版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年潍坊职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.两平行直线x+3y-4=0与2x+6y-9=0的距离是
______.答案:由直线x+3y-4=0取一点A,令y=0得到x=4,即A(4,0),则两平行直线的距离等于A到直线2x+6y-9=0的距离d=|8-9|22+62=1210=1020.故为:10202.已知a>0,b>0且a+b>2,求证:1+ba,1+ab中至少有一个小于2.答案:证明:假设1+ba,1+ab都不小于2,则1+ba≥2,1+ab≥2(6分)因为a>0,b>0,所以1+b≥2a,1+a≥2b,1+1+a+b≥2(a+b)即2≥a+b,这与已知a+b>2相矛盾,故假设不成立(12分)综上1+ba,1+ab中至少有一个小于2.(14分)3.一个简单多面体的面都是三角形,顶点数V=6,则它的面数为______个.答案:∵已知多面体的每个面有三条边,每相邻两条边重合为一条棱,∴棱数E=32F,代入公式V+F-E=2,得F=2V-4.∵V=6,∴F=8,E=12,即多面体的面数F为8,棱数E为12.故为8.4.从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为()
A.432
B.288
C.216
D.108答案:C5.设a>2,给定数列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求证:
(1)xn>2,且xn+1xn<1(n=1,2…);
(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:证明:(1)①当n=1时,∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12
-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.结论成立.②假设n=k时,结论成立,即2<xk+1<xk(k∈N+),则xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,综上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由条件x1=a≤3知不等式当n=1时成立假设不等式当n=k(k≥1)时成立当n=k+1时,由条件及xk>2知xk+1≤1+12k⇔x2k≤2(xk-1)(2+12k)⇔x2k-2(2+12k)xk+2(2+12k)≤0⇔(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及归纳假设知,上面最后一个不等式一定成立,所以不等式xk+1≤2+12k也成立,从而不等式xn≤2+12n-1对所有的正整数n成立6.在极坐标系中圆ρ=2cosθ的垂直于极轴的两条切线方程分别为()
A.θ=0(ρ∈R)和ρcosθ=2
B.θ=(ρ∈R)和ρcosθ=2
C.θ=(ρ∈R)和ρcosθ=1
D.θ=0(ρ∈R)和ρcosθ=1答案:B7.系数矩阵为.2132.,解为xy=12的一个线性方程组是______.答案:可设线性方程组为2132xy=mn,由于方程组的解是xy=12,∴mn=47,∴所求方程组为2x+y=43x+2y=7,故为:2x+y=43x+2y=7.8.若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,证明:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)•(b1+b2+…+bnn).当且仅当a1=a2=…=an或b1=b2=…=bn时等号成立.答案:证明不妨设a1≤a2≤…≤an,b1≥b2≥…≥bn.则由排序原理得:a1b1+a2b2+…+anbn=a1b1+a2b2+…+anbna1b1+a2b2+…+anbn≤a1b2+a2b3+…+anb1a1b1+a2b2+…+anbn≤a1b3+a2b4+…+an-1b1+anb2…a1b1+a2b2+…+anbn≤a1bn+a2b1+…+anbn-1.将上述n个式子相加,得:n(a1b1+a2b2+…+anbn)≤(a1+a2+…+an)(b1+b2+…+bn)上式两边除以n2,得:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)(b1+b2+…+bnn)等号当且仅当a1=a2=…=an或b1=b2=…=bn时成立.9.圆锥曲线G的一个焦点是F,与之对应的准线是,过F作直线与G交于A、B两点,以AB为直径作圆M,圆M与的位置关系决定G
是何种曲线之间的关系是:______
圆M与的位置相离相切相交G
是何种曲线答案:设圆锥曲线过焦点F的弦为AB,过A、B分别向相应的准线作垂线AA',BB',则由第二定义得:|AF|=e|AA'|,|BF|=e|BB'|,∴|AF|+|BF|2=|AA′|+|BB′|2
?
e.设以AB为直径的圆半径为r,圆心到准线的距离为d,即有r=de,椭圆的离心率
0<e<1,此时r<d,圆M与准线相离;抛物线的离心率
e=1,此时r=d,圆M与准线相切;双曲线的离心率
e>1,此时r>d,圆M与准线相交.故为:椭圆、抛物线、双曲线.10.若,,,则
(
)
A.
B.
C.
D.答案:A11.设点O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),则OA•BC=______.答案:因为点O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),所以OA=(1,-2,3),BC=(2,0,-6),OA•BC=(1,-2,3)•(2,0,-6)=2-18=-16.故为:-16.12.2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.
某城市环保部门随机抽取了一居民区去年20天PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别PM2.5浓度
(微克/立方米)频数(天)频率
第一组(0,25]50.25第二组(25,50]100.5第三组(50,75]30.15第四组(75,100)20.1(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;
(Ⅱ)求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.答案:(Ⅰ)
设PM2.5的24小时平均浓度在(50,75]内的三天记为A1,A2,A3,PM2.5的24小时平均浓度在(75,100)内的两天记为B1,B2.所以5天任取2天的情况有:A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2,A3B1,A3B2共10种.
…(4分)其中符合条件的有:A1B1,A1B2,A2B1,A2B2,A3B1,A3B2共6种.
…(6分)所以所求的概率P=610=35.
…(8分)(Ⅱ)去年该居民区PM2.5年平均浓度为:12.5×0.25+37.5×0.5+62.5×0.15+87.5×0.1=40(微克/立方米).…(10分)因为40>35,所以去年该居民区PM2.5年平均浓度不符合环境空气质量标准,故该居民区的环境需要改进.
…(12分)13.设、、为实数,,则下列四个结论中正确的是(
)A.B.C.且D.且答案:D解析:若,则,则.若,则对于二次函数,由可得结论.14.已知m,n为正整数.
(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;
(Ⅱ)对于n≥6,已知(1-1n+3)n<12,求证(1-mn+3)n<(12)m,m=1,2…,n;
(Ⅲ)求出满足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整数n.答案:解法1:(Ⅰ)证:用数学归纳法证明:当x=0时,(1+x)m≥1+mx;即1≥1成立,x≠0时,证:用数学归纳法证明:(ⅰ)当m=1时,原不等式成立;当m=2时,左边=1+2x+x2,右边=1+2x,因为x2≥0,所以左边≥右边,原不等式成立;(ⅱ)假设当m=k时,不等式成立,即(1+x)k≥1+kx,则当m=k+1时,∵x>-1,∴1+x>0,于是在不等式(1+x)k≥1+kx两边同乘以1+x得(1+x)k•(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2≥1+(k+1)x,所以(1+x)k+1≥1+(k+1)x.即当m=k+1时,不等式也成立.综合(ⅰ)(ⅱ)知,对一切正整数m,不等式都成立.(Ⅱ)证:当n≥6,m≤n时,由(Ⅰ)得(1-1n+3)m≥1-mn+3>0,于是(1-mn+3)n≤(1-1n+3)nm=[(1-1n+3)n]m<(12)m,m=1,2,n.(Ⅲ)由(Ⅱ)知,当n≥6时,(1-1n+3)n+(1-2n+3)n++(1-nn+3)n<12+(12)^++(12)n=1-12n<1,∴(n+2n+3)n+(n+1n+3)n++(3n+3)n<1.即3n+4n+…+(n+2)n<(n+3)n.即当n≥6时,不存在满足该等式的正整数n.故只需要讨论n=1,2,3,4,5的情形:当n=1时,3≠4,等式不成立;当n=2时,32+42=52,等式成立;当n=3时,33+43+53=63,等式成立;当n=4时,34+44+54+64为偶数,而74为奇数,故34+44+54+64≠74,等式不成立;当n=5时,同n=4的情形可分析出,等式不成立.综上,所求的n只有n=2,3.解法2:(Ⅰ)证:当x=0或m=1时,原不等式中等号显然成立,下用数学归纳法证明:当x>-1,且x≠0时,m≥2,(1+x)m>1+mx.①(ⅰ)当m=2时,左边=1+2x+x2,右边=1+2x,因为x≠0,所以x2>0,即左边>右边,不等式①成立;(ⅱ)假设当m=k(k≥2)时,不等式①成立,即(1+x)k>1+kx,则当m=k+1时,因为x>-1,所以1+x>0.又因为x≠0,k≥2,所以kx2>0.于是在不等式(1+x)k>1+kx两边同乘以1+x得(1+x)k•(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,所以(1+x)k+1>1+(k+1)x.即当m=k+1时,不等式①也成立.综上所述,所证不等式成立.(Ⅱ)证:当n≥6,m≤n时,∵(1-1n+3)n<12,∴[(1-1n+3)m]n<(12)m,而由(Ⅰ),(1-1n+3)m≥1-mn+3>0,∴(1-mn+3)n≤[(1-1n+3)m]n<(12)m.(Ⅲ)假设存在正整数n0≥6使等式3n0+4n0++(n0+2)n0=(n0+3)n0成立,即有(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=1.②又由(Ⅱ)可得(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=(1-n0n0+3)n0+(1-n0-1n0+3)n0++(1-1n0+3)n0<(12)n0+(12)n0-1++12=1-12n0<1,与②式矛盾.故当n≥6时,不存在满足该等式的正整数n.下同解法1.15.已知有如下两段程序:
问:程序1运行的结果为______.程序2运行的结果为______.
答案:程序1是计数变量i=21开始,不满足i≤20,终止循环,累加变量sum=0,这个程序计算的结果:sum=0;程序2计数变量i=21,开始进入循环,sum=0+21=22,其值大于20,循环终止,累加变量sum从0开始,这个程序计算的是sum=21.故为:0;21.16.A、B、C是我军三个炮兵阵地,A在B的正东方向相距6千米,C在B的北30°西方向,相距4千米,P为敌炮阵地.某时刻,A发现敌炮阵地的某信号,由于B、C比A距P更远,因此,4秒后,B、C才同时发现这一信号(该信号的传播速度为每秒1千米).若从A炮击敌阵地P,求炮击的方位角.答案:以线段AB的中点为原点,正东方向为x轴的正方向建立直角坐标系,则A(3,0)
B(-3,0)
C(-5,23)依题意|PB|-|PA|=4∴P在以A、B为焦点的双曲线的右支上.这里a=2,c=3,b2=5.其方程为
x24-y25=1
(x>0)…(3分)又|PB|=|PC|,∴P又在线段BC的垂直平分线上x-3y+7=0…(5分)由方程组x-3y+7=05x2-4y2=20解得
x=8(负值舍去)y=53即
P(8,53)…(8分)由于kAP=3,可知P在A北30°东方向.…(10分)17.在投掷两枚硬币的随机试验中,记“一枚正面朝上,一枚反面朝上”为事件A,“两枚正面朝上”为事件B,则事件A,B()
A.既是互斥事件又是对立事件
B.是对立事件而非互斥事件
C.既非互斥事件也非对立事件
D.是互斥事件而非对立事件答案:D18.△ABC所在平面内点O、P,满足OP=OA+λ(AB+12BC),λ∈[0,+∞),则点P的轨迹一定经过△ABC的()A.重心B.垂心C.内心D.外心答案:设BC的中点为D,则∵OP=OA+λ(AB+12BC),∴OP=OA+λAD∴AP=λAD∴AP∥AD∵AD是△ABC的中线∴点P的轨迹一定经过△ABC的重心故选A.19.一个盒子中装有4张卡片,上面分别写着四个函数:f1(x)=x3,f2(x)=x4,f3(x)=2|x|,f4(x)=x+1x,现从盒子中任取2张卡片,将卡片上的函数相乘得到一个新函数,所得函数为奇函数的概率是______.答案:要使所得函数为奇函数,取出的两个函数必须是一个奇函数、一个偶函数.而所给的4个函数中,有2个奇函数、2个偶函数.所有的取法种数为C24=6,满足条件的取法有2×2=4种,故所得函数为奇函数的概率是46=23,故为23.20.直线y=3x+3的倾斜角的大小为______.答案:∵直线y=3x+3的斜率等于3,设倾斜角等于α,则0°≤α<180°,且tanα=3,∴α=60°,故为60°.21.已知点A(1,-2,0)和向量a=(-3,4,12),若AB=2a,则点B的坐标为______.答案:∵向量a=(-3,4,12),AB=2a,∴AB=(-6,8,24)∵点A(1,-2,0)∴B(-6+1,8-2,24-0)=(-5,6,24)故为:(-5,6,24)22.已知矩阵M=2a21,其中a∈R,若点P(1,-2)在矩阵M的变换下得到点P'(-4,0)
(1)求实数a的值;
(2)求矩阵M的特征值及其对应的特征向量.答案:(1)由2a211-2=-40,∴2-2a=-4⇒a=3.(2)由(1)知M=2321,则矩阵M的特征多项式为f(λ)=.λ-2-3-2λ-1.=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩阵M的特征值为-1与4.当λ=-1时,(λ-2)x-3y=0-2x+(λ-1)y=0⇒x+y=0∴矩阵M的属于特征值-1的一个特征向量为1-1;当λ=4时,(λ-2)x-3y=0-2x+(λ-1)y=0⇒2x-3y=0∴矩阵M的属于特征值4的一个特征向量为32.23.为了参加奥运会,对自行车运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度的数据如表所示:
甲273830373531乙332938342836请判断:谁参加这项重大比赛更合适,并阐述理由.答案:.X甲=27+38+30+37+35+316=33S甲=946≈3.958,(
4分).X乙=33+29+38+34+28+366=33S乙=383≈3.559(8分).X甲=.X乙,S甲>S乙
(10分)乙参加更合适
(12分)24.已知点G是△ABC的重心,点P是△GBC内一点,若,则λ+μ的取值范围是()
A.
B.
C.
D.(1,2)答案:B25.已知a=(5,4),b=(3,2),则与2a-3b同向的单位向量为
______.答案:∵a=(5,4),b=(3,2),∴2a-3b=(1,2)设与2a-3b平行的单位向量为e=(x,y),则2a-3b=λe,|e|=1∴(1,2)=(λx,λy);x2+y2=1∴1=λx2=λyx2+y2=1解之x=55y=255或x=-55y=-255故为e=±(55,255)26.如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,,,
.则⊙O的半径为(
).
A.6
B.13
C.
D.答案:C解析:分析:延长AO交BC于D,接OB,根据AB=AC,O是等腰Rt△ABC的内心,推出AD⊥BC,BD=DC=3,AO平分∠BAC,求出∠BAD=∠ABD=45°,AD=BD=3,由勾股定理求出OB即可.解答:解:延长AO交BC于D,连接OB,∵⊙O过B、C,∴O在BC的垂直平分线上,∵AB=AC,圆心O在等腰Rt△ABC的内部,∴AD⊥BC,BD=DC=3,AO平分∠BAC,∵∠BAC=90°,∴∠ADB=90°,∠BAD=45°,∴∠BAD=∠ABD=45°,∴AD=BD=3,∴OD=3-1=2,由勾股定理得:OB==故选C.27.在下列4个命题中,是真命题的序号为()
①3≥3;
②100或50是10的倍数;
③有两个角是锐角的三角形是锐角三角形;
④等腰三角形至少有两个内角相等.
A.①
B.①②
C.①②③
D.①②④答案:D28.圆x2+y2=1上的点到直线x=2的距离的最大值是
______.答案:根据题意,圆上点到直线距离最大值为:半径+圆心到直线的距离.而根据圆x2+y2=1圆心为(0,0),半径为1∴dmax=1+2=3故为:329.回归直线方程必定过点()A.(0,0)B.(.x,0)C.(0,.y)D.(.x,.y)答案:∵线性回归方程一定过这组数据的样本中心点,∴线性回归方程y=bx+a表示的直线必经过(.x,.y).故选D.30.(理)已知向量=(3,5,-1),=(2,2,3),=(4,-1,-3),则向量2-3+4的坐标为()
A.(16,0,-23)
B.(28,0,-23)
C.(16,-4,-1)
D.(0,0,9)答案:A31.函数y=(12)x的值域为______.答案:因为函数y=(12)x是指数函数,所以它的值域是(0,+∞).故为:(0,+∞).32.右图程序运行后输出的结果为()
A.3456
B.4567
C.5678
D.6789
答案:A33.“因为指数函数y=ax是增函数(大前提),而y=()x是指数函数(小前提),所以y=()x是增函数(结论)”,上面推理的错误是()
A.大前提错导致结论错
B.小前提错导致结论错
C.推理形式错导致结论错
D.大前提和小前提错都导致结论错答案:A34.不等式|3x-2|>4的解集是______.答案:由|3x-2|>4可得
3x-2>4
或3x-2<-4,∴x>2或x<-23.故为:(-∞,-23)∪(2,+∞).35.如图,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为()A.π4B.5π4C.πD.3π2答案:此几何体是一个底面直径为1,高为1的圆柱底面周长是2π×12=π故侧面积为1×π=π故选C36.运用三段论推理:
复数不可以比较大小,(大前提)
2010和2011都是复数,(小前提)
2010和2011不可以比较大小.(结
论)
该推理是错误的,产生错误的原因是______错误.(填“大前提”或“小前提”)答案:根据三段论推理,是由两个前提和一个结论组成,大前提:复数不可以比较大小,是错误的,该推理是错误的,产生错误的原因是大前提错误.故为:大前提37.参数方程为t为参数)表示的曲线是()
A.一条直线
B.两条直线
C.一条射线
D.两条射线答案:D38.如图,已知OA、OB是⊙O的半径,且OA⊥OB,P是线段OA上一点,直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E,求证:∠OBP+∠AQE=45°.答案:证明:连接AB,则∠AQE=∠ABP,而OA=OB,所以∠ABO=45°所以∠OBP+∠AQE=∠OBP+∠ABP=∠ABO=45°39.假设两圆互相外切,求证:用连心线做直径的圆,必与前两圆的外公切线相切.答案:证明:设⊙O1及⊙O2为互相外切的两个圆,其一外公切线为A1A2,切点为A1及A2令点O为连心线O1O2的中点,过O作OA⊥A1A2,由直角梯形的中位线性质得:OA=12(O1A1+O2A2)=12O1O2,∴以O1O2为直径,即以O为圆心,OA为半径的圆必与直线A1A2相切,同理可证,此圆必切于⊙O1及⊙O2的另一条外公切线.40.已知图所示的矩形,其长为12,宽为5.在矩形内随同地措施1000颗黄豆,数得落在阴影部分的黄豆数为550颗.则可以估计出阴影部分的面积约为______.答案:∵矩形的长为12,宽为5,则S矩形=60∴S阴S矩=S阴60=5501000,∴S阴=33,故:33.41.如图,在四边形ABCD中,++=4,==0,+=4,则(+)的值为()
A.2
B.
C.4
D.
答案:C42.已知矩阵A将点(1,0)变换为(2,3),且属于特征值3的一个特征向量是11,(1)求矩阵A.(2)β=40,求A5β.答案:(1)设A=abcd,由abcd10=23得,a=2c=3,由abcd11=311=33得,a+b=3c+d=3,所以b=1d=0所以A=2130.
7分(2)A=2130的特征多项式为f(λ)=.λ-2-1-3λ.=
(λ
-3)(λ+1)令f(λ)=0,可得λ1=3,λ2=-1,λ1=3时,α1=11,λ2=-1时,α2=1-3令β=mα1+α2,则β=40=3α1+α2,A5β=3×35α1-α2=36-136+3…14分.43.某校为了研究学生的性别和对待某一活动的态度(支持和不支持两种态度)的关系,运用2×2列联表进行独立性检验,经计算K2=7.069,则所得到的统计学结论是:有()的把握认为“学生性别与支持该活动有关系”.
P(k2≥k0)
0.100
0.050
0.025
0.010
0.001
k0
2.706
3.841
5.024
6.635
10.828
A.0.1%
B.1%
C.99%
D.99.9%答案:C44.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100mL(不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100mL(含80)以上时,属醉酒驾车.据有关报道,2009年8月15日至8
月28日,某地区查处酒后驾车和醉酒驾车共500人,如图是对这500人血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为()A.25B.50C.75D.100答案:∵血液酒精浓度在80mg/100ml(含80)以上时,属醉酒驾车,通过频率分步直方图知道属于醉驾的频率是(0.005+0.01)×10=0.15,∵样本容量是500,∴醉驾的人数有500×0.15=75故选C.45.各项都为正数的数列{an},满足a1=1,an+12-an2=2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明1a1+1a2+…+1an≤2n-1对一切n∈N+恒成立.答案:(Ⅰ)∵an+12-an2=2,∴an2为首项为1,公差为2的等差数列,∴an2=1+(n-1)×2=2n-1,又an>0,则an=2n-1(Ⅱ)只需证:1+13+…+12n-1≤
2n-1.1当n=1时,左边=1,右边=1,所以命题成立.当n=2时,左边<右边,所以命题成立②假设n=k时命题成立,即1+13+…+12k-1≤2k-1,当n=k+1时,左边=1+13+…+12K-1+12K+1≤2K-1+12K+1.<2K-1+22K+1+2K-1=2K-1+2(2K+1-2K-1)
2=2(K+1)-1.命题成立由①②可知,1a1+1a2+…+1an≤2n-1对一切n∈N+恒成立.46.4位学生与2位教师并坐合影留念,针对下列各种坐法,试问:各有多少种不同的坐法?(用数字作答)
(1)教师必须坐在中间;
(2)教师不能坐在两端,但要坐在一起;
(3)教师不能坐在两端,且不能相邻.答案:(1)先排4位学生,有A44种坐法,2位教师坐在中间,可以交换位置,有A22种坐法,则共有A22A44=48种坐法;(2)先排4位学生,有A44种坐法,2位教师坐在一起,将其看成一个整体,可以交换位置,有2种坐法,将这个“整体”插在4个学生的空位中,又由教师不能坐在两端,则有3个空位可选,则共有2A44A31=144种坐法;(3)先排4位学生,有A44种坐法,教师不能相邻,将其依次插在4个学生的空位中,又由教师不能坐在两端,则有3个空位可选,有A32种坐法,则共有A44A32=144种坐法..47.抛物线y=-12x2上一点N到其焦点F的距离是3,则点N到直线y=1的距离等于______.答案:∵抛物线y=-12x2化成标准方程为x2=-2y∴抛物线的焦点为F(0,-12),准线方程为y=12∵点N在抛物线上,到焦点F的距离是3,∴点N到准线y=12的距离也是3因此,点N到直线y=1的距离等于3+(1-12)=72故为:7248.用“辗转相除法”求得和的最大公约数是(
)A.B.C.D.答案:D解析:是和的最大公约数,也就是和的最大公约数49.梯形ABCD中,AB∥CD,AB=2CD,E、F分别是AD,BC的中点,M、N在EF上,且EM=MN=NF,若AB=a,BC=b,则AM=______(用a,b表示).答案:连结CN并延长交AB于G,因为AB∥CD,AB=2CD,M、N在EF上,且EM=MN=NF,所以G为AB的中点,所以AC=12a+b,又E、F分别是AD,BC的中点,M、N在EF上,且EM=MN=NF,所以M为AC的中点,所以AM=12AC,所以AM=14a+12b.故为:14a+12b.50.已知两个点M(-5,0)和N(5,0),若直线上存在点P,使|PM|-|PN|=6,则称该直线为“B型直线”给出下列直线①y=x+1;②y=2;③y=x④y=2x+1;其中为“B型直线”的是()
A.①③
B.①②
C.③④
D.①④答案:B第2卷一.综合题(共50题)1.已知一种材料的最佳加入量在110g到210g之间.若用0.618法安排试验,则第一次试点的加入量可以是(
)g。答案:171.8或148.22.有50件产品编号从1到50,现在从中抽取抽取5件检验,用系统抽样确定所抽取的编号为()
A.5,10,15,20,25
B.5,15,20,35,40
C.5,11,17,23,29
D.10,20,30,40,50答案:D3.确定方程3x2-9+4x2-16+5x2-25=120x的解集______.答案:由题意,x2-9≥0x2-16≥0x2-25≥0x>0,∴x≥5∴x2-9≥4,x2-16≥3,x2-25≥0,∴3x2-9+4x2-16+5x2-25≥24∵3x2-9+4x2-16+5x2-25=120x∴120x≥24∵x≥5,∴120x≤24∴120x=24∴x=5故为:{5}4.已知向量a=(-2,1),b=(-3,-1),若单位向量c满足c⊥(a+b),则c=______.答案:设c=(x,y),∵向量a=(-2,1),b=(-3,-1),单位向量c满足c⊥(a+b),∴c•a+c•b=0,∴-2x+y-3x-y=0,解得x=0,∴c=(0,y),∵c是单位向量,∴0+y2=1,∴y=±1.故c=(0,1),或c=(0,-1).故为:(0,1)或(0,-1).5.以下坐标给出的点中,在曲线x=sin2θy=sinθ+cosθ上的点是()A.(12,-2)B.(2,3)C.(-34,12)D.(1,3)答案:把曲线x=sin2θy=sinθ+cosθ消去参数θ,化为普通方程为y2=1+x(-1≤x≤1),结合所给的选项,只有C中的点在曲线上,故选C.6.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是(
)
A.
B.
C.
D.答案:B7.已知点P(t,t),t∈R,点M是圆x2+(y-1)2=上的动点,点N是圆(x-2)2+y2=上的动点,则|PN|-|PM|的最大值是(
)
A.-1
B.
C.2
D.1答案:C8.已知曲线,
θ∈[0,2π)上一点P到点A(-2,0)、B(2,0)的距离之差为2,则△PAB是()
A.锐角三角形
B.钝角三角形
C.直角三角形
D.等腰三角形答案:C9.已知矩阵A将点(1,0)变换为(2,3),且属于特征值3的一个特征向量是11,(1)求矩阵A.(2)β=40,求A5β.答案:(1)设A=abcd,由abcd10=23得,a=2c=3,由abcd11=311=33得,a+b=3c+d=3,所以b=1d=0所以A=2130.
7分(2)A=2130的特征多项式为f(λ)=.λ-2-1-3λ.=
(λ
-3)(λ+1)令f(λ)=0,可得λ1=3,λ2=-1,λ1=3时,α1=11,λ2=-1时,α2=1-3令β=mα1+α2,则β=40=3α1+α2,A5β=3×35α1-α2=36-136+3…14分.10.设=(-2,2,5),=(6,-4,4)分别是平面α,β的法向量,则平面α,β的位置关系是()
A.平行
B.垂直
C.相交但不垂直
D.不能确定答案:B11.若矩阵M=1101,则直线x+y+2=0在M对应的变换作用下所得到的直线方程为______.答案:设直线x+y+2=0上任意一点(x0,y0),(x,y)是所得的直线上一点,[1
1][x]=[x0][0
1][y]=[y0]∴x+y=x0y=y0,∴代入直线x+y+2=0方程:(x+y)+y+2=0得到I的方程x+2y+2=0故为:x+2y+2=0.12.已知随机变量ξ的数学期望Eξ=0.05且η=5ξ+1,则Eη等于()
A.1.15
B.1.25
C.0.75
D.2.5答案:B13.某校选修乒乓球课程的学生中,高一年级有40名,高二年级有50名,现用分层抽样的方法在这90名学生中抽取一个样本,已知在高一年级的学生中抽取了8名,则在高二年级的学生中应抽取的人数为______.答案:∵高一年级有40名学生,在高一年级的学生中抽取了8名,∴每个个体被抽到的概率是
840=15∵高二年级有50名学生,∴要抽取50×15=10名学生,故为:10.14.设复数z的实部是
12,且|z|=1,则z=______.答案:设复数z的虚部等于b,b∈z,由复数z的实部是12,且|z|=1,可得14+b2=1,∴b=±32,故z=12±32i.故为:12±32i.15.某校现有高一学生210人,高二学生270人,高三学生300人,学校学生会用分层抽样的方法从这三个年级的学生中随机抽取n名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为()
A.10
B.9
C.8
D.7答案:A16.复数,且A+B=0,则m的值是()
A.
B.
C.-
D.2答案:C17.在统计中,样本的标准差可以近似地反映总体的()
A.平均状态
B.频率分布
C.波动大小
D.最大值和最小值答案:C18.已知向量=(1,2),=(2,x),且=-1,则x的值等于()
A.
B.
C.
D.答案:D19.设是的相反向量,则下列说法一定错误的是()
A.∥
B.与的长度相等
C.是的相反向量
D.与一定不相等答案:D20.“神六”上天并顺利返回,让越来越多的青少年对航天技术发生了兴趣.某学校科技小组在计算机上模拟航天器变轨返回试验,设计方案
如图:航天器运行(按顺时针方向)的轨迹方程为x2100+y225=1,变轨(航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以y轴为
对称轴、M(0,647)为顶点的抛物线的实线部分,降落点为D(8,0),观测点A(4,0)、B(6,0)同时跟踪航天器.试问:当航天器在x轴上方时,观测点A、B测得离航天器的距离分别为______时航天器发出变轨指令.答案:设曲线方程为y=ax2+647,由题意可知,0=a•64+647.∴a=-17,∴曲线方程为y=-17x2+647.设变轨点为C(x,y),根据题意可知,抛物线方程与椭圆方程联立,可得4y2-7y-36=0,y=4或y=-94(不合题意,舍去).∴y=4.∴x=6或x=-6(不合题意,舍去).∴C点的坐标为(6,4),|AC|=25,|BC|=4.故为:25、4.21.在平面几何里,我们知道,正三角形的外接圆和内切圆的半径之比是2:1。拓展到空间,研究正四面体(四个面均为全等的正三角形的四面体)的外接球和内切球的半径关系,可以得出的正确结论是:正四面体的外接球和内切球的半径之比是(
)。答案:3:122.已知定直线l及定点A(A不在l上),n为过点A且垂直于l的直线,设N为l上任意一点,线段AN的垂直平分线交n于B,点B关于AN的对称点为P,求证:点P的轨迹为抛物线.答案:证明:如图所示,建立平面直角坐标系,并且连结PA,PN,NB.由题意知PB垂直平分AN,且点B关于AN的对称点为P,∴AN也垂直平分PB.∴四边形PABN为菱形,∴PA=PN.∵AB⊥l,∴PN⊥l.故点P符合抛物线上点的条件:到定点A的距离和到定直线l的距离相等,∴点P的轨迹为抛物线.23.某处有供水龙头5个,调查表明每个水龙头被打开的可能性为,随机变量ξ表示同时被打开的水龙头的个数,则P(ξ=3)为A.0.0081B.0.0729C.0.0525D.0.0092答案:A解析:本题考查n次独立重复试验中,恰好发生k次的概率.对5个水龙头的处理可视为做5次试验,每次试验有2种可能结果:打开或未打开,相应的概率为0.1或1-0.1="0.9."根据题意ξ~B(5,0.1),从而P(ξ=3)=(0.1)3(0.9)2=0.0081.24.若实数X、少满足,则的范围是()
A.[0,4]
B.(0,4)
C.(-∝,0]U[4,+∝)
D.(-∝,0)U(4,+∝))答案:D25.将参数方程x=1+2cosθy=2sinθ(θ为参数)化成普通方程为
______.答案:由题意得,x=1+2cosθy=2sinθ⇒x-1=2cosθy=2sinθ,将参数方程的两个等式两边分别平方,再相加,即可消去含θ的项,所以有(x-1)2+y2=4.26.已知直线l1,l2的夹角平分线所在直线方程为y=x,如果l1的方程是ax+by+c=0(ab>0),那么l2的方程是()
A.bx+ay+c=0
B.ax-by+c=0
C.bx+ay-c=0
D.bx-ay+c=0答案:A27.棱长为2的正方体ABCD-A1B1C1D1中,BC1•B1D1=()A.22B.4C.-22D.-4答案:棱长为2的正方体ABCD-A1B1C1D1中,BC1与
B1D1的夹角等于BC1与BD的夹角,等于60°.∴BC1•B1D1=22×22cos60°=4,故选B.28.方程|x|-1=2y-y2表示的曲线为()A.两个半圆B.一个圆C.半个圆D.两个圆答案:两边平方整理得:(|x|-1)2=2y-y2,化简得(|x|-1)2+(y-1)2=1,由|x|-1≥0得x≥1或x≤-1,当x≥1时,方程为(x-1)2+(y-1)2=1,表示圆心为(1,1)且半径为1的圆的右半圆;当x≤1时,方程为(x+1)2+(y-1)2=1,表示圆心为(-1,1)且半径为1的圆的右半圆综上所述,得方程|x|-1=2y-y2表示的曲线为为两个半圆故选:A29.气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22
(℃)”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):
①甲地:5个数据的中位数为24,众数为22;
②乙地:5个数据的中位数为27,总体均值为24;
③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8;
则肯定进入夏季的地区有()A.0个B.1个C.2个D.3个答案:①甲地:5个数据的中位数为24,众数为22,根据数据得出:甲地连续5天的日平均温度的记录数据可能为:22,22,24,25,26.其连续5天的日平均温度均不低于22.
②乙地:5个数据的中位数为27,总体均值为24.根据其总体均值为24可知其连续5天的日平均温度均不低于22.③丙地:5个数据中有一个数据是32,总体均值为26,根据其总体均值为24可知其连续5天的日平均温度均不低于22.则肯定进入夏季的地区有甲、乙、丙三地.故选D.30.直线x+ky=0,2x+3y+8=0和x-y-1=0交于一点,则k的值是()
A.
B.-
C.2
D.-2答案:B31.向面积为S的△ABC内任投一点P,则△PBC的面积小于S2的概率为______.答案:记事件A={△PBC的面积小于S2},基本事件空间是三角形ABC的面积,(如图)事件A的几何度量为图中阴影部分的面积(DE是三角形的中位线),因为阴影部分的面积是整个三角形面积的34,所以P(A)=阴影部分的面积三角形ABC的面积=34.故为:34.32.点M(4,)化成直角坐标为()
A.(2,)
B.(-2,-)
C.(,2)
D.(-,-2)答案:B33.已知函数y=f(n),满足f(1)=2,且f(n+1)=3f(n),n∈N+,则
f(3)的值为______.答案:∵f(1)=2,且f(n+1)=3f(n),n∈N+,∴f(2)=3f(1)=6,f(3)=f(2+1)=3f(2)=18,故为18.34.直线L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1∥L2,则a的值为(
)
A.-3
B.2
C.-3或2
D.3或-2答案:A35.判断下列各组中的两个函数是同一函数的为()A.f(x)=x3x,g(x)=x2B.f(x)=x0(x≠0),g(x)=1(x≠0)C.f(x)=x2,g(x)=xD.f(x)=|x|,g(x)=(x)2答案:A、∵f(x)=x3x,g(x)=x2,f(x)的定义域:{x|x≠0},g(x)的定义域为R,故A错误;B、f(x)=x0=1,g(x)=1,定义域都为{x|x≠1},故B正确;C、∵f(x)=x2=|x|,g(x)=x,解析式不一样,故C错误;D、∵f(x)=|x|,g(x)=x,f(x)的定义域为R,g(x)的定义域为:{x|x≥0},故D错误;故选B.36.已知集合A={2,x,y},B={2x,y2,2}且x,y≠0,若A=B,则实数x+y的值______.答案:因为集合A={2,x,y},B={2x,y2,2}且x,y≠0,所以x=y2y=2x,解得x=14y=12,所以x+y=34.故为:34.37.一圆台上底半径为5cm,下底半径为10cm,母线AB长为20cm,其中A在上底面上,B在下底面上,从AB中点M,拉一条绳子,绕圆台的侧面一周转到B点,则这条绳子最短长为______cm.答案:画出圆台的侧面展开图,并还原成圆锥展开的扇形,且设扇形的圆心为O.有图得:所求的最短距离是MB',设OA=R,圆心角是α,则由题意知,10π=αR
①,20π=α(20+R)
②,由①②解得,α=π2,R=20,∴OM=30,OB'=40,则MB'=50cm.故为:50cm.38.已知向量与的夹角为120°,若向量,且,则=()
A.2
B.
C.
D.答案:C39.在平面直角坐标系xOy中,若抛物线C:x2=2py(p>0)的焦点为F(q,1),则p+q=______.答案:抛物线C:x2=2py(p>0)的焦点坐标为(0,p2),又已知焦点为为F(q,1),∴q=0,p2=1,故p+q=2,故为2.40.求圆Cx=3+4cosθy=-2+4sinθ(θ为参数)的圆心坐标,和圆C关于直线x-y=0对称的圆C′的普通方程.答案:圆Cx=3+4cosθy=-2+4sinθ(θ为参数)
即
(x-3)2+(y+2)2=16,表示圆心坐标(3,-2),半径等于4的圆.C(3,-2)关于直线x-y=0对称的点C′(-2,3),半径还是4,故圆C′的普通方程(x+2)2+(y-3)2=16.41.由9个正数组成的矩阵
中,每行中的三个数成等差数列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比数列,给出下列判断:①第2列a12,a22,a32必成等比数列;②第1列a11,a21,a31不一定成等比数列;③a12+a32≥a21+a23;④若9个数之和等于9,则a22≥1.其中正确的个数有()
A.1个
B.2个
C.3个
D.4个答案:B42.“x2>2012”是“x2>2011”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:由于“x2>2
012”时,一定有“x2>2
011”,反之不成立.所以“x2>2
012”是“x2>2
011”的充分不必要条件.故选A.43.3科老师都布置了作业,在同一时刻4名学生都做作业的可能情况有()
A.43种
B.4×3×2种
C.34种
D.1×2×3种答案:C44.刻画数据的离散程度的度量,下列说法正确的是()
(1)应充分利用所得的数据,以便提供更确切的信息;
(2)可以用多个数值来刻画数据的离散程度;
(3)对于不同的数据集,其离散程度大时,该数值应越小.
A.(1)和(3)
B.(2)和(3)
C.(1)和(2)
D.都正确答案:C45.不等式≥0的解集为[-2,3∪[7,+∞,则a-b+c的值是(
)A.2B.-2C.8D.6答案:B解析:∵-a、b的值为-2,7中的一个,x≠c
c=3∴a-b=-(b-a)=-(-2+7)=-5a-b+c=-5+3=-2
选B评析:考察考生对不等式解集的结构特征的理解,关注不等式中等号与不等号的关系。46.(x+1)4的展开式中x2的系数为()A.4B.6C.10D.20答案:(x+1)4的展开式的通项为Tr+1=C4rxr令r=2得T3=C42x2=6x∴展开式中x2的系数为6故选项为B47.已知在一场比赛中,甲运动员赢乙、丙的概率分别为0.8,0.7,比赛没有平局.若甲分别与乙、丙各进行一场比赛,则甲取得一胜一负的概率是______.答案:根据题意,甲取得一胜一负包含两种情况,甲胜乙负丙,概率为:0.8×0.3=0.24;甲胜丙负乙,概率为:0.2×0.7=0.14;∴甲取得一胜一负的概率为0.24+0.14=0.38故为0.3848.函数f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和为a,则a的值为
______.答案:∵y=ax与y=loga(x+1)具有相同的单调性.∴f(x)=ax+loga(x+1)在[0,1]上单调,∴f(0)+f(1)=a,即a0+loga1+a1+loga2=a,化简得1+loga2=0,解得a=12故为:1249.(文)对于任意的平面向量a=(x1,y1),b=(x2,y2),定义新运算⊕:a⊕b=(x1+x2,y1y2).若a,b,c为平面向量,k∈R,则下列运算性质一定成立的所有序号是______.
①a⊕b=b⊕a;
②(ka)⊕b=a⊕(kb);
③a⊕(b⊕c)=(a⊕b)⊕c;
④a⊕(b+c)=a⊕b+a⊕c.答案:①a⊕b=(x1+x2,y1y2)=(x2+x1,y2y1)=b⊕a,故正确;②∵(ka)⊕b=(kx1+x2,ky1y2),a⊕(kb)=(x1+kx2,y1ky2),∴(ka)⊕b≠a⊕(kb),故不正确;③设c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),(a⊕b)⊕c=(x1+x2,y1y2)⊕c=(x1+x2+x3,y1y2y3),∴a⊕(b⊕c)=(a⊕b)⊕c,故正确;④设c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),a⊕b+a⊕c=(x1+x2,y1y2)+(x1+x3,y1y3)=(2x1+x2+x3,y1(y2+y3)),∴a⊕(b⊕c)≠a⊕b+a⊕c,故不正确.综上可知:只有①③正确.故为①③.50.设,,,则P,Q,R的大小顺序是(
)
A.P>Q>R
B.P>R>Q
C.Q>P>R
D.Q>R>P答案:B第3卷一.综合题(共50题)1.圆x2+y2-6x+4y+12=0与圆x2+y2-14x-2y+14=0的位置关系是______.答案:∵圆x2+y2-6x+4y+12=0化成标准形式,得(x-3)2+(y+2)2=1∴圆x2+y2-6x+4y+12=0的圆心为C1(3,-2),半径r1=1同理可得圆x2+y2-14x-2y+14=0的C2(7,1),半径r2=6∵两圆的圆心距|C1C2|=(7-3)2+(1+2)2=5∴|C1C2|=r2-r1=5,可得两圆的位置关系是内切故为:内切2.已知单位向量a,b的夹角为,那么|a+2b|=()
A.2
B.
C.2
D.4答案:B3.对于各数互不相等的整数数组(i1,i2,i3,…in)
(n是不小于2的正整数),对于任意p,q∈1,2,3,…,n,当p<q时有ip>iq,则称ip,iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,则数组(2,4,3,1)中的逆序数等于______.答案:由题意知当p<q时有ip>iq,则称ip,iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,在数组(2,4,3,1)中逆序有2,1;4,3;4,1;3,1共有4对逆序数对,故为:4.4.(选做题)方程ρ=cosθ与(t为参数)分别表示何种曲线(
)。答案:圆,双曲线5.计算机的程序设计语言很多,但各种程序语言都包含下列基本的算法语句:______,______,______,______,______.答案:计算机的程序设计语言很多,但各种程序语言都包含下列基本的算法语句:输入语句,输出语句,赋值语句,条件语句,循环语句.故为:输入语句,输出语句,赋值语句,条件语句,循环语句.6.已知l1、l2是过点P(-2,0)的两条互相垂直的直线,且l1、l2与双曲线y2-x2=1各有两个交点,分别为A1、B1和A2、B2.
(1)求l1的斜率k1的取值范围;
(2)若|A1B1|=5|A2B2|,求l1、l2的方程.答案:(1)显然l1、l2斜率都存在,否则l1、l2与曲线不相交.设l1的斜率为k1,则l1的方程为y=k1(x+2).联立得y=k1(x+2),y2-x2=1,消去y得(k12-1)x2+22k12x+2k12-1=0.①根据题意得k12-1≠0,②△1>0,即有12k12-4>0.③完全类似地有1k21-1≠0,④△2>0,即有12•1k21-4>0,⑤从而k1∈(-3,-33)∪(33,3)且k1≠±1.(2)由弦长公式得|A1B1|=1+k2112k21-4(k21-1)2.⑥完全类似地有|A2B2|=1+1k2112-4k21(k21-1)2.⑦∵|A1B1|=5|A2B2|,∴k1=±2,k2=.+22.从而l1:y=2(x+2),l2:y=-22(x+2)或l1:y=-2(x+2),l2:y=22(x+2).7.如图,AB是圆O的直径,CD是圆O的弦,AB与CD交于E点,且AE:EB=3:1、CE:ED=1:1,CD=83,则直径AB的长为______.答案:由CE:ED=1:1,CD=83,∴CE=ED=43由相交弦定理可得AE?EB=CE?ED及AE:EB=3:1∴3EB2=43?43=48解得EB=4,AE=12∴AB=AE+EB=16故为:168.从集合M={1,2,3,…,10}选出5个数组成的子集,使得这5个数的任两个数之和都不等于11,则这样的子集有______个.答案:集合{1,2,…,10}中和是11的有:1+10,2+9,3+8,4+7,5+6,选出5个不同的数组成子集,就是从这5组中分别取一个数,而每组的取法有2种,所以这样的子集有:2×2×2×2×2=32故这样的子集有32个故为:329.已知集合M={2,a,b},N={2a,2,b2}且M=N.求a、b的值.答案:由M=N及集合中元素的互异性,得a=2ab=b2
①或a=b2b=2a
②解①得:a=0b=1或a=0b=0,解②得:a=14b=12,当a=0b=0时,违背了集合中元素的互异性,所以舍去,故a、b的值为a=0b=1或a=14b=12.10.已知△ABC∽△DEF,且相似比为3:4,S△ABC=2cm2,则S△DEF=______cm2.答案:∵△ABC∽△DEF,且相似比为3:4∴S△ABC:S△DEF=9:16∴S△DEF=329.故为:329.11.已知函数y=ax2+bx+c,如果a>b>c,且a+b+c=0,则它的图象是(
)
A.
B.
C.
D.
答案:D12.设集合A={(x,y)|x+y=6,x∈N,y∈N},使用列举法表示集合A.答案:集合A中的元素是点,点的横坐标,纵坐标都是自然数,且满足条件x+y=6.所以用列举法表示为:A={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.13.已知空间四边形ABCD的对角线为AC、BD,设G是CD的中点,则+(+)等于()
A.
B.
C.
D.
答案:C14.已知平面内一动点P到F(1,0)的距离比点P到y轴的距离大1.
(1)求动点P的轨迹C的方程;
(2)过点F的直线交轨迹C于A,B两点,交直线x=-1于M点,且MA=λ1AF,MB=λ2BF,求λ1+λ2的值.答案:(1)由题意知动点P到F(1,0)的距离与直线x=-1的距离相等,由抛物线定义知,动点P在以F(1,0)为焦点,以直线x=-1为准线的抛物线上,方程为y2=4x.(2)由题设知直线的斜线存在,设直线AB的方程为:y=k(x-1),设A(x1,y1),B(x2,y2),由y=k(x-1)y2=4x,得k2x2-2(k2+2)x+k2=0,∵x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得k2x2-2(k2+2)x+k2=0,∴x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得λ1=-1-2x2-1,同理λ2=-1-2x2-1,∴λ1+λ2=-2-2(1x1-1+1x2-1)=0.15.已知实数x、y、z满足x+2y+3z=1,则x2+y2+z2的最小值为______.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2+)(12+22+32)故x2+y2+z2≥114,当且仅当x1=y2=z3,即:x2+y2+z2的最小值为114.故为:11416.用数学归纳法证明“<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是()
A.2k-1
B.2k-1
C.2k
D.2k+1答案:C17.把一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,则点(a,b)在直线x+y=5左下方的概率为()A.16B.56C.112D.1112答案:由题意知本题是一个古典概型,试验发生包含的事件数是6×6=36种结果,满足条件的事件是点(a,b)在直线x+y=5左下方即a+b<5,可以列举出所有满足的情况(1,1)(1,2)(1,3),(2,1),(2,2)(3,1)共有6种结果,∴点在直线的下方的概率是636=16故选A.18.①附中高一年级聪明的学生;
②直角坐标系中横、纵坐标相等的点;
③不小于3的正整数;
④3的近似值;
考察以上能组成一个集合的是______.答案:因为直角坐标系中横、纵坐标相等的点是确定的,所以②能构成集合;不小于3的正整数是确定的,所以③能构成集合;附中高一年级聪明的学生,不是确定的,原因是没法界定什么样的学生为聪明的,所以①不能构成集合;3的近似值没说明精确到哪一位,所以是不确定的,故④不能构成集合.19.若x~N(2,σ2),P(0<x<4)=0.8,则P(0<X<2)=______.答案:∵X~N(2,σ2),∴正态曲线关于x=2对称,∵P(0<X<4)=0.8,∴P(0<X<2)=12P(0<X<4)=0.4,故为:0.4.20.(1)已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;
(2)已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1,以下结论正确的是()
A.(1)的假设错误,(2)的假设正确
B.(1)与(2)的假设都正确
C.(1)的假设正确,(2)的假设错误
D.(1)与(2)的假设都错误答案:A21.有以下四个结论:
①lg(lg10)=0;
②lg(lne)=0;
③若e=lnx,则x=e2;
④ln(lg1)=0.
其中正确的是()
A.①②
B.①②③
C.①②④
D.②③④答案:A22.已知a>b>0,则3a,3b,4a由小到大的顺序是______.答案:由于指数函数y=3x在R上是增函数,且a>b>0,可得3a>3b.由于幂函数y=xa在(0,+∞)上是增函数,故有3a<4a,故3a,3b,4a由小到大的顺序是3b<3a<4a.,故为3b<3a<4a.23.4位学生与2位教师并坐合影留念,针对下列各种坐法,试问:各有多少种不同的坐法?(用数字作答)
(1)教师必须坐在中间;
(2)教师不能坐在两端,但要坐在一起;
(3)教师不能坐在两端,且不能相邻.答案:(1)先排4位学生,有A44种坐法,2位教师坐在中间,可以交换位置,有A22种坐法,则共有A22A44=48种坐法;(2)先排4位学生,有A44种坐法,2位教师坐在一起,将其看成一个整体,可以交换位置,有2种坐法,将这个“整体”插在4个学生的空位中,又由教师不能坐在两端,则有3个空位可选,则共有2A44A31=144种坐法;(3)先排4位学生,有A44种坐法,教师不能相邻,将其依次插在4个学生的空位中,又由教师不能坐在两端,则有3个空位可选,有A32种坐法,则共有A44A32=144种坐法..24.直线l过椭圆x24+y23=1的右焦点F2并与椭圆交与A、B两点,则△ABF1的周长是()A.4B.6C.8D.16答案:根据题意结合椭圆的定义可得:|AF1|+|AF2|=2a=4,,并且|BF1|+|BF2|=2a=4,又因为|AF2|+|BF2|=|AB|,所以△ABF1的周长为:|AF1|+|BF1|+|AB|=|AF1|+|AF2|+|BF1|+|BF2|=4a=8.故选C.25.已知两组样本数据x1,x2,…xn的平均数为h,y1,y2,…ym的平均数为k,则把两组数据合并成一组以后,这组样本的平均数为()
A.
B.
C.
D.答案:B26.点M(2,-3,1)关于坐标原点对称的点是()
A.(-2,3,-1)
B.(-2,-3,-1)
C.(2,-3,-1)
D.(-2,3,1)答案:A27.已知a=(2,3),b=(1,2),(a+λb)⊥(a-b),则λ=______.答案:∵a=(2,3),b=(1,2),∴a2=(2,3)•(2,3)=4+9=13,b2=(1,2)•(1,2)=1+4=5∵(a+λb)⊥(a-b)∴(a+λb)•(a-b)=a2-λb2=13-5λ=0∴λ=135故为:13528.已知a,b,c是空间的一个基底,且实数x,y,z使xa+yb+zc=0,则x2+y2+z2=______.答案:∵a,b,c是空间的一个基底∴a,b,c两两不共线∵xa+yb+zc=0∴x=y=z=0∴x2+y2+z2=0故为:029.若A,B,C是直线存在实数x使得,实数x为()
A.-1
B.0
C.
D.答案:A30.若直线l经过点M(1,5),且倾斜角为2π3,则直线l的参数方程为______.答案:由于过点(a,b)倾斜角为α的直线的参数方程为x=a+t•cosαy=b+t•sinα(t是参数),∵直线l经过点M(1,5),且倾斜角为2π3,故直线的参数方程是x=1+t•cos2π3y=5+t•sin2π3即x=1-12ty=5+32t(t为参数).故为:x=1-12ty=5+32t(t为参数).31.化简:AB+CD+BC=______.答案:如图:AB+CD+BC=AB+BC+CD=AC+CD=AD.故为:AD.32.若不等式的解集,则实数=___________.答案:-433.对于一组数据的两个函数模型,其残差平方和分别为153.4
和200,若从中选取一个拟合程度较好的函数模型,应选残差平方和为______的那个.答案:残差的平方和是用来描述n个点与相应回归直线在整体上的接近程度残差的平方和越小,拟合效果越好,由于153.4<200,故拟合效果较好的是残差平方和是153.4的那个模型.故为:153.4.34.口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以ξ表示取出的球的最大号码,则Eξ的值是()A.4B.4.5C.4.75D.5答案:由题意,ξ的取值可以是3,4,5ξ=3时,概率是1C35=110ξ=4时,概率是C23C35=310(最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年自行车制动器行业市场现状供需分析及投资评估规划分析研究报告
- 2024-2030年自动恒温烘箱市场前景分析及投资策略与风险管理研究报告
- 2024-2030年聚苯硫醚特种工程塑料行业市场现状供需分析及投资评估规划分析研究报告
- 2024-2030年纳米技术的飞机涂料行业市场现状供需分析及投资评估规划分析研究报告
- 2024-2030年红外收发器行业市场深度分析及发展策略研究报告
- 2024-2030年米酒项目融资商业计划书
- 产学研合作合同协议
- 二手房购房协议书文化用途
- 家居清洁服务协议
- 综合布线工程合作协议样本
- 2024年孝感安陆市浩源自来水公司招聘笔试参考题库附带答案详解
- 车间物料配送制度
- 机器视觉原理与应用 课件 4 机器视觉测量系统
- 窗帘采购项目采购需求
- 意大利时尚之都1
- 2024年焊工(初级)证考试题库及答案
- 廉洁风险点及控制措施
- 2024年广西来宾产业投资集团有限公司招聘笔试参考题库含答案解析
- 项目管理甘特图课件
- 2024年高校教师资格证题库含答案(典型题)
- 2024年甘肃省普通高中信息技术会考试题(含24套)
评论
0/150
提交评论