2023年湘西民族职业技术学院高职单招(数学)试题库含答案解析_第1页
2023年湘西民族职业技术学院高职单招(数学)试题库含答案解析_第2页
2023年湘西民族职业技术学院高职单招(数学)试题库含答案解析_第3页
2023年湘西民族职业技术学院高职单招(数学)试题库含答案解析_第4页
2023年湘西民族职业技术学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年湘西民族职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.用“辗转相除法”求得和的最大公约数是(

)A.B.C.D.答案:D解析:是和的最大公约数,也就是和的最大公约数2.(几何证明选讲选做题)如图,△ABC的外角平分线AD交外接圆于D,BD=4,则CD=______.答案:∵A、B、C、D共圆,∴∠DAE=∠BCD.又∵CD=CD,∴∠DAC=∠DBC.而∠DAE=∠DAC,∴∠DBC=∠DCB.∴CD=BD=4.故为4.3.已知a为常数,a>0且a≠1,指数函数f(x)=ax和对数函数g(x)=logax的图象分别为C1与C2,点M在曲线C1上,线段OM(O为坐标原点)与曲线C1的另一个交点为N,若曲线C2上存在一点P,且点P的横坐标与点M的纵坐标相等,点P的纵坐标是点N的横坐标2倍,则点P的坐标为______.答案:设点M的坐标为(m,am),点N的坐标为(n,an)∵点P的横坐标与点M的纵坐标相等∴点P的坐标为(am,m)∵点P的纵坐标是点N的横坐标2倍,∴m=2n而O、M、N三点共线则amm=ann=

am2m2解得:am=4即m=loga4∴点P的坐标为(4,loga4)故为:(4,loga4)4.集合M={(x,y)|xy≤0,x,y∈R}的意义是()A.第二象限内的点集B.第四象限内的点集C.第二、四象限内的点集D.不在第一、三象限内的点的集合答案:∵xy≤0,∴xy<0或xy=0当xy<0时,则有x<0y>0或x>0y<0,点(x,y)在二、四象限,当xy=0时,则有x=0或y=0,点(x,y)在坐标轴上,故选D.5.已知平面上的向量PA、PB满足|PA|2+|PB|2=4,|AB|=2,设向量PC=2PA+PB,则|PC|的最小值是

______.答案:|PA|2+|PB|2=4,|AB|=2∴|PA|2+|PB|2=|AB|2∴PA?PB=0∴PC2=4PA2+4PA?PB+PB2=3PA2+4≥4∴|PC|≥2故为2.6.如图,AB是半圆O的直径,C是AB延长线上一点,CD切半圆于D,CD=4,AB=3BC,则AC的长是______.答案:∵CD是圆O的切线,∴由切割线定理得:CD2=CB×CA,∵AB=3BC,设BC=x,由CA=4x,又CD=4∴16=x×4x,x=2∴则AC的长是8.故填:8.7.若一辆汽车每天行驶的路程比原来多19km,则该汽车在8天内行驶的路程s(km)就超过2200km;若它每天行驶的路程比原来少12km,则它行驶同样的路程s(km)就得花9天多的时间。这辆汽车原来每天行驶的路程(km)的范围是(

A.(259,260)

B.(258,260)

C.(257,260)

D.(256,260)答案:D8.x+y+z=1,则2x2+3y2+z2的最小值为()

A.1

B.

C.

D.答案:C9.命题:“方程X2-2=0的解是X=±2”中使用逻辑联系词的情况是()A.没有使用逻辑连接词B.使用了逻辑连接词“且”C.使用了逻辑连接词“或”D.使用了逻辑连接词“非”答案:命题:“方程X2-2=0的解是X=±2”可以化为:“方程X2-2=0的解是X=2,或X=-2”故命题:“方程X2-2=0的解是X=±2”中使用逻辑联系词为:或故选C10.已知直线的参数方程为x=1+ty=3+2t.(t为参数),圆的极坐标方程为ρ=2cosθ+4sinθ.

(I)求直线的普通方程和圆的直角坐标方程;

(II)求直线被圆截得的弦长.答案:(I)直线的普通方程为:2x-y+1=0;圆的直角坐标方程为:(x-1)2+(y-2)2=5(4分)(II)圆心到直线的距离d=55,直线被圆截得的弦长L=2r2-d2=4305(10分)11.已知抛物线C:y2=4x的焦点为F,点A在抛物线C上运动.

(1)当点A,P满足AP=-2FA,求动点P的轨迹方程;

(2)设M(m,0),其中m为常数,m∈R+,点A到M的距离记为d,求d的最小值.答案:(1)设动点P的坐标为(x,y),点A的坐标为(xA,yA),则AP=(x-xA,y-yA),因为F的坐标为(1,0),所以FA=(xA-1,yA),因为AP=-2FA,所以(x-,y-yA)=-2(xA-1,yA).所以x-xA=-2(xA-1),y-yA=-2yA,所以xA=2-x,yA=-y代入y2=4x,得到动点P的轨迹方程为y2=8-4x;(2)由题意,d=(m-xA)2+yA2=(m-xA)2+4xA=(xA+2-m)2-4-4m∴m-2≤0,即0<m≤2,xA=0时,dmin=m;m-2>0,即m>2,xA=m-2时,dmin=-4-4m.12.(文)将图所示的一个直角三角形ABC(∠C=90°)绕斜边AB旋转一周,所得到的几何体的正视图是下面四个图形中的(

A.

B.

C.

D.

答案:B13.在平面直角坐标系xOy中,已知圆C:x=5cosθ-1y=5sinθ+2(θ为参数)和直线l:x=4t+6y=-3t-2(t为参数),则直线l与圆C相交所得的弦长等于______.答案:∵在平面直角坐标系xOy中,已知圆C:x=5cosθ-1y=5sinθ+2(θ为参数),∴(x+1)2+(y-2)2=25,∴圆心为(-1,2),半径为5,∵直线l:x=4t+6y=-3t-2(t为参数),∴3x+4y-10=0,∴圆心到直线l的距离d=|-3+8-10|5=1,∴直线l与圆C相交所得的弦长=2×52-1=46.故为46.14.(坐标系与参数方程选做题)点P(-3,0)到曲线x=t2y=2t(其中参数t∈R)上的点的最短距离为______.答案:设点Q(t2,2t)为曲线上的任意一点,则|PQ|=(t2+3)2+(2t)2=(t2+5)2-16≥52-16=3,当且仅当t=0取等号,此时Q(0,0).故点P(-3,0)到曲线x=t2y=2t(其中参数t∈R)上的点的最短距离为3.故为3.15.如图⊙0的直径AD=2,四边形ABCD内接于⊙0,直线MN切⊙0于点B,∠MBA=30°,则AB的长为______.答案:连BD,则∠MBA=∠ADB=30°,在直角三角形ABD中sin30°=ABAD,∴AB=12×2=1故为:116.抛物线顶点在坐标原点,以y轴为对称轴,过焦点且与y轴垂直的弦长为16,则抛物线方程为______.答案:∵过焦点且与对称轴y轴垂直的弦长等于p的2倍.∴所求抛物线方程为x2=±16y.故为:x2=±16y.17.若直线x=1的倾斜角为α,则α()A.等于0B.等于π4C.等于π2D.不存在答案:由题意知直线的斜率不存在,故倾斜角α=π2,故选C.18.已知曲线C上的动点P(x,y)满足到点F(0,1)的距离比到直线l:y=-2的距离小1.

(Ⅰ)求曲线C的方程;

(Ⅱ)动点E在直线l上,过点E分别作曲线C的切线EA,EB,切点为A、B.

(ⅰ)求证:直线AB恒过一定点,并求出该定点的坐标;

(ⅱ)在直线l上是否存在一点E,使得△ABM为等边三角形(M点也在直线l上)?若存在,求出点E坐标,若不存在,请说明理由.答案:(Ⅰ)曲线C的方程x2=4y(5分)(Ⅱ)(ⅰ)设E(a,-2),A(x1,x214),B(x2,x224),∵y=x24∴y′=12x过点A的抛物线切线方程为y-x214=12x1(x-x1),∵切线过E点,∴-2-x214=12x1(a-x1),整理得:x12-2ax1-8=0同理可得:x22-2ax2-8=0,∴x1,x2是方程x2-2ax-8=0的两根,∴x1+x2=2a,x1•x2=-8可得AB中点为(a,a2+42)又kAB=y1-y2x1-x2=x214-x224x1-x2=x1+x24=a2,∴直线AB的方程为y-(a22+2)=a2(x-a)即y=a2x+2,∴AB过定点(0,2)(10分)(ⅱ)由(ⅰ)知AB中点N(a,a2+42),直线AB的方程为y=a2x+2当a≠0时,则AB的中垂线方程为y-a2+42=-2a(x-a),∴AB的中垂线与直线y=-2的交点M(a3+12a4,-2)∴|MN|2=(a3+12a4-a)2+(-2-a2+42)2=116(a2+8)2(a2+4)∵|AB|=1+a24(x1+x2)2-4x1x2=(a2+4)(a2+8)若△ABM为等边三角形,则|MN|=32|AB|,∴116(a2+8)2(a2+4)=34(a2+4)(a2+8),解得a2=4,∴a=±2,此时E(±2,-2),当a=0时,经检验不存在满足条件的点E综上可得:满足条件的点E存在,坐标为E(±2,-2).(15分)19.知x、y、z均为实数,

(1)若x+y+z=1,求证:++≤3;

(2)若x+2y+3z=6,求x2+y2+z2的最小值.答案:(1)证明略(2)x2+y2+z2的最小值为解析:(1)证明

因为(++)2≤(12+12+12)(3x+1+3y+2+3z+3)=27.所以++≤3.

7分(2)解

因为(12+22+32)(x2+y2+z2)≥(x+2y+3z)2=36,即14(x2+y2+z2)≥36,所以x2+y2+z2的最小值为.

14分20.若a<b<c,x<y<z,则下列各式中值最大的一个是()

A.ax+cy+bz

B.bx+ay+cz

C.bx+cy+az

D.ax+by+cz答案:D21.已知函数f(x)=ax,(a>0,a≠1)的图象经过点P(12,12),则常数a的值为()A.2B.4C.12D.14答案:∵函数f(x)=ax,(a>0,a≠1)的图象经过点P(12,12),∴a12=12,?a=14.故选D.22.若kxy-8x+9y-12=0表示两条直线,则实数k的值及两直线所成的角分别是()

A.8,60°

B.4,45°

C.6,90°

D.2,30°答案:C23.已知动点P(x,y)满足(x+2)2+y2-(x-2)2+y2=2,则动点P的轨迹是______.答案:∵(x+2)2+y2-(x-2)2+y2=2,即动点P(x,y)到两定点(-2,0),(2,0)的距离之差等于2,由双曲线定义知动点P的轨迹是双曲线的一支(右支).:双曲线的一支(右支).24.已知椭圆的短轴长等于2,长轴端点与短轴端点间的距离等于5,则此椭圆的标准方程是______.答案:由题意可得2b=2a2+b2=(5)2,解得b=1a=2.故椭圆的标准方程是x24+y2=1或y24+x2=1.故为x24+y2=1或y24+x2=1.25.函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…xn,使得f(x1)x1=f(x2)x2=…=f(xn)xn,则n的取值范围为()A.{2,3}B.{2,3,4}C.{3,4}D.{3,4,5}答案:令y=f(x),y=kx,作直线y=kx,可以得出2,3,4个交点,故k=f(x)x(x>0)可分别有2,3,4个解.故n的取值范围为2,3,4.故选B.26.不等式0.52x>0.5x-1的解集为______.答案:由于函数y=0.5x

是R上的减函数,故由0.52x>0.5x-1可得2x<x-1,解得x<-1.故不等式0.52x>0.5x-1的解集为(-∞,-1),故为(-∞,-1).27.从装有两个白球和两个黄球的口袋中任取2个球,以下给出了三组事件:

①至少有1个白球与至少有1个黄球;

②至少有1个黄球与都是黄球;

③恰有1个白球与恰有1个黄球.

其中互斥而不对立的事件共有()组.

A.0

B.1

C.2

D.3答案:A28.极坐标系中,若A(3,π3),B(-3,π6),则s△AOB=______(其中O是极点).答案:∵极坐标系中,A(3,π3),B(-3,π6),3cosπ3=32,3sinπ3=332;-3cosπ6=-332,-3sinπ6=-32.∴在平面直角坐标系中,A(32,332),B(-332,-32),∴OA=(32,332),OB=(-332,-32),∴|OA|

=

3,|OB|=3,∴cos<OA,OB>=-934-93494+274=-32,∴sin<OA,OB>=1-34=12,∴S△AOB=12×3×3×12=94.故为:94.29.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3个小时,这种细菌由1个可繁殖成()

A.511个

B.512个

C.1023个

D.1024个答案:B30.已知:如图,⊙O1与⊙O2外切于C点,AB一条外公切线,A、B分别为切点,连接AC、BC.设⊙O1的半径为R,⊙O2的半径为r,若tan∠ABC=,则的值为()

A.

B.

C.2

D.3

答案:C31.如图,△ABC内接于圆⊙O,CT切⊙O于C,∠ABC=100°,∠BCT=40°,则∠AOB=()

A.30°

B.40°

C.80°

D.70°

答案:C32.已知a,b,c,d都是正数,S=aa+b+d+bb+c+a+cc+d+a+dd+a+c,则S的取值范围是______.答案:∵a,b,c,d都是正数,∴S=aa+b+d+bb+c+a+cc+d+a+dd+a+c>aa+b+c+d+ba+b+c+d+ca+b+c+d+da+b+c+d=a+b+c+da+b+c+d=1;S=aa+b+d+bb+c+a+cc+d+a+dd+a+c<aa+b+bb+a+cc+d+dd+c=2∴1<S<2.故为:(1,2)33.(几何证明选讲)如图,点A、B、C都在⊙O上,过点C的切线交AB的延长线于点D,若AB=5,BC=3,CD=6,则线段AC的长为______.答案:∵过点C的切线交AB的延长线于点D,∴DC是圆的切线,DBA是圆的割线,根据切割线定理得到DC2=DB?DA,∵AB=5,CD=6,∴36=DB(DB+5)∴DB=4,由题意知∠D=∠D,∠BCD=∠A∴△DBC∽△DCA,∴DCDA=BCCA∴AC=3×96=4.5,故为:4.534.一名同学先后投掷一枚骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在直角坐标系xOy中,以(x,y)为坐标的点落在直线2x+y=8上的概率为()A.16B.112C.536D.19答案:由题意知本题是一个古典概型,∵试验发生包含的事件是先后掷两次骰子,共有6×6=36种结果,满足条件的事件是(x,y)为坐标的点落在直线2x+y=8上,当x=1,y=6;x=2,y=4;x=3,y=2,共有3种结果,∴根据古典概型的概率公式得到P=336=112,故选B.35.如图,在正方体ABCD-A1B1C1D1中,E为AB的中点.

(1)求异面直线BD1与CE所成角的余弦值;

(2)求二面角A1-EC-A的余弦值.答案:以D为原点,DC为y轴,DA为x轴,DD1为Z轴建立空间直角坐标系,…(1分)则A1(1,0,1),B(1,1,0),C(0,1,0),D1(0,0,1),E(1,12,0),…(2分)(1)BD1=(-1,-1,1),CE=(1,-12,0)…(1分)cos<BD1,CE>=-1515,…(1分)所以所求角的余弦值为1515…(1分)(2)D1D⊥平面AEC,所以D1D为平面AEC的法向量,D1D=(0,0,1)…(1分)设平面A1EC法向量为n=(x,y,z),又A1E=(0,12,-1),A1C=(-1,1,-1),n•A1E=0n•A1C=0即12y-z=0-x+y-z=0,取n=(1,2,1),…(3分)所以cos<DD1,n>=66…(2分)36.复数z=sin1+icos2在复平面内对应的点位于第______象限.答案:z对应的点为(sin1,cos2)∵1是第一象限的角,2是第二象限的角∵sin1>0,cos2<0所以(sin1,cos2)在第四象限故为:四37.在空间直角坐标系中,已知A,B两点的坐标分别是A(2,3,5),B(3,1,4),则这两点间的距离|AB|=______.答案:∵A,B两点的坐标分别是A(2,3,5),B(3,1,4),∴|AB|=(3-2)2+(1-3)2+(4-5)2,=1+4+1=6,故为:6.38.在我市新一轮农村电网改造升级过程中,需要选一个电阻调试某村某设备的线路,但调试者手中必有阻值分别为0.5KΩ,1KΩ,1.3KΩ,2KΩ,3KΩ,5KΩ,5.5KΩ等七种阻值不等的定值电阻,他用分数法进行优选试验时,依次将电阻从小到大安排序号,如果第1个试点与第2个试点比较,第1个试点是一个好点,则第3个试点值的阻值为[

]A、1KΩ

B、1.3KΩ

C、5KΩ

D、1KΩ或5KΩ答案:C39.若不等式的解集,则实数=___________.答案:-440.证明不等式的最适合的方法是()

A.综合法

B.分析法

C.间接证法

D.合情推理法答案:B41.在平行六面体ABCD-A′B′C′D′中,若AC′=xAB+2yBC-3zC′C,则x+y+z等于______.答案:根据向量的加法法则可得,AC′=AC+CC′=AB+BC+CC′∵AC′=xAB+2yBC-3zC′C∴x=1,2y=1,-3z=1∴x=1,y=12,z=-13∴x+y+z=1+12-13=76故为:7642.(理)在极坐标系中,半径为1,且圆心在(1,0)的圆的方程为()

A.ρ=sinθ

B.ρ=cosθ

C.ρ=2sinθ

D.ρ=2cosθ答案:D43.过抛物线y2=4x的焦点作一条直线与抛物线相交于A、B两点,它们的横坐标之和等于5,则这样的直线()

A.有且仅有一条

B.有且仅有两条

C.有无穷多条

D.不存在答案:B44.在研究打酣与患心脏病之间的关系中,通过收集数据、整理分析数据得“打酣与患心脏病有关”的结论,并且有99%以上的把握认为这个结论是成立的.下列说法中正确的是()

A.100个心脏病患者中至少有99人打酣

B.1个人患心脏病,则这个人有99%的概率打酣

C.100个心脏病患者中一定有打酣的人

D.100个心脏病患者中可能一个打酣的人都没有答案:D45.过点A(1,4)且在x、y轴上的截距相等的直线共有______条.答案:当直线过坐标原点时,方程为y=4x,符合题意;当直线不过原点时,设直线方程为x+y=a,代入A的坐标得a=1+4=5.直线方程为x+y=5.所以过点A(1,4)且在x、y轴上的截距相等的直线共有2条.故为2.46.计算:x10÷x5=______.答案:根据有理数指数幂的运算性质:x10÷x5=x5故为:x547.椭圆x216+y27=1上的点M到左准线的距离为53,则点M到左焦点的距离为()A.8B.5C.274D.54答案:根据椭圆的第二定义可知M到左焦点F1的距离与其到左准线的距离之比为离心率,依题意可知a=4,b=7∴c=3∴e=ca=34,∴根据椭圆的第二定义有:MF

1d=34∴M到左焦点的距离为MF1=53×34=54故选D.48.甲、乙两人投篮,投中的概率分别为0.6,0.7,若两人各投2次,则两人都投中1次的概率为______.答案:两人都投中1次的概率为C210.6×0.4×C210.7×0.3=0.2016故为:0.201649.为如图所示的四块区域涂色,要求相邻区域不能同色,现有3种不同颜色可供选择,则共有______种不同涂色方案(要求用具体数字作答).答案:由题意,首先给左上方一个涂色,有三种结果,再给最左下边的上面的涂色,有两种结果,右上方,如果与左下边的同色,则右方的涂色,有两种结果,右上方,如果与左下边的不同色,则右方的涂色,有1种结果,∴根据分步计数原理得到共有3×2×(2+1)=18种结果,故为18.50.若3π2<α<2π,则直线xcosα+ysinα=1必不经过()A.第一象限B.第二象限C.第三象限D.第四象限答案:令x=0,得y=sinα<0,令y=0,得x=cosα>0,直线过(0,sinα),(cosα,0)两点,因而直线不过第二象限.故选B第2卷一.综合题(共50题)1.设a、b为单位向量,它们的夹角为90°,那么|a+3b|等于()A.7B.10C.13D.4答案:∵a,b它们的夹角为90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10,|a+3b|=10.故选B.2.如图,AD是圆内接三角形ABC的高,AE是圆的直径,AB=6,AC=3,则AE×AD等于

______.答案:∵AE是直径∴∠ABE=∠ADC=90°∵∠E=∠C∴△ABE∽△ADC∴ABAD=AEAC∴AE×AD=AB?AC=32故为32.3.已知复数(m2-5m+6)+(m2-3m)i是纯虚数,则实数m=______.答案:当m2-5m+6=0m2-3m≠0时,即m=2或m=3m≠0且m≠3⇒m=2时复数z为纯虚数.故为:2.4.已知直线l过点P(2,1)且与x轴、y轴的正半轴分别交于A、B两点,O为坐标原点,则三角形OAB面积的最小值为______.答案:设A(a,0)、B(0,b),a>0,b>0,AB方程为xa+

yb=1,点P(2,1)代入得2a+1b=1≥22ab,∴ab≥8

(当且仅当a=4,b=2时,等号成立),故三角形OAB面积S=12

ab≥4,故为4.5.某科目考试有30道题每小题有三个选项,每题2分,另有20道题,每题有四个选项每题3分,每题只有一个答案,某人随机去选答案,则平均能得______分.答案:由题意,30道题每小题有三个选项,每题2分,每题只有一个,某人随机去选,则可得2×30×13=20分;20道题,每题有四个选项每题3分,每题只有一个,某人随机去选,则可得3×20×14=15分故平均能得35分故为:35分.6.与

向量

=(2,-1,2)共线且满足方程=-18的向量为()

A.不存在

B.-2

C.(-4,2,-4)

D.(4,-2,4)答案:D7.已知空间四点A(4,1,3),B(2,3,1),C(3,7,-5),D(x,-1,3)共面,则x的值为[

]A

.4

B.1

C.10

D.11答案:D8.已知f(x+1)=x2+2x+3,则f(2)的值为______.答案:由f(x+1)=x2+2x+3,得f(1+1)=12+2×1+3=6,故为:6.9.回归直线方程必定过点()A.(0,0)B.(.x,0)C.(0,.y)D.(.x,.y)答案:∵线性回归方程一定过这组数据的样本中心点,∴线性回归方程y=bx+a表示的直线必经过(.x,.y).故选D.10.一段双行道隧道的横截面边界由椭圆的上半部分和矩形的三边组成,如图所示.一辆卡车运载一个长方形的集装箱,此箱平放在车上与车同宽,车与箱的高度共计4.2米,箱宽3米,若要求通过隧道时,车体不得超过中线.试问这辆卡车是否能通过此隧道,请说明理由.答案:建立如图所示的坐标系,则此隧道横截面的椭圆上半部分方程为:x225+y24=1,y≥0.令x=3,则代入椭圆方程,解得y=1.6,因为1.6+3=4.6>4.2,所以,卡车能够通过此隧道.11.如图,△PAB所在的平面α和梯形ABCD所在的平面β互相垂直,且AD⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,则点P在平面α内的轨迹是()A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案:由AD⊥α,可得AD⊥AP,tan∠ADP=APAD,四边形ABCD是梯形,则AD∥BC,可得BC⊥α,BC⊥BP,则tan∠BCP=BPBC,又由tan∠ADP+2tan∠BCP=10,且AD=4,BC=8,可得AP+BP=40,又由AB=6,则AP+BP>AB,故P在平面α内的轨迹是椭圆的一部分,故选B.12.若a2+b2=c2,求证:a,b,c不可能都是奇数.答案:证明:假设a,b,c都是奇数,则a2,b2,c2都是奇数,得a2+b2为偶数,而c2为奇数,即a2+b2≠c2,这与a2+b2=c2相矛盾,所以假设不成立,故原命题成立.13.已知不等式a≤对x取一切负数恒成立,则a的取值范围是____________.答案:a≤2解析:要使a≤对x取一切负数恒成立,令t=|x|>0,则a≤.而≥=2,∴a≤2.14.已知双曲线的渐近线方程为2x±3y=0,F(0,-5)为双曲线的一个焦点,则双曲线的方程为()

A.

B.

C.

D.答案:B15.用反证法证明:若整系数一元二次方程ax2+bx+c=0(a≠0)有有理数根,那么b、c中至少有一个偶数时,下列假设正确的是()

A.假设a、b、c都是偶数

B.假设a、b、c都不是偶数

C.假设a、b、c至多有一个偶数

D.假设a、b、c至多有两个偶数答案:B16.某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:

方案1:运走设备,此时需花费4000元;

方案2:建一保护围墙,需花费1000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56

000元;

方案3:不采取措施,此时,当两河流都发生洪水时损失达60000元,只有一条河流发生洪水时,损失为10000元.

(1)试求方案3中损失费ξ(随机变量)的分布列;

(2)试比较哪一种方案好.答案:(1)在方案3中,记“甲河流发生洪水”为事件A,“乙河流发生洪水”为事件B,则P(A)=0.25,P(B)=0.18,所以,有且只有一条河流发生洪水的概率为P(A?.B+.A?B)=P(A)?P(.B)+P(.A)?P(B)=0.34,两河流同时发生洪水的概率为P(A?B)=0.045,都不发生洪水的概率为P(.A?.B)=0.75×0.82=0.615,设损失费为随机变量ξ,则ξ的分布列为:(2)对方案1来说,花费4000元;对方案2来说,建围墙需花费1000元,它只能抵御一条河流的洪水,但当两河流都发生洪水时,损失约56000元,而两河流同时发生洪水的概率为P=0.25×0.18=0.045.所以,该方案中可能的花费为:1000+56000×0.045=3520(元).对于方案来说,损失费的数学期望为:Eξ=10000×0.34+60000×0.045=6100(元),比较可知,方案2最好,方案1次之,方案3最差.17.参数方程,(θ为参数)表示的曲线是()

A.直线

B.圆

C.椭圆

D.抛物线答案:C18.如图所示,CD为Rt△ABC斜边AB边上的中线,CE⊥CD,CE=103,连接DE交BC于点F,AC=4,BC=3.

求证:(1)△ABC∽△EDC;

(2)DF=EF.答案:证明:(1)∵CD为Rt△ABC斜边AB边上的中线∴CD=12AB=12AC2+BC2=52.∴CECD=10352=43=ACBC,∠ACB=∠DCE=90°.∴△ABC∽△EDC.(2)因为△ABC∽△EDC∴∠B=∠CDE,∠E=∠A.由CD为Rt△ABC斜边AB边上的中线得:CD=AD=DB?∠B=∠DCB,∠A=∠DCA∴∠DCB=∠CDE?DF=CF;又因为:∠DCA+∠DCB=∠DCB+∠BCE=90°;∴∠DCA=∠BCE=∠A=∠E∴CF=EF.∴DF=EF.19.点P,设△ABC的面积是△PBC的面积的m倍,那么m=()

A.1

B.

C.4

D.2答案:B20.一个盒子中装有4张卡片,上面分别写着四个函数:f1(x)=x3,f2(x)=x4,f3(x)=2|x|,f4(x)=x+1x,现从盒子中任取2张卡片,将卡片上的函数相乘得到一个新函数,所得函数为奇函数的概率是______.答案:要使所得函数为奇函数,取出的两个函数必须是一个奇函数、一个偶函数.而所给的4个函数中,有2个奇函数、2个偶函数.所有的取法种数为C24=6,满足条件的取法有2×2=4种,故所得函数为奇函数的概率是46=23,故为23.21.已知x2a2+y2b2=1(a>b>0),则a2+b2与(x+y)2的大小关系为

______.答案:由已知x2a2+y2b2=1(a>b>0)和柯西不等式的二维形式.得a2+b2=(a2+b2)(x2a2+y2b2)≥(a?xa+b?yb)2=(x+y)2.故为a2+b2≥(x+y)2.22.设曲线C的参数方程为(θ为参数),直线l的方程为x-3y+2=0,则曲线C上到直线l距离为的点的个数为()

A.1

B.2

C.3

D.4答案:B23.某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错得0分,假设这位同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响,则这名同学得300分的概率为

;这名同学至少得300分的概率为

.答案:0.228;0.564解析:得300分可能是答对第一、三题或第二、三题,其概率为0.8×0.3×0.6+0.2×0.7×0.6=0.228;答对4道题可得400分,其概率为0.8×0.7×0.6=0.336,所以至少得300分的概率为0.228+0.336=0.564。24.当a≠0时,y=ax+b和y=bax的图象只可能是()

A.

B.

C.

D.

答案:A25.直线2x+y-3=0与直线3x+9y+1=0的夹角是()

A.

B.arctan2

C.

D.答案:C26.已知两点A(2,1),B(3,3),则直线AB的斜率为()

A.2

B.

C.

D.-2答案:A27.已知正整数指数函数f(x)的图象经过点(3,27),

(1)求函数f(x)的解析式;

(2)求f(5);

(3)函数f(x)有最值吗?若有,试求出;若无,说明原因.答案:(1)设正整数指数函数为f(x)=ax(a>0,a≠1,x∈N+),因为函数f(x)的图象经过点(3,27),所以f(3)=27,即a3=27,解得a=3,所以函数f(x)的解析式为f(x)=3x(x∈N+).(2)由f(x)=3x(x∈N+),可得f(5)=35=243.(3)∵f(x)的定义域为N+,且在定义域上单调递增,∴f(x)有最小值,最小值是f(1)=3;f(x)无最大值.解析:已知正整数指数函数f(x)的图象经过点(3,27),(1)求函数f(x)的解析式;(2)求f(5);(3)函数f(x)有最值吗?若有,试求出;若无,说明原因.28.求证:不论λ取什么实数时,直线(2λ-1)x+(λ+3)y-(λ-11)=0都经过一个定点,并求出这个定点的坐标.答案:证明:直线(2λ-1)x+(λ+3)y-(λ-11)=0即λ(2x+y-1)+(-x+3y+11)=0,根据λ的任意性可得2x+y-1=0-x+3y+11=0,解得x=2y=-3,∴不论λ取什么实数时,直线(2λ-1)x+(λ+3)y-(λ-11)=0都经过一个定点(2,-3).29.若定义运算a⊕b=b,a<ba,a≥b则函数f(x)=2x⊕(12)x的值域为______(用区间表示).答案:由题意画出f(x)=2x?(12)x的图象(实线部分),由图可知f(x)的值域为[1,+∞).故为:[1,+∞).30.在△ABC所在平面存在一点O使得OA+OB+OC=0,则面积S△OBCS△ABC=______.答案:∵OA+OB+OC=0,∴OB+

OC=AO,设OB+OC=OD∴O是AD的中点,要求面积之比的两个三角形是同底的三角形,∴面积之比等于三角形的高之比,∴比值是13,故为:13.31.函数f(x)=ax(a>0且a≠1)在区间[1,2]上的最大值比最小值大a2,则a的值为()A.32B.2C.12或32D.12答案:当a>1时,函数f(x)=ax(a>0且a≠1)在区间[1,2]上是增函数,由题意可得a2-a=a2,∴a=32.当1>a>0时,函数f(x)=ax(a>0且a≠1)在区间[1,2]上是减函数,由题意可得a-a2=a2,解得

a=12.综上,a的值为12或32故选C.32.如图,弯曲的河流是近似的抛物线C,公路l恰好是C的准线,C上的点O到l的距离最近,且为0.4千米,城镇P位于点O的北偏东30°处,|OP|=10千米,现要在河岸边的某处修建一座码头,并修建两条公路,一条连接城镇,一条垂直连接公路l,以便建立水陆交通网.

(1)建立适当的坐标系,求抛物线C的方程;

(2)为了降低修路成本,必须使修建的两条公路总长最小,请给出修建方案(作出图形,在图中标出此时码头Q的位置),并求公路总长的最小值(精确到0.001千米)答案:(1)过点O作准线的垂线,垂足为A,以OA所在直线为x轴,OA的垂直平分线为y轴,建立平面直角坐标系…(2分)由题意得,p2=0.4…(4分)所以,抛物线C:y2=1.6x…(6分)(2)设抛物线C的焦点为F由题意得,P(5,53)…(8分)根据抛物线的定义知,公路总长=|QF|+|QP|≥|PF|≈9.806…(12分)当Q为线段PF与抛物线C的交点时,公路总长最小,最小值为9.806千米…(16分)33.已知空间三点A(1,1,1)、B(-1,0,4)、C(2,-2,3),则AB与CA的夹角θ的大小是

______答案:AB=(-2,-1,3),CA=(-1,3,-2),cos<AB,CA>=(-2)×(-1)+(-1)×3+3×(-2)14•14=-714=-12,∴θ=<AB,CA>=120°.故为120°34.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:

第一步:取A=89,B=96,C=99;

第二步:______;

第三步:______;

第四步:输出计算的结果.答案:由题意,第二步,求和S=A+B+C,第三步,计算平均成绩.x=A+B+C3.故为:S=A+B+C;.x=A+B+C3.35.在空间直角坐标系O-xyz中,已知=(1,2,3),=(2,1,2),=(1,1,2),点Q在直线OP上运动,则当取得最小值时,点Q的坐标为()

A.(,,)

B.(,,)

C.(,,)

D.(,,)答案:C36.设函数f(x)的定义域为R,如果对任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,那么f(3)=______.答案:对任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,∴f(2)=2f(1)=1∴f(1)=12那么f(3)=f(2)+f(1)=1=12=32故为:3237.用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是______.答案:不妨设在第1组中随机抽到的号码为x,则在第16组中应抽出的号码为120+x.设第1组抽出的号码为x,则第16组应抽出的号码是8×15+x=126,∴x=6.故为:6.38.等腰三角形两腰所在的直线方程是l1:7x-y-9=0,l2:x+y-7=0,它的底边所在直线经过点A(3,-8),求底边所在直线方程.答案:设l1,l2,底边所在直线的斜率分别为k1,k2,k;由l1:7x-y-9=0得y=7x-9,所以k1=7,由l2:x+y-7=0得y=-x+7,所以k2=-1;…(2分)如图,由等腰三角形性质,可知:l到l1的角=l2到l的角;由到角公式得:7-k1+7k=k-(-1)1+k(-1)…(4分)解出:k=-3或k=13…(6分)由已知:底边经过点A(3,-8),代入点斜式,得出直线方程:y-(-8)=(-3)(x-3)或y-(-8)=13(x-3)…(7分)3x+y-1=0或x-3y-27=0.…(8分)39.为了调查上海市中学生的身体状况,在甲、乙两所学校中各随意抽取了

100名学生,测试引体向上,结果如下表所示:

(1)甲乙两校被测学生引体向上的平均数分别是:甲校______个,乙校______个.

(2)若5个以下(不含5个)为不合格,则甲乙两校的合格率分别为甲校______

乙校______

(3)若15个以上(含15个)为优秀,则甲乙两校中优秀率______校较高(填“甲”或“乙”)

(4)用你所学的统计知识对两所学校学生的身体状况作一个比较.你的结论是______.答案:(1)甲校被测学生引体向上的平均数是=6×3+15×5+44×8+20×11+9×5+6×20100=8.3,乙校被测学生引体向上的平均数是=6×3+11×5+51×8+18×11+8×15+6×20100=9.19;(2)甲校的合格率=15+44+20+9+6100×100%=94%,乙校的合格率=11+51+18+8+6100×100%=94%;(3)甲校中优秀率=9+6100×100%=15%,乙校中优秀率=8+6100×100%=14%,所以甲校较高;(4)虽然合格率相等,但是乙校平均数更高一些,所以乙校更好一些.故为:8.3,9.19,94%,94%,乙校更好一些40.长方体的长、宽、高之比是1:2:3,对角线长是214,则长方体的体积是

______.答案:长方体的长、宽、高之比是1:2:3,所以长方体的长、宽、高是x:2x:3x,对角线长是214,所以,x2+(2x)2+(3x)2=(214)2,x=2,长方体的长、宽、高是2,4,6;长方体的体积是:2×4×6=48故为:4841.已知a、b均为单位向量,它们的夹角为60°,那么|a+3b|=()

A.

B.

C.

D.4答案:C42.在△ABC中,AB=2,AC=1,D为BC的中点,则AD•BC=______.答案:AD•BC=AB+AC2•(AC-AB)=AC2-AB22=1-42=-32,故为:-32.43.如图,AB为⊙O的直径,弦AC、BD交于点P,若AP=5,PC=3,DP=5,则AB=______.

答案:∵AP=5,PC=3,DP=5由相交弦定理可得:BP=35又∵AB为直径,∴∠ACB=90°∴BC=PB2-PC2=6∴AB=AC2-BC2=10故为:1044.直线y=3的一个单位法向量是______.答案:直线y=3的方向向量是(a,0)(a≠0),不妨取(1,0)设直线y=3的法向量为n=(x,y)∴(x,y)?(1,0)=0∴x=0∴直线y=3的一个单位法向量是(0,1)故为:(0,1)45.已知D是△ABC所在平面内一点,,则()

A.

B.

C.=

D.答案:A46.某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得间隔数k==16,即每16人抽取一个人.在1~16中随机抽取一个数,如果抽到的是7,则从33~48这16个数中应取的数是(

A.40

B.39

C.38

D.37答案:B47.已知向量表示“向东航行1km”,向量表示“向南航行1km”,则向量表示()

A向东南航行km

B.向东南航行2km

C.向东北航行km

D.向东北航行2km答案:A48.对于实数x、y,若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为______.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值为5,故为5.49.已知实数x,y满足2x+y+5=0,那么x2+y2的最小值为()A.5B.10C.25D.210答案:求x2+y2的最小值,就是求2x+y+5=0上的点到原点的距离的最小值,转化为坐标原点到直线2x+y+5=0的距离,d=522+1=5.故选A.50.已知P(B|A)=,P(A)=,则P(AB)等于()

A.

B.

C.

D.答案:C第3卷一.综合题(共50题)1.若21-i=a+bi(i为虚数单位,a,b∈R),则a+b=______.答案:∵21-i=2(1+i)(1-i)(1+i)=2(1+i)2=1+i,∵21-i=a+bi∴a+bi=1+i∴a=b=1∴a+b=2.故为:22.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:

第一步:取A=89,B=96,C=99;

第二步:______;

第三步:______;

第四步:输出计算的结果.答案:由题意,第二步,求和S=A+B+C,第三步,计算平均成绩.x=A+B+C3.故为:S=A+B+C;.x=A+B+C3.3.(选做题)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=与曲线(t为参数)相较于A,B来两点,则线段AB的中点的直角坐标为(

)。答案:(2.5,2.5)4.随机变量X的概率分布规律为P(X=n)=(n=1,2,3,4),其中a是常数,则P()的值为()

A.

B.

C.

D.

答案:D5.已知正三角形ABC的边长为a,求△ABC的直观图△A′B′C′的面积.答案:如图①、②所示的实际图形和直观图.由②可知,A′B′=AB=a,O′C′=12OC=34a,在图②中作C′D′⊥A′B′于D′,则C′D′=22O′C′=68a.∴S△A′B′C′=12A′B′?C′D′=12×a×68a=616a2.6.如图,在复平面内,点A表示复数z的共轭复数,则复数z对应的点是()A.AB.BC.CD.D答案:两个复数是共轭复数,两个复数的实部相同,下部相反,对应的点关于x轴对称.所以点A表示复数z的共轭复数的点是B.故选B.7.在复数范围内解方程|z|2+(z+.z)i=3-i2+i(i为虚数单位).答案:原方程化简为|z|2+(z+.z)i=1-i,设z=x+yi(x、y∈R),代入上述方程得x2+y2+2xi=1-i,∴x2+y2=1且2x=-1,解得x=-12且y=±32,∴原方程的解是z=-12±32i.8.(选做题)已知x+2y=1,则x2+y2的最小值是______.答案:x2+y2表示(0,0)到x+2y=1上点的距离的平方∴x2+y2的最小值是(0,0)到x+2y=1的距离d的平方据点到直线的距离公式得d=11+4=15∴x2+y2的最小值是15故为159.“若x、y全为零,则xy=0”的否命题为______.答案:由于“全为零”的否定为“不全为零”,所以“若x、y全为零,则xy=0”的否命题为“若x、y不全为零,则xy≠0”.故为:若x、y不全为零,则xy≠0.10.已知点A(-2,0),B(2,0),动点M满足|MA-MB|=4,则动点M的轨迹为______.答案:动点M满足|MA-MB|=4=|AB|,结合图形思考判断动点M的轨迹为直线AB(不包括线段AB内部的点)上的两条射线.故为直线AB(不包括线段AB内部的点)上的两条射线.11.“a=0”是“复数z=a+bi(a,b∈R)为纯虚数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:依题意,复数z=a+bi(a,b∈R)为纯虚数,?a=0且b≠0,∴“a=0”是“复数z=a+bi(a,b∈R)为纯虚数”的必要不充分条件,故选B.12.已知直线l:kx-y+1+2k=0.

(1)证明l经过定点;

(2)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S,求S的最小值并求此时直线l的方程;

(3)若直线不经过第四象限,求k的取值范围.答案:(1)由kx-y+1+2k=0,得y-1=k(x+2),所以,直线l经过定点(-2,1).(2)由题意得A(2k+1-k,0),B(0,2k+1),且2k+1-k<01+2k>0,故k>0,△AOB的面积为S=12×2k+1k×(2k+1)=4k2+4k+12k=2k+2+12k≥4,当且仅当k=12时等号成立,此时面积取最小值4,k=12,直线的方程是:x-2y+4=0.(3)由直线过定点(-2,1),可得当斜率k>0或k=0时,直线不经过第四象限.故k的取值范围为[0,+∞).13.已知△ABC,A(-1,0),B(3,0),C(2,1),对它先作关于x轴的反射变换,再将所得图形绕原点逆时针旋转90°.

(1)分别求两次变换所对应的矩阵M1,M2;

(2)求△ABC在两次连续的变换作用下所得到△A′B′C′的面积.答案:(1)关于x轴的反射变换M1=100-1,绕原点逆时针旋转90°的变换M2=0-110.(4分)(2)∵M2•M1=0-110100-1=0110,(6分)△ABC在两次连续的变换作用下所得到△A′B′C′,∴A(-1,0),B(3,0),C(2,1)变换成:A′(0,-1),B′(0,3),C′(1,2),(9分)∴△A'B'C'的面积=12×4×1=2.(10分)14.已知A(4,1,9),B(10,-1,6),则A,B两点间距离为______.答案:∵A(4,1,9),B(10,-1,6),∴A,B两点间距离为|AB|=(10-4)2+(-1-1)2+(6-9)2=7故为:715.质地均匀的正四面体玩具的4个面上分别刻着数字1,2,3,4,将4个这样的玩具同时抛掷于桌面上.

(1)求与桌面接触的4个面上的4个数的乘积不能被4整除的概率;

(2)设ξ为与桌面接触的4个面上数字中偶数的个数,求ξ的分歧布列及期望Eξ.答案:(1)不能被4整除的有两种情形;①4个数均为奇数,概率为P1=(12)4=116②4个数中有3个奇数,另一个为2,概率为P2=C34(12)3?14=18这两种情况是互斥的,故所求的概率为P=116+18=316(2)ξ为与桌面接触的4个面上数字中偶数的个数,由题意知ξ的可能取值是0,1,2,3,4,根据符合二项分布,得到P(ξ=k)=Ck4(12)4(k=0,1,2,3,4),ξ的分布列为∵ξ服从二项分布B(4,12),∴Eξ=4×12=2.16.已知曲线C1,C2的极坐标方程分别为ρcosθ=3,ρ=4cosθ(ρ≥0,0≤θ<π2),则曲线C1与C2交点的极坐标为______.答案:我们通过联立解方程组ρcosθ=3ρ=4cosθ(ρ≥0,0≤θ<π2)解得ρ=23θ=π6,即两曲线的交点为(23,π6).故填:(23,π6).17.抛物线y=4x2的焦点坐标是______.答案:由题意可知x2=14y∴p=18∴焦点坐标为(0,116)故为(0,116)18.为研究变量x和y的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归直线方程l1和l2,两人计算知.x相同,.y也相同,下列正确的是()A.l1与l2一定重合B.l1与l2一定平行C.l1与l2相交于点(.x,.y)D.无法判断l1和l2是否相交答案:∵两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,∴两组数据的样本中心点是(.x,.y)∵回归直线经过样本的中心点,∴l1和l2都过(.x,.y).故选C.19.下列各量:①密度

②浮力

③风速

④温度,其中是向量的个数有()个.A.1B.3C.2D.4答案:根据向量的定义,知道需要同时具有大小和方向两个要素才是向量,在所给的四个量中,密度只有大小,浮力既有大小又有方向,风速既有大小又有方向,温度只有大小没有方向综上可知向量的个数是2个,故选C.20.在极坐标系中,过点p(3,)且垂直于极轴的直线方程为()

A.Pcosθ=

B.Psinθ=

C.P=cosθ

D.P=sinθ答案:A21.若复数z=a+bi(a、b∈R)是虚数,则a、b应满足的条件是()A.a=0,b≠0B.a≠0,b≠0C.a≠0,b∈RD.b≠0,a∈R答案:∵复数z=a+bi(a、b∈R)是虚数,∴根据虚数的定义得b≠0,a∈R,故选D.22.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:x=22t+1y=22t,求直线l与曲线C相交所成的弦的弦长.答案:曲线C的极坐标方程是ρ=4cosθ化为直角坐标方程为x2+y2-4x=0,即(x-2)2+y2=4直线l的参数方程x=22t+1y=22t,化为普通方程为x-y-1=0,曲线C的圆心(2,0)到直线l的距离为12=22所以直线l与曲线C相交所成的弦的弦长24-12=14.23.若x,y∈R,x>0,y>0,且x+2y=1,则xy的最大值为______.答案:∵x,y∈R,x>0,y>0,且x+2y=1,∴1=x+2y≥2x?2y,∴22×xy≤1,∴xy≤

122=24,所以xy≤18.当且仅当x=2yx+2y=1时,即x=12,y=14时,取等号.故为:18.24.“a>2且b>2”是“a+b>4且ab>4”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件答案:若a>2且b>2,则必有a+b>4且ab>4成立,故充分性易证若a+b>4且ab>4,如a=8,b=1,此时a+b>4且ab>4成立,但不能得出a>2且b>2,故必要性不成立由上证明知“a>2且b>2”是“a+b>4且ab>4”的充分不必要条件,故选A25.方程组的解集是[

]A.

B.{x,y|x=3且y=-7}

C.{3,-7}

D.{(x,y)|x=3且y=-7}答案:D26.若点(2,-2)在圆(x-a)2+(y-a)2=16的内部,则实数a的取值范围是()

A.-2<a<2

B.0<a<2

C.a<-2或a>2

D.a=±2答案:A27.已知关于x的方程2kx2-2x-3k-2=0的两实根一个小于1,另一个大于1,求实数k的取值范围。答案:解:令,为使方程f(x)=0的两实根一个小于1,另一个大于1,只需或,即或,解得k>0或k<-4,故k的取值范围是k>0或k<-4.28.给出一个程序框图,输出的结果为s=132,则判断框中应填()

A.i≥11

B.i≥10

C.i≤11

D.i≤12

答案:A29.若方程Ax+By+C=0表示与两条坐标轴都相交的直线,则()

A.A≠0B≠0C≠0

B.A≠0B≠0

C.B≠0C≠0

D.A≠0C≠0答案:B30.某小组有3名女生、4名男生,从中选出3名代表,要求至少女生与男生各有一名,共有______种不同的选法.(要求用数字作答)答案:由题意知本题是一个分类计数问题,要求至少女生与男生各有一名有两个种不同的结果,即一个女生两个男生和一个男生两个女生,∴共有C31C42+C32C41=30种结果,故为:3031.若一次函数y=mx+b在(-∞,+∞)上是增函数,则有()A.b>0B.b<0C.m>0D.m<0答案:∵一次函数y=mx+b在(-∞,+∞)上是增函数,∴一次项系数m>0,故选C.32.如果关于x的不等式|x-4|-|x+5|≥b的解集为空集,则实数b的取值范围为______.答案:|x-4|-|x+5|的几何意义就是数轴上的点到4的距离与到-5的距离的差,差的最大值为9,如果关于x的不等式|x-4|-|x+5|≥b的解集为空集,则实数b的取值范围为b>9;故为:b>9.33.已知圆C:x2+y2-4y-6y+12=0,求:

(1)过点A(3,5)的圆的切线方程;

(2)在两条坐标轴上截距相等的圆的切线方程.答案:(l)设过点A(3,5)的直线ɭ的方程为y-5=k(x-3).因为直线ɭ与⊙C相切,而圆心为C(2,3),则|2k-3-3k+5|k2+1=1,解得k=34所以切线方程为y-5=34(x-3),即3x-4y+11=0.由于过圆外一点A与圆相切的直线有两条,因此另一条切线方程为x=3.(2)因为原点在圆外,所以设在两坐标轴上截距相等的直线方程x+y=a或y=kx.由直线与圆相切得,|2+3-a|2=1或|2k-3|k2+1=1,解得a=5士2,k=6±223故所求的切线方程为x+y=5士2或y=6±223x.34.解不等式logx(2x+1)>logx2.答案:当0<x<1,logx(2x+1)>logx2?0<2x+1<20<x<1,解得0<x<12;当x>1,logx(2x+1)>logx2?2x+1>2x>1,解得x>1.综上所述,原不等式的解集为{x|0<x<12或x>1}.35.设x1、x2、y1、y2是实数,且满足x12+x22≤1,

证明不等式(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).答案:证明略解析:分析:要证原不等式成立,也就是证(x1y1+x2y2-1)2-(x12+x22-1)(y12+y22-1)≥0.(1)当x12+x22=1时,原不等式成立.……………3分(2)当x12+x22<1时,联想根的判别式,可构造函数f(x)=(x12+x22-1)x-2(x1y1+x2y2-1)x+(y12+y22-1)…7分其根的判别式Δ=4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1).………9分由题意x12+x22<1,函数f(x)的图象开口向下.又∵f(1)=x12+x22-2x1y1-2x2y2+y12+y22=(x1-y1)2+(x2-y2)2≥0,………11分因此抛物线与x轴必有公共点.∴Δ≥0.∴4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1)≥0,…………13分即(x1y1+x2y2-1)2≥(x12+x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论