90°的时候,此时BD=4∴这种情况下,不可能综合两种情况,若△ABD为钝角三角形,则0<BD<1P=13故选B12.如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若PB=1,PD=3,则BCAD的值为______.答案:因为A,B,C,D四点共圆,所以∠DAB=∠PCB,∠CDA=∠PBC,因为∠P为公共角,所以△PBC∽△PAD,所以BCAD=PBPD=13.故为:13.13.如图是集合的知识结构图,如果要加入“全集”,则应该放在()
A.“集合的概念”的下位
B.“集合的表示”的下位
C.“基本关系”的下位
D.“基本运算”的下位答案:D14.在空间直角坐标系中,点,过点P作平面xOy的垂线PQ,则Q的坐标为()
A.
B.
C.
D.答案:D15.参数方程表示什么曲线?答案:见解析解析:解:显然,则即得,即16.设O是坐标原点,F是抛物线y2=2px(p>0)的焦点,A是抛物线上的一点,FA与x轴正向的夹角为60°,则|OA|为______.答案:过A作AD⊥x轴于D,令FD=m,则FA=2m,p+m=2m,m=p.∴OA=(p2+p)2+(3p)2=212p.故为:212p17.在7块并排、形状大小相同的试验田上进行施化肥量对水稻产量影响的试验,得到如下表所示的一组数据(单位:kg).
(1)画出散点图;
(2)求y关于x的线性回归方程;
(3)若施化肥量为38kg,其他情况不变,请预测水稻的产量.答案:(1)根据题表中数据可得散点图如下:(2)∵.x=15+20+25+30+35+40+457=30,.y=330+345+365+405+445+450+4557=399.3∴利用最小二乘法得到b=4.75,a=257∴根据回归直线方程系数的公式计算可得回归直线方程是?y=4.75x+257.(3)把x=38代入回归直线方程得y=438,可以预测,施化肥量为38kg,其他情况不变时,水稻的产量是438kg.18.由1、2、3可以组成______个没有重复数字的两位数.答案:没有重复数字的两位数共有3×2=6个故为:619.在空间直角坐标系中,已知两点P1(-1,3,5),P2(2,4,-3),则|P1P2|=()
A.
B.3
C.
D.答案:A20.4位学生与2位教师并坐合影留念,针对下列各种坐法,试问:各有多少种不同的坐法?(用数字作答)
(1)教师必须坐在中间;
(2)教师不能坐在两端,但要坐在一起;
(3)教师不能坐在两端,且不能相邻.答案:(1)先排4位学生,有A44种坐法,2位教师坐在中间,可以交换位置,有A22种坐法,则共有A22A44=48种坐法;(2)先排4位学生,有A44种坐法,2位教师坐在一起,将其看成一个整体,可以交换位置,有2种坐法,将这个“整体”插在4个学生的空位中,又由教师不能坐在两端,则有3个空位可选,则共有2A44A31=144种坐法;(3)先排4位学生,有A44种坐法,教师不能相邻,将其依次插在4个学生的空位中,又由教师不能坐在两端,则有3个空位可选,有A32种坐法,则共有A44A32=144种坐法..21.已知不等式(a2+a+2)2x>(a2+a+2)x+8,其中x∈N+,使此不等式成立的x的最小整数值是______.答案:∵a2+a+2=(a+12)2+74>1,且x∈N+,∴由正整数指数函数在底数大于1时单调递增的性质,得2x>x+8,即x>8,∴使此不等式成立的x的最小整数值为9.故为:9.22.质地均匀的正四面体玩具的4个面上分别刻着数字1,2,3,4,将4个这样的玩具同时抛掷于桌面上.
(1)求与桌面接触的4个面上的4个数的乘积不能被4整除的概率;
(2)设ξ为与桌面接触的4个面上数字中偶数的个数,求ξ的分歧布列及期望Eξ.答案:(1)不能被4整除的有两种情形;①4个数均为奇数,概率为P1=(12)4=116②4个数中有3个奇数,另一个为2,概率为P2=C34(12)3?14=18这两种情况是互斥的,故所求的概率为P=116+18=316(2)ξ为与桌面接触的4个面上数字中偶数的个数,由题意知ξ的可能取值是0,1,2,3,4,根据符合二项分布,得到P(ξ=k)=Ck4(12)4(k=0,1,2,3,4),ξ的分布列为∵ξ服从二项分布B(4,12),∴Eξ=4×12=2.23.已知平面向量a=(0,1),b=(x,y),若a⊥b,则实数y=______.答案:由题意平面向量a=(0,1),b=(x,y),由a⊥b,∴a?b=0∴y=0故为024.是x1,x2,…,x100的平均数,a是x1,x2,…,x40的平均数,b是x41,x42,…,x100的平均数,则下列各式正确的是()
A.=
B=
C.=a+b
D.答案:A25.已知复数z0=1-mi(m>0),z=x+yi和w=x'+y'i,其中x,y,x',y'均为实数,i为虚数单位,且对于任意复数z,有w=.z0•.z,|w|=2|z|.
(Ⅰ)试求m的值,并分别写出x'和y'用x、y表示的关系式;
(Ⅱ)将(x、y)作为点P的坐标,(x'、y')作为点Q的坐标,上述关系可以看作是坐标平面上点的一个变换:它将平面上的点P变到这一平面上的点Q,当点P在直线y=x+1上移动时,试求点P经该变换后得到的点Q的轨迹方程;
(Ⅲ)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由.答案:(Ⅰ)由题设,|w|=|.z0•.z|=|z0||z|=2|z|,∴|z0|=2,于是由1+m2=4,且m>0,得m=3,…(3分)因此由x′+y′i=.(1-3i)•.(x+yi)=x+3y+(3x-y)i,得关系式x′=x+3yy′=3x-y…(5分)(Ⅱ)设点P(x,y)在直线y=x+1上,则其经变换后的点Q(x',y')满足x′=(1+3)x+3y′=(3x-1)x-1,…(7分)消去x,得y′=(2-3)x′-23+2,故点Q的轨迹方程为y=(2-3)x-23+2…(10分)(3)假设存在这样的直线,∵平行坐标轴的直线显然不满足条件,∴所求直线可设为y=kx+b(k≠0),…(12分)[解法一]∵该直线上的任一点P(x,y),其经变换后得到的点Q(x+3y,3x-y)仍在该直线上,∴3x-y=k(x+3y)+b,即-(3k+1)y=(k-3)x+b,当b≠0时,方程组-(3k+1)=1k-3=k无解,故这样的直线不存在.
…(16分)当b=0时,由-(3k+1)1=k-3k,得3k2+2k-3=0,解得k=33或k=-3,故这样的直线存在,其方程为y=33x或y=-3x,…(18分)[解法二]取直线上一点P(-bk,0),其经变换后的点Q(-bk,-3bk)仍在该直线上,∴-3bk=k(-bk)+b,得b=0,…(14分)故所求直线为y=kx,取直线上一点P(0,k),其经变换后得到的点Q(1+3k,3-k)仍在该直线上.∴3-k=k(1+3k),…(16分)即3k2+2k-3=0,得k=33或k=-3,故这样的直线存在,其方程为y=33x或y=-3x,…(18分)26.若矩阵M=1111,则直线x+y+2=0在M对应的变换作用下所得到的直线方程为______.答案:设直线x+y+2=0上任意一点(x0,y0),(x',y')是所得的直线上一点,[1
1][x']=[x0][1
1][y']=[y0]∴x′+y′=x0x′+y′=y0,∴代入直线x+y+2=0方程:(x'+y')+x′+y'+2=0得到I的方程x+y+1=0故为:x+y+1=0.27.求两条平行直线3x-4y-11=0与6x-8y+4=0的距离是()
A.3
B.
C.
D.4答案:B28.如果一个圆锥的正视图是边长为2的等边三角形,则该圆锥的表面积是______.答案:由已知,圆锥的底面直径为2,母线为2,则这个圆锥的表面积是12×2π×2+π?12=3π.故:3π.29.过椭圆4x2+y2=1的一个焦点F1的直线与椭圆交于A,B两点,则A与B和椭圆的另一个焦点F1构成的△ABF2的周长为()
A.2
B.2
C.4
D.8答案:C30.圆x2+y2-4x=0在点P(1,)处的切线方程为()
A.x+y-2=0
B.x+y-4=0
C.x-y+4=0
D.x-y+2=0答案:D31.已知直线l经过点A(2,4),且被平行直线l1:x-y+1=0与l2:x-y-1=0所截得的线段的中点M在直线x+y-3=0上.求直线l的方程.答案:∵点M在直线x+y-3=0上,∴设点M坐标为(t,3-t),则点M到l1、l2的距离相等,即|2t-2|2=|2t-4|2,解得t=32∴M(32,32)又l过点A(2,4),即5x-y-6=0,故直线l的方程为5x-y-6=0.32.已知随机变量ξ服从二项分布ξ~B(6,),则E(2ξ+4)=()
A.10
B.4
C.3
D.9答案:A33.设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是()
A.若m∥n,m∥α,则n∥α
B.若α⊥β,m∥α,则m⊥β
C.若α⊥β,m⊥β,则m∥α
D.若m⊥n,m⊥α,n⊥β,则α⊥β答案:D34.过点(1,0)且与直线x-2y-2=0平行的直线方程是()
A.x-2y-1=0
B.x-2y+1=0
C.2x+y-2=0
D.x+2y-1=0答案:A35.已知复数a+bi,其中a,b为0,1,2,…,9这10个数字中的两个不同的数,则不同的虚数的个数为()A.36B.72C.81D.90答案:当a取0时,b有9种取法,当a不取0时,a有9种取法,b不能取0和a取的数,故b有8种取法,∴组成不同的虚数个数为9+9×8=81种,故选C.36.如图,已知某探照灯反光镜的纵切面是抛物线的一部分,光源安装在焦点F上,且灯的深度EG等于灯口直径AB,若灯的深度EG为64cm,则光源安装的位置F到灯的顶端G的距离为______cm.答案:以反射镜顶点为原点,以顶点和焦点所在直线为x轴,建立直角坐标系.设抛物线方程为y2=2px,依题意可点A(64,3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《工作流程集合》课件
- 《肠杆菌科的细菌》课件
- 2024年汽车配件质量控制及认证服务合同范本3篇
- 《外耳道异物讲稿》课件
- 2024年度生物制药研发与市场推广合同样本2篇
- 2024商铺租赁装修合同:涵盖商铺租赁市场调研与风险评估条款3篇
- 2025运输合同危险品运输合同范本
- 2024图书购置项目与图书馆信息素养教育服务合同3篇
- 2024年标准农作物种植合作合同范本版B版
- 2025房地产信贷部职工住房抵押贷款合同
- 口腔护理膏在治疗口腔溃疡的临床研究
- 眩晕的中医诊治课件
- 一轮复习人教版 第9单元 高频考点进阶课 5.生态系统的结构与功能 课件(53张)
- 部编版二年级数学上册知识点汇总复习统编课件ppt
- T∕ASC 17-2021 电动汽车充换电设施系统设计标准
- 机动车排放检验检测方法内部审批程序
- 让生命之花绽放光彩——“生命教育”主题班会ppt
- 并网光伏电站调试报告
- 预计体育课运动生理负荷脉搏曲线图
- MTK平台modem配置
- 夹套反应釜-课程设计
评论
0/150
提交评论