版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年泉州经贸职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知直线方程l1:2x-4y+7=0,l2:x-2y+5=0,则l1与l2的关系()
A.平行
B.重合
C.相交
D.以上答案都不对答案:A2.已知复数z的模为1,且复数z的实部为13,则复数z的虚部为______.答案:设复数的虚部是b,∵复数z的模为1,且复数z的实部为13,∴(13)2+b2=1,∴b2=89,∴b=±223故为:±2233.已知椭圆C:+y2=1的右焦点为F,右准线l,点A∈l,线段AF交C于点B.若=3,则=(
)
A.
B.2
C.
D.3答案:A4.“a、b、c等比”是“b2=ac”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件答案:由“a,G,b成等比”可得ba=cb,故有“b2=ac”成立,故充分性成立.但由“b2=ac”,不能推出“a、b、c成等比数列”,如a=b=0,c=1时,尽管有“b2=ac”,但0,0,1不能构成等比数列,故必要性不成立.故“b2=ac成等比”是“b2=ac”的充分不必要条件,故选B.5.已知向量,,则“,λ∈R”成立的必要不充分条件是()
A.
B与方向相同
C.
D.答案:D6.在极坐标系中,点A(2,π2)关于直线l:ρcosθ=1的对称点的一个极坐标为______.答案:在直角坐标系中,A(0,2),直线l:x=1,A关于直线l的对称点B(2,2).由于|OB|=22,OB直线的倾斜角等于π4,且点B在第一象限,故B的极坐标为(22,π4),故为
(22,π4).7.使关于的不等式有解的实数的最大值是(
)A.B.C.D.答案:D解析:令则的最大值为。选D。还可用Cauchy不等式。8.若A是圆x2+y2=16上的一个动点,过点A向y轴作垂线,垂足为B,则线段AB中点C的轨迹方程为()
A.x2+2y2=16
B.x2+4y2=16
C.2x2+y2=16
D.4x2+y2=16答案:D9.已知点P(x,y)在曲线x=2+cosθy=2sinθ(θ为参数),则ω=3x+2y的最大值为______.答案:由题意,ω=3x+2y=3cosθ+4sinθ+6=5sin(θ+?)+6∴当sin(θ+?)=1时,ω=3x+2y的最大值为
11故为11.10.如果命题P:∅∈{∅},命题Q:∅⊂{∅},那么下列结论不正确的是()A.“P或Q”为真B.“P且Q”为假C.“非P”为假D.“非Q”为假答案:命题P:∅∈{∅},命题Q:∅⊂{∅},可直接看出命题Q,命题P都是正确的.故“P或Q”为真.“P且Q”为真.“非P”为假.“非Q”为假.故选B.11.用A、B、C三类不同的元件连接成两个系统N1、N2当元件A、B、C都正常工作时,系统N1正常工作,当元件A正常工作且元件B、C至少有一个正常工作时,系统N2正常工作。已知元件A、B、C正常工作的概率依次为0.80,0.90,0.90,分别求系统N1、N2正常工作的概率.
答案:0.792解析:解:分别记三个元件A、B、C能正常工作为事件A、B、C,由题意,这三个事件相互独立,系统N1正常工作的概率为P(A·B·C)=P(A)·P(B)·P(C)=0.8´0.9´0.9=0.648系统N2中,记事件D为B、C至少有一个正常工作,则P(D)=1–P()="1–"P()·P()=1–(1–0.9)´(1–0.9)=0.99系统N2正常工作的概率为P(A·D)=P(A)·P(D)=0.8´0.99=0.792。12.过P(-1,1),Q(3,9)两点的直线的斜率为(
)
A.2
B.
C.4
D.答案:A13.根据一组数据判断是否线性相关时,应选用()
A.散点图
B.茎叶图
C.频率分布直方图
D.频率分布折线图答案:A14.如图示程序运行后的输出结果为______.答案:该程序的作用是求数列ai=2i+3中满足条件的ai的值∵最终满足循环条件时i=9∴ai的值为21故为:2115.甲袋中装有3个白球和5个黑球,乙袋中装有4个白球和6个黑球,现从甲袋中随机取出一个球放入乙袋中,充分混合后,再从乙袋中随机取出一个球放回甲袋中,则甲袋中白球没有减少的概率为()A.944B.2544C.3544D.3744答案:白球没有减少的情况有:①抓出黑球,抓入任意球,概率是:58.抓出白球,抓入白球,概率是38×511=1588,故所求事件的概率为58+1588=3544,故选C.16.刻画数据的离散程度的度量,下列说法正确的是(
)
(1)应充分利用所得的数据,以便提供更确切的信息;
(2)可以用多个数值来刻画数据的离散程度;
(3)对于不同的数据集,其离散程度大时,该数值应越小.
A.(1)和(3)
B.(2)和(3)
C.(1)和(2)
D.都正确答案:C17.抽样调查在抽取调查对象时()A.按一定的方法抽取B.随意抽取C.全部抽取D.根据个人的爱好抽取答案:一般地,抽样方法分为3种:简单随机抽样、分层抽样和系统抽样无论是哪种抽样方法,都遵循机会均等的原理,即在抽样过程中,各个体被抽到的概率是相等的.根据以上分析,可知只有A项符合题意.故选:A18.三个数a=60.5,b=0.56,c=log0.56的大小顺序为______.(按大到小顺序)答案:∵a=60.5>60=1,0<b=0.56<0.50=1,c=log0.56<log0.51=0.∴a>b>c.故为a>b>c.19.设x,y∈R,且满足x2+y2=1,求x+y的最大值为()
A.
B.
C.2
D.1答案:A20.已知抛物线y=14x2,则过其焦点垂直于其对称轴的直线方程为______.答案:抛物线y=14x2的标准方程为x2=4y的焦点F(0,1),对称轴为y轴所以抛物线y=14x2,则过其焦点垂直于其对称轴的直线方程为y=1故为y=1.21.设与都是直线Ax+By+C=0(AB≠0)的方向向量,则下列关于与的叙述正确的是()
A.=
B.与同向
C.∥
D.与有相同的位置向量答案:C22.已知集合A={x|x>1},则(CRA)∩N的子集有()A.1个B.2个C.4个D.8个答案:∵集合A={x|x>1},∴CRA={x|x≤1},∴(CRA)∩N={0,1},∴(CRA)∩N的子集有22=4个,故选C.23.如图,把椭圆x225+y216=1的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=______.答案:如图,把椭圆x225+y216=1的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则根据椭圆的对称性知,|P1F1|+|P7F1|=|P1F1|+|P1F2|=2a,同理其余两对的和也是2a,又|P4F1|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35,故为35.24.如图,△ABC中,CD=2DB,设AD=mAB+nAC(m,n为实数),则m+n=______.答案:∵CD=2DB,∴B、C、D三点共线,由三点共线的向量表示,我们易得AD=23AB+13AC,由平面向量基本定理,我们易得m=23,n=13,∴m+n=1故为:125.从某校随机抽取了100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图(如图),由图中数据可知m=______,所抽取的学生中体重在45~50kg的人数是______.答案:由频率分步直方图知,(0.02+m+0.06+0.02)×5=1,∴m=0.1,∴所抽取的体重在45~50kg的人数是0.1×5×100=50人,故为:0.1;5026.安排6名演员的演出顺序时,要求演员甲不第一个出场,也不最后一个出场,则不同的安排方法种数是()
A.120
B.240
C.480
D.720答案:C27.函数y=ax2+a与(a≠0)在同一坐标系中的图象可能是()
A.
B.
C.
D.
答案:D28.参数方程中当t为参数时,化为普通方程为(
)。答案:x2-y2=129.下图是由A、B、C、D中的哪个平面图旋转而得到的(
)答案:A30.用综合法或分析法证明:
(1)如果a>0,b>0,则lga+b2≥lga+lgb2(2)求证6+7>22+5.答案:证明:(1)∵a>0,b>0,a+b2≥ab,∴lga+b2≥lgab=lga+lgb2,即lga+b2≥lga+lgb2;(2)要证6+7>22+5,只需证明(6+7)
2>(8+5)2,即证明242>
240,也就是证明42>40,上式显然成立,故原结论成立.31.某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如图:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量
(单位:千瓦时)高峰电价(单位:元/千瓦时)低谷月用电量
(单位:千瓦时)低谷电价(单位:
元/千瓦时)50及以下的部分0.56850及以下的部分0.288超过50至200的部分0.598超过50至200的部分0.318超过200的部分0.668超过200的部分0.388若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为______元(用数字作答)答案:高峰时间段用电的电费为50×0.568+150×0.598=28.4+89.7=118.1(元),低谷时间段用电的电费为50×0.288+50×0.318=14.4+15.9=30.3(元),本月的总电费为118.1+30.3=148.4(元),故为:148.4.32.甲、乙两人对一批圆形零件毛坯进行成品加工.根据需求,成品的直径标准为100mm.现从他们两人的产品中各随机抽取5件,测得直径(单位:mm)如下:
甲:105
102
97
96
100
乙:100
101
102
97
100
(I)分别求甲、乙的样本平均数与方差,并由此估计谁加工的零件较好?
(Ⅱ)若从乙样本的5件产品中再次随机抽取2件,试求这2件产品中至少有一件产品直径为100mm的概率.答案:(Ⅰ).x甲=15(105+102+97+96+100)=100,.x乙=15(100+101+102+97+100)=100S甲=15(25+4+3+16+0)=545=10.8,S乙=15(0+1+4+9+0)=145=2.8.∵S甲>S乙,据此估计乙加工的零件好;(Ⅱ)从乙样本的5件产品中再次随机抽取2件的全部结果有如下10种:(100,101),(100,102),(100,97),(100,100),(101,102),(101,97),(101,100),(102,97),(102,100),(97,100).设事件A为“其中至少有一件产品直径为100”,则时间A有7种.故P(A)=710.33.隋机变量X~B(6,),则P(X=3)=()
A.
B.
C.
D.答案:C34.对于各数互不相等的整数数组(i1,i2,i3,…in)
(n是不小于2的正整数),对于任意p,q∈1,2,3,…,n,当p<q时有ip>iq,则称ip,iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,则数组(2,4,3,1)中的逆序数等于______.答案:由题意知当p<q时有ip>iq,则称ip,iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,在数组(2,4,3,1)中逆序有2,1;4,3;4,1;3,1共有4对逆序数对,故为:4.35.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:x=22t+1y=22t,求直线l与曲线C相交所成的弦的弦长.答案:曲线C的极坐标方程是ρ=4cosθ化为直角坐标方程为x2+y2-4x=0,即(x-2)2+y2=4直线l的参数方程x=22t+1y=22t,化为普通方程为x-y-1=0,曲线C的圆心(2,0)到直线l的距离为12=22所以直线l与曲线C相交所成的弦的弦长24-12=14.36.一个完整的程序框图至少应该包含______.答案:完整程序框图必须有起止框,用来表示程序的开始和结束,还要包括处理框,用来处理程序的执行.故为:起止框、处理框.37.若两条平行线L1:x-y+1=0,与L2:3x+ay-c=0
(c>0)之间的距离为,则等于()
A.-2
B.-6
C..2
D.0答案:A38.如图,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,与⊙O交于B,C两点,圆心O在∠PAC的内部,点M是BC的中点.
(Ⅰ)证明A,P,O,M四点共圆;
(Ⅱ)求∠OAM+∠APM的大小.答案:证明:(Ⅰ)连接OP,OM.因为AP与⊙O相切于点P,所以OP⊥AP.因为M是⊙O的弦BC的中点,所以OM⊥BC.于是∠OPA+∠OMA=180°.由圆心O在∠PAC的内部,可知四边形M的对角互补,所以A,P,O,M四点共圆.(Ⅱ)由(Ⅰ)得A,P,O,M四点共圆,所以∠OAM=∠OPM.由(Ⅰ)得OP⊥AP.由圆心O在∠PAC的内部,可知∠OPM+∠APM=90°.又∵A,P,O,M四点共圆∴∠OPM=∠OAM所以∠OAM+∠APM=90°.39.i是虚数单位,a,b∈R,若ia+bi=1+i,则a+b=______.答案:∵ia+bi=1+i,a,b∈R,∴i(a-bi)(a+bi)(a-bi)=1+i,∴b+aia2+b2=1+i,化为b+ai=(a2+b2)+(a2+b2)i,根据复数相等的定义可得b=a2+b2a=a2+b2,a2+b2≠0解得a=b=12.∴a+b=1.故为1.40.函数y=ax+b与y=logbx且a>0,在同一坐标系内的图象是()A.
B.
C.
D.
答案:∵a>0,则函数y=ax+b为增函数,与y轴的交点为(0,b)当0<b<1时,函数y=ax+b与y轴的交点在原点和(0,1)点之间,y=logbx为减函数,D图满足要求;当b>1时,函数y=ax+b与y轴的交点在(0,1)点上方,y=logbx为增函数,不存在满足条件的图象;故选D41.试比较nn+1与(n+1)n(n∈N*)的大小.
当n=1时,有nn+1______(n+1)n(填>、=或<);
当n=2时,有nn+1______(n+1)n(填>、=或<);
当n=3时,有nn+1______(n+1)n(填>、=或<);
当n=4时,有nn+1______(n+1)n(填>、=或<);
猜想一个一般性的结论,并加以证明.答案:当n=1时,nn+1=1,(n+1)n=2,此时,nn+1<(n+1)n,当n=2时,nn+1=8,(n+1)n=9,此时,nn+1<(n+1)n,当n=3时,nn+1=81,(n+1)n=64,此时,nn+1>(n+1)n,当n=4时,nn+1=1024,(n+1)n=625,此时,nn+1>(n+1)n,根据上述结论,我们猜想:当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.①当n=3时,nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假设当n=k时,kk+1>(k+1)k成立,即:kk+1(k+1)k>1则当n=k+1时,(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即当n=k+1时也成立,∴当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.42.已知随机变量X的分布列为:P(X=k)=,k=1,2,…,则P(2<X≤4)等于()
A.
B.
C.
D.答案:A43.将5位志愿者分成4组,其中一组为2人,其余各组各1人,到4个路口协助交警执勤,则不同的分配方案有______种(用数字作答).答案:由题意,先分组,再到4个路口协助交警执勤,则不同的分配方案有C25A44=240种故为:240.44.山东鲁洁棉业公司的科研人员在7块并排、形状大小相同的试验田上对某棉花新品种进行施化肥量x对产量y影响的试验,得到如下表所示的一组数据(单位:kg).
施化肥量x15202530354045棉花产量y330345365405445450455(1)画出散点图;
(2)判断是否具有相关关系.答案:(1)根据已知表格中的数据可得施化肥量x和产量y的散点图如下所示:(2)根据(1)中散点图可知,各组数据对应点大致分布在一个条形区域内(一条直线附近)故施化肥量x和产量y具有线性相关关系.45.设O是正△ABC的中心,则向量AO,BO.CO是()
A.相等向量
B.模相等的向量
C.共线向量
D.共起点的向量答案:B46.给出函数f(x)的一条性质:“存在常数M,使得|f(x)|≤M|x|对于定义域中的一切实数x均成立.”则下列函数中具有这条性质的函数是()A.y=1xB.y=x2C.y=x+1D.y=xsinx答案:根据|sinx|≤1可知|y|=|xsinx|=|x||sinx|≤|x|永远成立故选D.47.“a=18”是“对任意的正数x,2x+ax≥1的”()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:当“a=18”时,由基本不等式可得:“对任意的正数x,2x+ax≥1”一定成立,即“a=18”?“对任意的正数x,2x+ax≥1”为真命题;而“对任意的正数x,2x+ax≥1的”时,可得“a≥18”即“对任意的正数x,2x+ax≥1”?“a=18”为假命题;故“a=18”是“对任意的正数x,2x+ax≥1的”充分不必要条件故选A48.在用样本频率估计总体分布的过程中,下列说法正确的是()A.总体容量越大,估计越精确B.总体容量越小,估计越精确C.样本容量越大,估计越精确D.样本容量越小,估计越精确答案:∵用样本频率估计总体分布的过程中,估计的是否准确与总体的数量无关,只与样本容量在总体中所占的比例有关,∴样本容量越大,估计的月准确,故选C.49.已知向量a=(3,4),b=(8,6),c=(2,k),其中k为常数,如果<a,c>=<b,c>,则k=______.答案:由题意可得cos<a,c>=cos<b,c>,∴a?c|a|?|c|=b?c|b|?|c|,∴6+4k54+k
2=16+6k104+k
2.解得k=2,故为2.50.一次函数y=3x+2的斜率和截距分别是()A.2、3B.2、2C.3、2D.3、3答案:根据一次函数的定义和直线的斜截式方程知,此一次函数的斜率为3、截距为2故选C第2卷一.综合题(共50题)1.(1+2x)7的展开式中第4项的系数是______
(用数字作答)答案:(1+2x)7的展开式的通项为Tr+1=Cr7?(2x)r∴(1+2x)7的展开式中第4项的系数是C37?23=280,故为:280.2.设U={(x,y)|x2+y2≤1,x,y∈R},M={(x,y)|x|+|y|≤1,x,y∈R},现有一质点随机落入区域U中,则质点落入M中的概率是()A.2πB.12πC.1πD.2π答案:满足条件U={(x,y)|x2+y2≤1,x,y∈R}的圆,如下图示:其中满足条件M={(x,y)|x|+|y|≤1,x,y∈R}的平面区域如图中阴影所示:则圆的面积S圆=π阴影部分的面积S阴影=2故质点落入M中的概率概率P=S阴影S正方形=2π故选D3.如图,在△ABC中,∠ACB=90°,AB=8,∠BAC=60°,PC⊥平面ABC,PC=4,M为AB边上的一个动点,求PM的最小值.答案:过C作CM⊥AB,连接PM,因为PC⊥AB,所以AB⊥平面PCM,所以PM⊥AB,此时PM最短,∵∠BAC=60°,AB=8,∴AC=AB?cos60°=4.∴CM=AC?sin60°=4?32=23.∴PM=PC2+CM2=16+12=27.4.设函数f(x)的定义域为D,如果对于任意的x1∈D,存在唯一的x2∈D,使得
f(x1)+f(x2)2=C成立(其中C为常数),则称函数y=f(x)在D上的均值为C,现在给出下列4个函数:①y=x3②y=4sinx③y=lgx④y=2x,则在其定义域上的均值为
2的所有函数是下面的()A.①②B.③④C.①③④D.①③答案:由题意可得,均值为2,则f(x1)+f(x2)2=2即f(x1)+f(x2)=4①:y=x3在定义域R上单调递增,对应任意的x1,则存在唯一x2满足x13+x23=4①正确②:y=4sinx,满足4sinx1+4sinx2=4,令x1=π2,则根据三角函数的周期性可得,满足sinx2=0的x2无穷多个,②错误③y=lgx在(0,+∞)单调递增,对应任意的x1>0,则满足lgx1+lgx2=4的x2唯一存在③正确④y=2x满足2x1+2x2=4,令x1=3时x2不存在④错误故选D.5.使关于的不等式有解的实数的最大值是(
)A.B.C.D.答案:D解析:令则的最大值为。选D。还可用Cauchy不等式。6.下表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程.y=0.7x+0.35,那么表中m的值为______.
x3456y2.5m44.5答案:∵根据所给的表格可以求出.x=3+4+5+64=4.5,.y=2.5+m+4+4.54=11+m4∵这组数据的样本中心点在线性回归直线上,∴11+m4=0.7×4.5+0.35,∴m=3,故为:37.已知点P是抛物线y2=2x上的动点,点P在y轴上的射影是M,点A(72,4),则|PA|+|PM|的最小值是()A.5B.92C.4D.AD答案:依题意可知焦点F(12,0),准线x=-12,延长PM交准线于H点.则|PF|=|PH||PM|=|PH|-12=|PA|-12|PM|+|PA|=|PF|+|PA|-12,我们只有求出|PF|+|PA|最小值即可.由三角形两边长大于第三边可知,|PF|+|PA|≥|FA|,①设直线FA与抛物线交于P0点,可计算得P0(3,94),另一交点(-13,118)舍去.当P重合于P0时,|PF|+|PA|可取得最小值,可得|FA|=194.则所求为|PM|+|PA|=194-14=92.故选B.8.已知方程x2-(k2-9)x+k2-5k+6=0的一根小于1,另一根大于2,求实数k的取值范围.答案:令f(x)=x2-(k2-9)x+k2-5k+6,则∵方程x2-(k2-9)x+k2-5k+6=0的一根小于1,另一根大于2,∴f(1)<0
且f(2)<0,∴12-(k2-9)+k2-5k+6<0且22-2(k2-9)+k2-5k+6<0,即16-5k<0且k2+5k-28>0,解得k>137-52.9.(坐标系与参数方程选做题)在极坐标系(ρ,θ)(ρ>0,0≤θ<π2)中,曲线ρ=2sinθ与ρ=2cosθ的交点的极坐标为______.答案:两式ρ=2sinθ与ρ=2cosθ相除得tanθ=1,∵0≤θ<π2,∴θ=π4,∴ρ=2sinπ4=2,故交点的极坐标为(2,π4).故为:(2,π4).10.若p、q是两个简单命题,且“p或q”的否定形式是真命题,则()
A.p真q真
B.p真q假
C.p假q真
D.p假q假答案:D11.(几何证明选讲选做题)
如图,已知AB是⊙O的一条弦,点P为AB上一点,PC⊥OP,PC交⊙O于C,若AP=4,PB=2,则PC的长是______.答案:∵AB是⊙O的一条弦,点P为AB上一点,PC⊥OP,PC交⊙O于C,∴AP×PB=PC2,∵AP=4,PB=2,∴PC2=8,解得PC=22.故为:22.12.将正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,E是CD中点,则∠AED的大小为()
A.45°
B.30°
C.60°
D.90°答案:D13.半径为1、2、3的三个圆两两外切.证明:以这三个圆的圆心为顶点的三角形是直角三角形.
答案:证明:设⊙O1、⊙O2、⊙O3的半径分别为1、2、3.因这三个圆两两外切,故有O1O2=1+2=3,O2O3=2+3=5,O1O3=1+3=4,则有O1O22+O1O32=32+42=52=O2O32根据勾股定理的逆定理,得到△O1O2O3为直角三角形.14.点M,N分别是曲线ρsinθ=2和ρ=2cosθ上的动点,则|MN|的最小值是______.答案:∵曲线ρsinθ=2和ρ=2cosθ分别为:y=2和x2+y2=2x,即直线y=2和圆心在(1,0)半径为1的圆.显然|MN|的最小值为1.故为:1.15.在△ABC中,AB=2,BC=3,∠ABC=60°,AD为BC边上的高,O为AD的中点,若
=λ+μ,则λ+μ=()
A.1
B.
C.
D.答案:D16.已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=x,x∈R},则集合A∩B中的元素个数为(
)
A.0个
B.1个
C.2个
D.无穷多个答案:C17.设点P(+,1)(t>0),则||(O为坐标原点)的最小值是()
A.
B.
C.5
D.3答案:A18.若x,y∈R,则“x=0”是“x+yi为纯虚数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.不充分也不必要条件答案:根据复数的分类,x+yi为纯虚数的充要条件是x=0,y≠0.“若x=0则x+yi为纯虚数”是假命题,反之为真.∴x,y∈R,则“x=0”是“x+yi为纯虚数”的必要不充分条件故选B19.m为何值时,关于x的方程8x2-(m-1)x+(m-7)=0的两根,
(1)为正数;
(2)一根大于2,一根小于2.答案:(1)设方程两根为x1,x2,则∵方程的两根为正数,∴△≥0x1+x2>0x1x2>0即[-(m-1)]2-4×8×(m-7)>0--(m-1)8>0m-78>0解得7<m≤9或m≥25.(2)令f(x)=8x2-(m-1)x+(m-7),由题意得f(2)<0,解得m>27.20.已知直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则A1B1=A2B2是l1∥l2的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件答案:当A1B1=A2B2
时,两直线可能平行,也可能重合,故充分性不成立.当l1∥l2时,B1与B2可能都等于0,故A1B1=A2B2
不一定成立,故必要性不成立.综上,A1B1=A2B2是l1∥l2的既非充分又非必要条件,故选D.21.双曲线的中心是原点O,它的虚轴长为26,右焦点为F(c,0)(c>0),直线l:x=a2c与x轴交于点A,且|OF|=3|OA|.过点F的直线与双曲线交于P、Q两点.
(Ⅰ)求双曲线的方程;
(Ⅱ)若AP•AQ=0,求直线PQ的方程.答案:解.(Ⅰ)由题意,设曲线的方程为x2a2-y2b2=1(a>0,b>0)由已知a2+6=c2c=3a2c解得a=3,c=3所以双曲线的方程:x23-y26=1.(Ⅱ)由(Ⅰ)知A(1,0),F(3,0),当直线PQ与x轴垂直时,PQ方程为x=3.此时,AP•AQ≠0,应舍去.当直线PQ与x轴不垂直时,设直线PQ的方程为y=k(x-3).由方程组x23-y26=1y=k(x-3)得(k2-2)x2-6k2x+9k2+6=0由于过点F的直线与双曲线交于P、Q两点,则k2-2≠0,即k≠±2,由于△=36k4-4(k2-2)(9k2+6)=48(k2+1)>0得k∈R.∴k∈R且k≠±2(*)设P(x1,y1),Q(x2,y2),则x1+x2=6k2k2-2(1)x1x2=9k2+6k2-2(2)由直线PQ的方程得y1=k(x1-3),y2=k(x2-3)于是y1y2=k2(x1-3)(x2-3)=k2[x1x2-3(x1+x2)+9](3)∵AP•AQ=0,∴(x1-1,y1)•(x2-1,y2)=0即x1x2-(x1+x2)+1+y1y2=0(4)由(1)、(2)、(3)、(4)得9k2+6k2-2-6k2k2-2+1+k2(9k2+6k2-2-36k2k2-2+9)=0整理得k2=12,∴k=±22满足(*)∴直线PQ的方程为x-2y-3=0或x+2y-3=022.若点A(1,2,3),B(-3,2,7),且AC+BC=0,则点C的坐标为______.答案:设C(x,y,z),则AC+BC=(2x+2,2y-4,2z-10)=0,∴x=-1,y=2,z=5.故为(-1,2,5)23.若|a|=3、|b|=4,且a⊥b,则|a+b|=______.答案:∵|a|=3,|b|=4,且a⊥b,∴|a+b|=a2+2a?b+b2=9+0+16=5.故为:5.24.如图,在圆锥中,B为圆心,AB=8,BC=6
(1)求出这个几何体的表面积;
(2)求出这个几何体的体积.(保留π)答案:圆锥母线AC的长=AB2+BC2=82+62=10(1)表面积=π×62+π×6×10=96π(2)体积=13×π×62×8=96π25.某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0,1,2,3四个相同小球的抽奖箱中,每次取出一球记下编号后放回,连续取两次,若取出的两个小球号码相加之和等于6则中一等奖,等于5中二等奖,等于4或3中三等奖.
(1)求中三等奖的概率;
(2)求中奖的概率.答案:(1)设“中三等奖”为事件A,“中奖”为事件B,从四个小球中有放回的取两个共有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1)(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)16种不同的结果两个小球号码相加之和等于4的取法有3种:(1,3),(2,2),(3,1)两个小球号相加之和等于3的取法有4种:(0,3),(1,2),(2,1),(3,0)由互斥事件的加法公式得:P(A)=316+416=716,即中三等奖的概率为716;(2)两个小球号码相加之和等于3的取法有4种;(0,3),(1,2),(2,1),(3,0)两个小球相加之和等于4的取法有3种;(1,3),(2,2),(3,1)两个小球号码相加之和等于5的取法有2种:(2,3),(3,2)两个小球号码相加之和等于6的取法有1种:(3,3)由互斥事件的加法公式得:P(B)=116+216+316+416=58.即中奖的概率为:58.26.如图:一个力F作用于小车G,使小车G发生了40米的位移,F的大小为50牛,且与小车的位移方向的夹角为60°,则F在小车位移方向上的正射影的数量为______,力F做的功为______牛米.答案:如图,∵|F|=50,且F与小车的位移方向的夹角为60°,∴F在小车位移方向上的正射影的数量为:|F|cos60°=50×12=25(牛).∵力F作用于小车G,使小车G发生了40米的位移,∴力F做的功w=25×40=1000(牛米).故为:25牛,1000.27.圆x2+y2=1在矩阵10012对应的变换作用下的结果为______.答案:设P(x,y)是圆C:x2+y2=1上的任一点,P1(x′,y′)是P(x,y)在矩阵A=10012对应变换作用下新曲线上的对应点,则x′y′=10012xy=1x12y即x′=xy′=12y,所以x=x′y=2y′,将x=x′y=2y′代入x2+y2=1,得x2+4y2=1,(8分)故为:x2+4y2=1.28.若方程Ax2+By2=1表示焦点在y轴上的双曲线,则A、B满足的条件是()
A.A>0,且B>0
B.A>0,且B<0
C.A<0,且B>0
D.A<0,且B<0答案:C29.已知OA=a,OB=b,,且|a|=|b|=2,∠AOB=60°,则|a+b|=______;a+b与b的夹角为______.答案:∵|a+b|2=(a+b)2=a2+b2+2a?b
由|a|=|b|=2,∠AOB=60°,得:a2=b2=
4,a?b
=2∴|a+b|2=12,∴|a+b|=23令a+b与b的夹角为θ则0≤θ≤π,且cosθ=a?(a+b)|a|?|a+b|=32∴θ=π6故为:23,π630.一支田径队有男运动员112人,女运动员84人,用分层抽样的方法从全体男运动员中抽出了32人,则应该从女运动员中抽出的人数为()
A.12
B.13
C.24
D.28答案:C31.在投掷两枚硬币的随机试验中,记“一枚正面朝上,一枚反面朝上”为事件A,“两枚正面朝上”为事件B,则事件A,B()
A.既是互斥事件又是对立事件
B.是对立事件而非互斥事件
C.既非互斥事件也非对立事件
D.是互斥事件而非对立事件答案:D32.下表表示y是x的函数,则函数的值域是
______.
答案:有图表可知,所有的函数值构成的集合为{2,3,4,5},故函数的值域为{2,3,4,5}.33.如图,P-ABCD是正四棱锥,ABCD-A1B1C1D1是正方体,其中AB=2,PA=6.
(1)求证:PA⊥B1D1;
(2)求平面PAD与平面BDD1B1所成锐二面角的余弦值.答案:以D1为原点,D1A1所在直线为x轴,D1C1所在直线为y轴,D1D所在直线为z轴建立空间直角坐标系,则D1(0,0,0),A1(2,0,0),B1(2,2,0),C1(0,2,0),D(0,0,2),A(2,0,2),B(2,2,2),C(0,2,2),P(1,1,4).(1)证明:∵AP=(-1,1,2),D1B1=(2,2,0),∴AP•D1B1=-2+2+0=0,∴PA⊥B1D1.(2)平面BDD1B1的法向量为AC=(-2,2,0).DA=(2,0,0),OP=(1,1,2).设平面PAD的法向量为n=(x,y,z),则n⊥DA,n⊥DP.∴2x=0x+y+2z=0∴x=0y=-2z.取n=(0,-2,1),设所求锐二面角为θ,则cosθ=|n•AC||n|•|AC|=|0-4+0|22×5=105.34.设复数z满足条件|z|=1,那么|z+22+i|的最大值是______.答案:∵|z|=1,∴可设z=cosα+sinα,于是|z+22+i|=|cosα+22+(sinα+1)i|=(cosα+22)2+(sinα+1)2=10+6sin(α+θ)≤10+6=4.∴|z+22+i|的最大值是4.故为435.(不等式选讲)
已知a>0,b>0,c>0,abc=1,试证明:.答案:略解析::证明:由,所以同理:
,
相加得:左³……………(10分)36.下列各图形不是函数的图象的是()A.
B.
C.
D.
答案:由函数的概念,B中有的x,存在两个y与x对应,不符合函数的定义,而ACD均符合.故选B37.若正四面体ABCD的棱长为1,M是AB的中点,则MC
•MD
=______.答案:在正四面体中,因为M是AB的中点,所以CM=12(CA+CB),DM=12(DA+DB),所以CM⋅DM=12(CA+CB)⋅12(DA+DB)=14(CA⋅DA+CB⋅DA+CA⋅DB+CB⋅DB)=14(1×1×cos60∘+0+0+1×1×cos60∘)=14×1=14.所以MC
•MD
=CM⋅DM=14.故为:
1
4
.38.一平面截球面产生的截面形状是______;它截圆柱面所产生的截面形状是______.答案:根据球的几何特征,一平面截球面产生的截面形状是圆;当平面与圆柱的底面平行时,截圆柱面所产生的截面形状为圆;当平面与圆柱的底面不平行时,截圆柱面所产生的截面形状为椭圆;故为:圆,圆或椭圆39.如图是一个正三棱柱体的三视图,该柱体的体积等于()A.3B.23C.2D.33答案:根据长对正,宽相等,高平齐,可得底面正三角形高为3,三棱柱高为1所以正三角形边长为3sin60°=2,所以V=12×2×3×1=3,故选A.40.椭圆的长轴长为10,短轴长为8,则椭圆上的点到椭圆中心的距离的取值范围是______.答案:椭圆上的点到圆心的最小距离为短半轴的长度,最大距离为长半轴的长度因为椭圆的长轴长为10,短轴长为8,所以椭圆上的点到圆心的最小距离为4,最大距离为5所以椭圆上的点到椭圆中心距离的取值范围是[4,5]故为:[4,5]41.点B是点A(1,2,3)在坐标平面yOz内的正投影,则|OB|等于()
A.
B.
C.
D.答案:B42.已知点M(a,b)在直线3x+4y=15上,则a2+b2的最小值为______.答案:a2+b2的几何意义是到原点的距离,它的最小值转化为原点到直线3x+4y=15的距离:d=155=3.故为3.43.在直角坐标系中,画出下列向量:
(1)|a|=2,a的方向与x轴正方向的夹角为60°,与y轴正方向的夹角为30°;
(2)|a|=4,a的方向与x轴正方向的夹角为30°,与y轴正方向的夹角为120°;
(3)|a|=42,a的方向与x轴正方向的夹角为135°,与y轴正方向的夹角为135°.答案:由题意作出向量a如右图所示:(1)(2)(3)44.已知一种材料的最佳加入量在l000g到2000g之间,若用0.618法安排试验,则第一次试点的加入量可以是(
)g。答案:1618或138245.已知均为单位向量,且=,则,的夹角为()
A.
B.
C.
D.答案:C46.(文)不等式的解集是(
)A.B.C.D.答案:D解析:【思路分析】:原不等式可化为,得,故选D.【命题分析】考查不等式的解法,要求同解变形.47.已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m的值为()
A.0
B.-8
C.2
D.10答案:B48.“sinx=siny”是“x=y”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案:∵“sinx=siny”不能推出“x=y”,例如sin30°=sin390°,但30°≠390°,即充分性不成立;反过来,若“x=y”,一定有“sinx=siny”,即必要性成立;∴“sinx=siny”是“x=y”的必要不充分条件.故选C.49.将椭圆x2+6y2-2x-12y-13=0按向量a平移,使中心与原点重合,则a的坐标是()A.(-1,1)B.(1,-1)C.(-1,-1)D.(1,1)答案:椭圆方程x2+6y2-2x-12y-13=0变形为:(x-1)2+6(y-1)2=20,则椭圆中心(1,1),即需按a=(-1,-1)平移,中心与原点重合.故选C.50.如图所示的方格纸中有定点O,P,Q,E,F,G,H,则=()
A.
B.
C.
D.
答案:C第3卷一.综合题(共50题)1.下列程序表示的算法是辗转相除法,请在空白处填上相应语句:
(1)处填______;
(2)处填______.答案:∵程序表示的算法是辗转相除法,根据辗转相除法,先求出m除以n的余数,然后利用辗转相除法,将n的值赋给m,将余数赋给n,一直算到余数为零时m的值即可,∴(1)处应该为r=mMODn;(2)处应该为r=0.故为r=mMODn;r=0.2.如图,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F分别为AD,BC上点,且EF=3,EF∥AB,则梯形ABFE与梯形EFCD的面积比为______.答案:∵E,F分别为AD,BC上点,且EF=3,EF∥AB,∴EF是梯形的中位线,设两个梯形的高是h,∴梯形ABFE的面积是(4+3)h2=7h2,梯形EFCD的面积(2+3)h2=5h2∴梯形ABFE与梯形EFCD的面积比为7h25h2=75,故为:7:53.四名志愿者和两名运动员排成一排照相,要求两名运动员必须站在一起,则不同的排列方法为()A.A44A22B.A55A22C.A55D.A66A22答案:根据题意,要求两名运动员站在一起,所以使用捆绑法,两名运动员站在一起,有A22种情况,将其当做一个元素,与其他四名志愿者全排列,有A55种情况,结合分步计数原理,其不同的排列方法为A55A22种,故选B.4.M∪{1}={1,2,3}的集合M的个数是______.答案:∵M∪{1}={1,2,3},∴M={1,2,3}或{2,3},则符合题意M的个数是2.故为:25.每一吨铸铁成本y
(元)与铸件废品率x%建立的回归方程y=56+8x,下列说法正确的是()A.废品率每增加1%,成本每吨增加64元B.废品率每增加1%,成本每吨增加8%C.废品率每增加1%,成本每吨增加8元D.如果废品率增加1%,则每吨成本为56元答案:∵回归方程y=56+8x,∴当x增加一个单位时,对应的y要增加8个单位,这里是平均增加8个单位,故选C.6.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为()
A.
B.3
C.
D.答案:A7.已知一种材料的最佳加入量在100g到200g之间,若用0.618法安排试验,则第一次试点的加入量可以是(
)g。答案:161.8或138.28.在极坐标系中,若等边三角形ABC(顶点A,B,C按顺时针方向排列)的顶点A,B的极坐标分别为(2,π6),(2,7π6),则顶点C的极坐标为______.答案:如图所示:由于A,B的极坐标(2,π6),(2,7π6),故极点O为线段AB的中点.故等边三角形ABC的边长为4,AB边上的高(即点C到AB的距离)OC等于23.设点C的极坐标为(23,π6+π2),即(23,2π3),故为(23,2π3).9.对于平面几何中的命题:“夹在两条平行线之间的平行线段相等”,在立体几何中,类比上述命题,可以得到命题:“______”.答案:在由平面图形的性质向空间物体的性质进行类比时,我们常用由平面图形中线的性质类比推理出空间中面的性质,故由平面几何中的命题:“夹在两条平行线这间的平行线段相等”,我们可以推断在立体几何中:“夹在两个平行平面间的平行线段相等”这个命题是一个真命题.故为:“夹在两个平行平面间的平行线段相等”.10.设A、B为两个事件,若事件A和B同时发生的概率为310,在事件A发生的条件下,事件B发生的概率为12,则事件A发生的概率为______.答案:根据题意,得∵P(A|B)=P(AB)P(B),P(AB)=310,P(A|B)=12∴12=310P(B),解得P(B)=31012=35故为:3511.曲线(t为参数)上的点与A(-2,3)的距离为,则该点坐标是()
A.(-4,5)
B.(-3,4)或(-1,2)
C.(-3,4)
D.(-4,5)或(0,1)答案:B12.(1)把二进制数化为十进制数;(2)把化为二进制数.答案:(1)45,(2)解析:(1)先把二进制数写成不同位上数字与2的幂的乘积之和的形式,再按照十进制的运算规则计算出结果;(2)根据二进制数“满二进一”的原则,可以用连续去除或所得商,然后取余数.(1)(2),,,,.所以..这种算法叫做除2余法,还可以用下面的除法算式表示;把上式中各步所得的余数从下到上排列,得到【名师指引】直接插入排序和冒泡排序是两种常用的排序方法,通过该例,我们对比可以发现,直接插入排序比冒泡排序更有效一些,执行的操作步骤更少一些..13.已知向量a与向量b的夹角为120°,若向量c=a+b,且a⊥c,则|a||b|的值为______.答案:由题意可知,∵a⊥c,∴a?c=a?(a+b)=a2+a?b=0即|a|2+|a||b|cos120°=0,故|a|2=12|a||b|,故|a||b|=12.故为:1214.如图,已知AB是⊙O的直径,AB⊥CD于E,切线BF交AD的延长线于F,若AB=10,CD=8,则切线BF的长是
______.答案:连接OD,AB⊥CD于E,根据垂径定理得到DE=4,在直角△ODE中,根据勾股定理得到OE=3,因而AE=8,易证△ABF∽△AED,得到DEBF=AEAB=810,解得BF=5.15.对某种电子元件进行寿命跟踪调查,所得样本频率分布直方图如图,由图可知:一批电子元件中,寿命在100~300小时的电子元件的数量与寿命在300~600小时的电子元件的数量的比大约是()A.12B.13C.14D.16答案:由于已知的频率分布直方图中组距为100,寿命在100~300小时的电子元件对应的矩形的高分别为:12000,32000则寿命在100~300小时的电子元件的频率为:100?(12000+32000)=0.2寿命在300~600小时的电子元件对应的矩形的高分别为:1400,1250,32000则寿命在300~600小时子元件的频率为:100?(1400+1250+32000)=0.8则寿命在100~300小时的电子元件的数量与寿命在300~600小时的电子元件的数量的比大约是0.2:0.8=14故选C16.在市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率是95%,乙厂的合格率是80%,则从市场上买到一个甲厂生产的合格灯泡的概率是______.答案:由题意知本题是一个相互独立事件同时发生的概率,∵甲厂产品占70%,甲厂产品的合格率是95%,∴从市场上买到一个甲厂生产的合格灯泡的概率是0.7×0.95=0.665故为:0.66517.下列四个函数中,与y=x表示同一函数的是()A.y=(x)2B.y=3x3C.y=x2D.y=x2x答案:选项A中的函数的定义域与已知函数不同,故排除选项A.选项B中的函数与已知函数具有相同的定义域、值域和对应关系,故是同一个函数,故选项B满足条件.选项C中的函数与已知函数的值域不同,故不是同一个函数,故排除选项C.选项D中的函数与与已知函数的定义域不同,故不是同一个函数,故排除选项D,故选B.18.已知P(4,-9),Q(-2,3)且Y轴与线段PQ交于M,则Q分的比为()
A.-2
B.-
C.
D.3答案:B19.直线上与点的距离等于的点的坐标是_______。答案:,或20.设U={三角形},M={直角三角形},N={等腰三角形},则M∩N=______.答案:∵M={直角三角形},N={等腰三角形},∴M∩N={直角三角形且等腰三角形}={等腰直角三角形}故为{等腰直角三角形}21.方程x2-(k+2)x+1-3k=0有两个不等实根x1,x2,且0<x1<1<x2<2,则实数k的取值范围为______.答案:构造函数f(x)=x2-(k+2)x+1-3k∵方程x2-(k+2)x+1-3k=0有两个不等实根x1,x2,且0<x1<1<x2<2,∴f(0)>0f(1)<0f(2)>0∴1-3k>0-4k<01-5k>0∴0<k<15∴实数k的取值范围为(0,15)故为:(0,15)22.过直线x+y-22=0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的坐标是______.答案:根据题意画出相应的图形,如图所示:直线PA和PB为过点P的两条切线,且∠APB=60°,设P的坐标为(a,b),连接OP,OA,OB,∴OA⊥AP,OB⊥BP,PO平分∠APB,∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,又圆x2+y2=1,即圆心坐标为(0,0),半径r=1,∴OA=OB=1,∴OP=2AO=2BO=2,∴a2+b2=2,即a2+b2=4①,又P在直线x+y-22=0上,∴a+b-22=0,即a+b=22②,联立①②解得:a=b=2,则P的坐标为(2,2).故为:(2,2)23.已知向量a=(-2,1),b=(-3,-1),若单位向量c满足c⊥(a+b),则c=______.答案:设c=(x,y),∵向量a=(-2,1),b=(-3,-1),单位向量c满足c⊥(a+b),∴c•a+c•b=0,∴-2x+y-3x-y=0,解得x=0,∴c=(0,y),∵c是单位向量,∴0+y2=1,∴y=±1.故c=(0,1),或c=(0,-1).故为:(0,1)或(0,-1).24.与函数y=x相等的函数是()A.f(x)=(x)2B.f(x)=x2xC.f(x)=x2D.f(x)=3x3答案:对于A,f(x)=x(x≥0),不符合;对于B,f(x)=x(x≠0),不符合;对于C,f(x)=|x|(x∈R),不符合;对于D,f(x)=x(x∈R),符合;故选D.25.在极坐标系中,点(2,π6)到直线ρsinθ=2的距离等于______.答案:在极坐标系中,点(2
,
π6)化为直角坐标为(3,1),直线ρsinθ=2化为直角坐标方程为y=2,(3,1),到y=2的距离1,即为点(2
,
π6)到直线ρsinθ=2的距离1,故为:1.26.某小组有3名女生、4名男生,从中选出3名代表,要求至少女生与男生各有一名,共有______种不同的选法.(要求用数字作答)答案:由题意知本题是一个分类计数问题,要求至少女生与男生各有一名有两个种不同的结果,即一个女生两个男生和一个男生两个女生,∴共有C31C42+C32C41=30种结果,故为:3027.等边三角形ABC中,P在线段AB上,且AP=λAB,若CP•AB=PA•PB,则实数λ的值是______.答案:设等边三角形ABC的边长为1.则|AP|=λ|AB|=λ,|PB|=1-λ.(0<λ<1)CP•AB=(CA+AP)•AB=CA•AB+
AP•AB=PA•PB,所以1×1×cos120°+λ×1×cos0°=λ×(1-λ)cos180°.化简-12+λ=-λ(1-λ),整理λ2-2λ+12=0,解得λ=2-22(λ=2+22>1舍去)故为:2-2228.(几何证明选讲选做题)如图,⊙O中,直径AB和弦DE互相垂直,C是DE延长线上一点,连接BC与圆0交于F,若∠CFE=α(α∈(0,π2)),则∠DEB______.答案:∵直径AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四点共圆∴∠EFC=∠D=α∴∠DEB=α故为:α29.若x~N(2,σ2),P(0<x<4)=0.8,则P(0<X<2)=______.答案:∵X~N(2,σ2),∴正态曲线关于x=2对称,∵P(0<X<4)=0.8,∴P(0<X<2)=12P(0<X<4)=0.4,故为:0.4.30.已知a、b均为单位向量,它们的夹角为60°,那么|a+3b|=()
A.
B.
C.
D.4答案:C31.给出20个数:87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88它们的和是()A.1789B.1799C.1879D.1899答案:由题意知本题是一个求和问题,87+91+94+88+93+91+89+87+92+86+90+92+88+90+91+86+89+92+95+88=1799,故选B.32.已知正数x,y,z满足5x+4y+3z=10.
(1)求证:25x
24y+3z+16y23z+5x+9z25x+4y≥5;
(2)求9x2+9y2+z2的最小值.答案:(1)根据柯西不等式,得[(4y+3z)+(3z+5x)+(5x+4y)][25x24y+3z+16y23z+5x+9z25x+4y]≥(5x+4y+3z)2因为5x+4y+3z=10,所以25x24y+3z+16y23z+5x+9z25x+4y≥10220=5.(2)根据均值不等式,得9x2+9y2+z2≥29x2?9y2+z2=2?3x2+y2+z2,当且仅当x2=y2+z2时,等号成立.根据柯西不等式,得(x2+y2+z2)(52+42+32)≥(5x+4y+3z)2=100,即
(x2+y2+z2)≥2,当且仅当x5=y4=z3时,等号成立.综上,9x2+9y2+z2≥2?32=18.33.如果执行如图的程序框图,那么输出的S=______.答案:根据题意可知该循环体运行5次第一次:k=2,s=2,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国高尔夫产业发展潜力及经营管理模式分析报告
- 2024-2030年中国食品塑料包装行业发展现状及未来投资策略分析报告
- 2024-2030年中国韩国泡菜行业市场竞争战略及投资盈利预测报告
- 2024-2030年中国集成吊顶行业竞争状况与营销策略研究报告
- 2024-2030年中国铜金属行业当前经济形势及投资建议研究报告
- 2024-2030年中国铁路工程建筑行业市场规模分析及融资战略研究报告
- 2024-2030年中国钨精矿市场运行现状及投资发展前景预测报告
- 2024-2030年中国钢桥行业规模分析与未来发展规划研究报告
- 2024-2030年中国钓鱼行业市场运行现状及发展前景预测报告
- 2024-2030年中国金融服务业RFID行业应用现状及投资商业模式分析报告
- “僵尸型”社会组织注销登记表
- 住院HIS系统流程图
- 采购部年终总结计划PPT模板
- 智能交互式无纸化会议系统设计方案
- 机械制造工艺学课程设计
- 配电箱安装施工方案
- 湘少版英语四年级上册Unit12Petercanjumphigh单元测试题(含答案及)
- 早产儿知情同意书
- 手术质量与安全监测分析制度
- 2020年事业单位招聘考试《气象专业基础知识》真题库及答案1000题
- 模型构建的原则和主要步骤
评论
0/150
提交评论