2023年河南地矿职业学院高职单招(数学)试题库含答案解析_第1页
2023年河南地矿职业学院高职单招(数学)试题库含答案解析_第2页
2023年河南地矿职业学院高职单招(数学)试题库含答案解析_第3页
2023年河南地矿职业学院高职单招(数学)试题库含答案解析_第4页
2023年河南地矿职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年河南地矿职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.某个命题与自然数n有关,若n=k(k∈N*)时命题成立,那么可推得当n=k+1时该命题也成立.现已知当n=5时,该命题不成立,那么可推得()

A.当n=6时,该命题不成立

B.当n=6时,该命题成立

C.当n=4时,该命题不成立

D.当n=4时,该命题成立答案:C2.若点M到定点F和到定直线l的距离相等,则下列说法正确的是______.

①点M的轨迹是抛物线;

②点M的轨迹是一条与x轴垂直的直线;

③点M的轨迹是抛物线或一条直线.答案:当点F不在直线l上时,点M的轨迹是以F为焦点、l为准线的抛物线;而当点F在直线l上时,点M的轨迹是一条过点F,且与l垂直的直线.故为:③3.在同一平面直角坐标系中,直线变成直线的伸缩变换是()A.B.C.D.答案:A解析:解:设直线上任意一点(x′,y′),变换前的坐标为(x,y),则根据直线变成直线则伸缩变换是,选A4.已知a,b,c为正数,且两两不等,求证:2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b).答案:证明:不妨设a>b>c>0,则(a-b)2>0,(b-c)2>0,(c-a)2>0.由于2(a3+b3+c3)-a2(b+c)+b2(a+c)+c2(a+b)=a2(a-b)+a2(a-c)+b2(b-c)+b2(b-a)+c2(c-a)+c2(c-b)

=(a-b)2(a+b)+(b-c)2(b+c)+(c-a)2(c+a)>0,故有2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b)成立.5.若与垂直,则k的值是()

A.2

B.1

C.0

D.答案:D6.下列赋值语句中正确的是()

A.m+n=3

B.3=i

C.i=i2+1

D.i=j=3答案:C7.已知:如图,四边形ABCD内接于⊙O,,过A点的切线交CB的延长线于E点,求证:AB2=BE·CD。

答案:证明:连结AC,因为EA切⊙O于A,所以∠EAB=∠ACB,因为,所以∠ACD=∠ACB,AB=AD,于是∠EAB=∠ACD,又四边形ABCD内接于⊙O,所以∠ABE=∠D,所以△ABE∽△CDA,于是,即AB·DA=BE·CD,所以。8.命题“若A∪B=A,则A∩B=B”的否命题是()A.若A∪B≠A,则A∩B≠BB.若A∩B=B,则A∪B=AC.若A∩B≠A,则A∪B≠BD.若A∪B=B,则A∩B=A答案:“若A∪B=A,则A∩B=B”的否命题:“若A∪B≠A则A∩B≠B”故选A.9.在空间直角坐标系中,已知A,B两点的坐标分别是A(2,3,5),B(3,1,4),则这两点间的距离|AB|=______.答案:∵A,B两点的坐标分别是A(2,3,5),B(3,1,4),∴|AB|=(3-2)2+(1-3)2+(4-5)2,=1+4+1=6,故为:6.10.复数(12+32i)3i的值为______.答案:(12+32i)3i=(cosπ3+isinπ3)3cosπ2+isinπ2=cosπ+isinπcosπ2+

isinπ2=cosπ2+isinπ2=i,故为:i.11.函数f(x)=-2x+1(x∈[-2,2])的最小、最大值分别为()A.3,5B.-3,5C.1,5D.5,-3答案:因为f(x)=-2x+1(x∈[-2,2])是单调递减函数,所以当x=2时,函数的最小值为-3.当x=-2时,函数的最大值为5.故选B.12.已知点B是点A(2,-3,5)关于平面xOy的对称点,则|AB|=()

A.10

B.

C.

D.38答案:A13.一圆形纸片的圆心为O,点Q是圆内异于O点的一个定点,点A是圆周上一动点,把纸片折叠使得点A与点Q重合,然后抹平纸片,折痕CD与OA交于点P,当点A运动时,点P的轨迹为()

A.椭圆

B.双曲线

C.抛物线

D.圆答案:A14.函数f(x)=x2+(a+1)x+2是定义在[a,b]上的偶函数,则a+b=______.答案:∵函数f(x)=x2+(a+1)x+2是定义在[a,b]上的偶函数,∴其定义域关于原点对称,既[a,b]关于原点对称.所以a与b互为相反数即a+b=0.故为:0.15.直角坐标xOy平面上,平行直线x=n(n=0,1,2,…,5)与平行直线y=n(n=0,1,2,…,5)组成的图形中,矩形共有()

A.25个

B.36个

C.100个

D.225个答案:D16.口袋内有100个大小相同的红球、白球和黑球,其中有45个红球,从中摸出1个球,摸出白球的概率为0.23,则摸出黑球的概率为______.答案:∵口袋内有100个大小相同的红球、白球和黑球从中摸出1个球,摸出白球的概率为0.23,∴口袋内白球数为32个,又∵有45个红球,∴为32个.从中摸出1个球,摸出黑球的概率为32100=0.32故为0.3217.已知A(3,0),B(0,3),O为坐标原点,点C在第一象限内,且∠AOC=60°,设OC=OA+λOB

(λ∈R),则λ等于()A.33B.3C.13D.3答案:∵OC=OC=OA+λOB(λ∈R),∠AOC=60°∴|λOB|=

3tan60°=33又∵|OB|=3∴λ=3故选D.18.已知函数f(x)=2x,x≥01,

x<0,若f(1-a2)>f(2a),则实数a的取值范围是______.答案:函数f(x)=2x,x≥01,

x<0,x<0时是常函数,x≥0时是增函数,由f(1-a2)>f(2a),所以2a<1-a21-a2>0,解得:-1<a<2-1,故为:-1<a<2-1.19.如果双曲线的焦距为6,两条准线间的距离为4,那么该双曲线的离心率为()

A.

B.

C.

D.2答案:C20.已知下列命题(其中a,b为直线,α为平面):

①若一条直线垂直于一个平面内无数条直线,则这条直线与这个平面垂直;

②若一条直线平行于一个平面,则垂直于这条直线的直线必垂直于这个平面;

③若a∥α,b⊥α,则a⊥b;

④若a⊥b,则过b有且只有一个平面与a垂直.

上述四个命题中,真命题是()A.①,②B.②,③C.②,④D.③,④答案:①平面内无数条直线均为平行线时,不能得出直线与这个平面垂直,将“无数条”改为“所有”才正确;故①错误;②垂直于这条直线的直线与这个平面可以是任何的位置关系,有可能是平行、相交、线在面内,故②错误.③若a∥α,b⊥α,则必有a⊥b,正确;④若a⊥b,则过b有且只有一个平面与a垂直,显然正确.故选D.21.已知2a=3b=6c则有()

A.∈(2,3)

B.∈(3,4)

C.∈(4,5)

D.∈(5,6)答案:C22.设M是□ABCD的对角线的交点,O为任意一点(且不与M重合),则OA+OB+OC+OD

等于()A.OMB.2OMC.3OMD.4OM答案:∵O为任意一点,不妨把A点O看成O点,则OA+OB+OC+OD=0+AB+AC

+AD,∵M是□ABCD的对角线的交点,∴0+AB+AC+AD=2AC=4AM故选D23.在平面直角坐标系xOy中,点P的坐标为(-1,1),若取原点O为极点,x轴正半轴为极轴,建立极坐标系,则在下列选项中,不是点P极坐标的是()

A.()

B.()

C.()

D.()答案:D24.在极坐标系下,圆C:ρ2+4ρsinθ+3=0的圆心坐标为()

A.(2,0)

B.

C.(2,π)

D.答案:D25.某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错得0分,假设这位同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响,则这名同学得300分的概率为

;这名同学至少得300分的概率为

.答案:0.228;0.564解析:得300分可能是答对第一、三题或第二、三题,其概率为0.8×0.3×0.6+0.2×0.7×0.6=0.228;答对4道题可得400分,其概率为0.8×0.7×0.6=0.336,所以至少得300分的概率为0.228+0.336=0.564。26.函数f(x)=x+1x的定义域是______.答案:要使原函数有意义,则x≥0x≠0,所以x>0.所以原函数的定义域为(0,+∞).故为(0,+∞).27.

若向量

=(3,2),=(0,-1),=(-1,2),则向量2-的坐标坐标是(

A.(3,-4)

B.(-3,4)

C.(3,4)

D.(-3,-4)答案:D28.(1+3x)n(其中n∈N且n≥6)的展开式中x5与x6的系数相等,则n=()A.6B.7C.8D.9答案:二项式展开式的通项为Tr+1=3rCnrxr∴展开式中x5与x6的系数分别是35Cn5,36Cn6∴35Cn5=36Cn6解得n=7故选B29.已知点A(5,0)和⊙B:(x+5)2+y2=36,P是⊙B上的动点,直线BP与线段AP的垂直平分线交于点Q.

(1)证明点Q的轨迹是双曲线,并求出轨迹方程.

(2)若(BQ+BA)•QA=0,求点Q的坐标.答案:(1)∵点Q在线段AP的垂直平分线上,∴|QP|=|QA|,∴||BQ|-|PQ||=||BQ|-|AQ||=6.∴点Q的轨迹是以A、B为焦点的双曲线.(4′)其轨迹方程是x29-y216=1.(7′)(2)以A、B、Q为三个顶点作平行四边形ABQC,则BQ+BA=BC∵(BQ+BA)•QA=0,∴BC•QC=0,∴平行四边形ABQC是菱形,∴|BA|=|BQ|.(8′)∴点Q在圆(x+5)2+y2=100上.解方程组(x+5)2+y2=100x29-y216=1.(10′)得Q(-395,±485)或Q(215,±865).(12′)30.用“辗转相除法”求得和的最大公约数是(

)A.B.C.D.答案:D解析:是和的最大公约数,也就是和的最大公约数31.若方程x2+y2+kx+2y+k2-11=0表示的曲线是圆,则实数k的取值范围是______.如果过点(1,2)总可以作两条直线和圆x2+y2+kx+2y+k2-11=0相切,则实数k的取值范围是______.答案:方程x2+y2+kx+2y+k2-11=0即(x+k2)2+(y+1)2=48-3k24,由于它表示的曲线是圆,∴48-3k24>0,解得-4<k<4.圆x2+y2+kx+2y+k2-11=0即(x+k2)2+(y+1)2=48-3k24.如果过点(1,2)总可以作两条直线和圆x2+y2+kx+2y+k2-11=0相切,则点(1,2)一定在圆x2+y2+kx+2y+k2-11=0的外部,∴48-3k24>0,且(1+k2)2+(2+1)2>48-3k24.解得-4<k<-2,或1<k<4.故为:(-4,4),(-4,-2)∪(1,4).32.抛物线x2+y=0的焦点位于()

A.y轴的负半轴上

B.y轴的正半轴上

C.x轴的负半轴上

D.x轴的正半轴上答案:A33.不等式|x+3|-|x-1|≤a2-3a对任意实数x恒成立,则实数a的取值范围为()

A.(-∞,-1]∪[4,+∞)

B.(-∞,-2]∪[5,+∞)

C.[1,2]

D.(-∞,1]∪[2,+∞)答案:A34.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的14,且样本容量是160,则中间一组的频数为()A.32B.0.2C.40D.0.25答案:设间一个长方形的面积S则其他十个小长方形面积的和为4S,所以频率分布直方图的总面积为5S所以中间一组的频率为S5S=0.2所以中间一组的频数为160×0.2=32故选A35.在输入语句中,若同时输入多个变量,则变量之间的分隔符号是()

A.逗号

B.空格

C.分号

D.顿号答案:A36.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k),若α∥β,则k=______.答案:∵α∥β∴平面α、β的法向量互相平行,由此可得a=(1,2,-2),b=(-2,-4,k),a∥b∴1-2=2-4=-2k,解之得k=4.故为:437.设a、b为单位向量,它们的夹角为90°,那么|a+3b|等于()A.7B.10C.13D.4答案:∵a,b它们的夹角为90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10,|a+3b|=10.故选B.38.如图,AB为⊙O的直径,弦AC、BD交于点P,若AP=5,PC=3,DP=5,则AB=______.

答案:∵AP=5,PC=3,DP=5由相交弦定理可得:BP=35又∵AB为直径,∴∠ACB=90°∴BC=PB2-PC2=6∴AB=AC2-BC2=10故为:1039.集合A={1,2}的子集有几个()A.2B.4C.3D.1答案:集合A={1,2}的子集有:?,{2},{1},{2,1}共4个.故选B.40.设,是互相垂直的单位向量,向量=(m+1)-3,=-(m-1),(+)⊥(-)则实数m为()

A.-2

B.2

C.-

D.不存在答案:A41.三个数a=0.32,b=log20.3,c=20.3之间的大小关系是()A.a<c<bB.a<b<cC.b<a<cD.b<c<a答案:由对数函数的性质可知:b=log20.3<0,由指数函数的性质可知:0<a<1,c>1∴b<a<c故选C42.已知函数f(x)=2x+a的图象不过第三象限,则常数a的取值范围是

______.答案:函数f(x)=2x+a的图象可根据指数函数f(x)=2x的图象向上(a>0)或者向下(a<0)平移|a|个单位得到,若函数f(x)=2x+a的图象不过第三象限,则只能向上平移或者不平移,因此,a的取值范围是a≥0.故为:a≥0.43.如图所示,O点在△ABC内部,D、E分别是AC,BC边的中点,且有OA+2OB+3OC=O,则△AEC的面积与△AOC的面积的比为()

A.2

B.

C.3

D.

答案:B44.某医院计划从10名医生(7男3女)中选5人组成医疗小组下乡巡诊.

(I)设所选5人中女医生的人数为ξ,求ξ的分布列及数学期望;

(II)现从10名医生中的张强、李军、王刚、赵永4名男医生,李莉、孙萍2名女医生共6人中选一正二副3名组长,在张强被选中的情况下,求李莉也被选中的概率.答案:(I)ξ的所有可能的取值为0,1,2,3,….….(2分)则P(ξ=0)=C57C510=112P(ξ=1)=C47C13C510=512P(ξ=2)=C27C23C510=512;P(ξ=3)=C27C33C510=112…(6分)ξ.的分布列为ξ0123P112512512112Eξ=1×112+2×512+3×112=32…(9分)(II)记“张强被选中”为事件A,“李莉也被选中”为事件B,则P(A)=C25C36=12,P(BA)=C14C36=15,所以P(B|A)=P(BA)P(A)=25…(12分)45.三行三列的方阵.a11a12

a13a21a22

a23a31a32

a33.中有9个数aji(i=1,2,3;j=1,2,3),从中任取三个数,则它们不同行且不同列的概率是()A.37B.47C.114D.1314答案:从给出的9个数中任取3个数,共有C39;从三行三列的方阵中任取三个数,使它们不同行且不同列:从第一行中任取一个数有C13种方法,则第二行只能从另外两列中的两个数任取一个有C12种方法,第三行只能从剩下的一列中取即可有1中方法,∴共有C13×C12×C11=6.∴从三行三列的方阵中任取三个数,则它们不同行且同列的概率P=6C39=114.故选C.46.在平行六面体ABCD-A′B′C′D′中,若AC′=xAB+2yBC-3zC′C,则x+y+z等于______.答案:根据向量的加法法则可得,AC′=AC+CC′=AB+BC+CC′∵AC′=xAB+2yBC-3zC′C∴x=1,2y=1,-3z=1∴x=1,y=12,z=-13∴x+y+z=1+12-13=76故为:7647.从装有5只红球和5只白球的袋中任意取出3只球,有如下几对事件:

①“取出两只红球和一只白球”与“取出一只红球和两只白球”;

②“取出两只红球和一只白球”与“取出3只红球”;

③“取出3只红球”与“取出的3只球中至少有一只白球”;

④“取出3只红球”与“取出3只白球”.

其中是对立事件的有______(只填序号).答案:对于①“取出两只红球和一只白球”与“取出一只红球和两只白球”,由于它们不能同时发生,故是互斥事件.但由于它们的并事件不是必然事件,故它们不是对立事件.对于②“取出两只红球和一只白球”与“取出3只红球”,由于它们不能同时发生,故是互斥事件.但由于它们的并事件不是必然事件,故它们不是对立事件.对于③“取出3只红球”与“取出的3只球中至少有一只白球”,它们不可能同时发生,而且它们的并事件是必然事件,故它们是对立事件.④“取出3只红球”与“取出3只白球”.由于它们不能同时发生,故是互斥事件.但由于它们的并事件不是必然事件,故它们不是对立事件.故为③.48.已知f(x)=,a≠b,

求证:|f(a)-f(b)|<|a-b|.答案:证明略解析:方法一

∵f(a)=,f(b)=,∴原不等式化为|-|<|a-b|.∵|-|≥0,|a-b|≥0,∴要证|-|<|a-b|成立,只需证(-)2<(a-b)2.即证1+a2+1+b2-2<a2-2ab+b2,即证2+a2+b2-2<a2-2ab+b2.只需证2+2ab<2,即证1+ab<.当1+ab<0时,∵>0,∴不等式1+ab<成立.从而原不等式成立.当1+ab≥0时,要证1+ab<,只需证(1+ab)2<()2,即证1+2ab+a2b2<1+a2+b2+a2b2,即证2ab<a2+b2.∵a≠b,∴不等式2ab<a2+b2成立.∴原不等式成立.方法二

∵|f(a)-f(b)|=|-|==,又∵|a+b|≤|a|+|b|=+<+,∴<1.∵a≠b,∴|a-b|>0.∴|f(a)-f(b)|<|a-b|.49.满足条件|z|=|3+4i|的复数z在复平面上对应点的轨迹是______.答案:|z|=5,即点Z到原点O的距离为5∴z所对应点的轨迹为以(0,0)为圆心,5为半径的圆.50.袋中有4个形状大小一样的球,编号分别为1,2,3,4,从中任取2个球,则这2个球的编号之和为偶数的概率为()A.16B.23C.12D.13答案:根据题意,从4个球中取出2个,其编号的情况有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种;其中编号之和为偶数的有(1,3),(2,4),共2种;则2个球的编号之和为偶数的概率P=26=13;故选D.第2卷一.综合题(共50题)1.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得Χ2≈3.918,经查对临界值表知P(Χ2≥3.841)≈0.05.则下列结论中,正确结论的序号是______

(1)有95%的把握认为“这种血清能起到预防感冒的作用”

(2)若某人未使用该血清,那么他在一年中有95%的可能性得感冒

(3)这种血清预防感冒的有效率为95%

(4)这种血清预防感冒的有效率为5%答案:查对临界值表知P(Χ2≥3.841)≈0.05,故有95%的把握认为“这种血清能起到预防感冒的作用”950/0仅是指“血清与预防感冒”可信程度,但也有“在100个使用血清的人中一个患感冒的人也没有”的可能.故为:(1).2.下列各式中错误的是()

A.||2=2

B.||=||

C.0•=0

D.m(n)=mn(m,n∈R)答案:C3.如图,四面体ABCD中,点E是CD的中点,记=(

A.

B.

C.

D.

答案:B4.袋中装着标有数字1,2,3,4,5的小球各2个,现从袋中任意取出3个小球,假设每个小球被取出的可能性都相等.

(Ⅰ)求取出的3个小球上的数字分别为1,2,3的概率;

(Ⅱ)求取出的3个小球上的数字恰有2个相同的概率;

(Ⅲ)用X表示取出的3个小球上的最大数字,求P(X≥4)的值.答案:(I)记“取出的3个小球上的数字分别为1,2,3”的事件记为A,则P(A)=C12C12C12C310=8120=115;(Ⅱ)记“取出的3个小球上的数字恰有2个相同”的事件记为A,则P(B)=C15C18C310=40120=13;(Ⅲ)用X表示取出的3个小球上的最大数字,则X≥4包含取出的3个小球上的最大数字为4或5两种情况,当取出的3个小球上的最大数字为4时,P(X=4)=C12C26+C22C16C310=36120=310;当取出的3个小球上的最大数字为5时,P(X=5)=C12C28+C22C18C310=64120=815故P(X≥4)=56.5.以原点为圆心,且截直线3x+4y+15=0所得弦长为8的圆的方程是()A.x2+y2=5B.x2+y2=16C.x2+y2=4D.x2+y2=25答案:弦心距是:1525=3,弦长为8,所以半径是5所求圆的方程是:x2+y2=25故选D.6.抛物线y=3x2的焦点坐标是______.答案:化为标准方程为x2=13y,∴2p=13,∴p2=

112,∴焦点坐标是(0,112).故为(0,112)7.已知向量a=(-2,1),b=(-3,-1),若单位向量c满足c⊥(a+b),则c=______.答案:设c=(x,y),∵向量a=(-2,1),b=(-3,-1),单位向量c满足c⊥(a+b),∴c•a+c•b=0,∴-2x+y-3x-y=0,解得x=0,∴c=(0,y),∵c是单位向量,∴0+y2=1,∴y=±1.故c=(0,1),或c=(0,-1).故为:(0,1)或(0,-1).8.函数f(x)=2x2+1,&x∈[0,2],则函数f(x)的值域为()A.[1,32]B.[4,32]C.[2,32]D.[2,4]答案:∵f(x)=2x2+1,x∈[0,2],∴设y=2t,t=x2+1∈[1,5],∵y=2t是增函数,∴t=1时,ymin=2;t=5时,ymax=25=32.∴函数f(x)的值域为[2,32].故为:C.9.已知平行四边形ABCD,下列正确的是()

A.

B.

C.

D.答案:B10.设α∈[0,π],则方程x2sinα+y2cosα=1不能表示的曲线为()

A.椭圆

B.双曲线

C.抛物线

D.圆答案:C11.已知a、b均为单位向量,它们的夹角为60°,那么|a+3b|=()

A.

B.

C.

D.4答案:C12.若直线ax+by+1=0与圆x2+y2=1相离,则点P(a,b)的位置是()

A.在圆上

B.在圆外

C.在圆内

D.以上都有可能答案:C13.若A(-2,3),B(3,-2),C(,m)三点共线

则m的值为()

A.

B.-

C.-2

D.2答案:A14.如果一个圆锥的正视图是边长为2的等边三角形,则该圆锥的表面积是______.答案:由已知,圆锥的底面直径为2,母线为2,则这个圆锥的表面积是12×2π×2+π?12=3π.故:3π.15.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的一个焦点是F2(2,0),且b=3a.

(1)求双曲线C的方程;

(2)设经过焦点F2的直线l的一个法向量为(m,1),当直线l与双曲线C的右支相交于A,B不同的两点时,求实数m的取值范围;并证明AB中点M在曲线3(x-1)2-y2=3上.

(3)设(2)中直线l与双曲线C的右支相交于A,B两点,问是否存在实数m,使得∠AOB为锐角?若存在,请求出m的范围;若不存在,请说明理由.答案:(1)c=2c2=a2+b2∴4=a2+3a2∴a2=1,b2=3,∴双曲线为x2-y23=1.(2)l:m(x-2)+y=0由y=-mx+2mx2-y23=1得(3-m2)x2+4m2x-4m2-3=0由△>0得4m4+(3-m2)(4m2+3)>012m2+9-3m2>0即m2+1>0恒成立又x1+x2>0x1•x2>04m2m2-3>04m2+3m2-3>0∴m2>3∴m∈(-∞,-3)∪(3,+∞)设A(x1,y1),B(x2,y2),则x1+x22=2m2m2-3y1+y22=-2m3m2-3+2m=-6mm2-3∴AB中点M(2m2m2-3,-6mm2-3)∵3(2m2m2-3-1)2-36m2(m2-3)2=3×(m2+3)2(m2-3)2-36m2(m2-3)2=3•m4+6m2+9-12m2(m2-3)2=3∴M在曲线3(x-1)2-y2=3上.(3)A(x1,y1),B(x2,y2),设存在实数m,使∠AOB为锐角,则OA•OB>0∴x1x2+y1y2>0因为y1y2=(-mx1+2m)(-mx2+2m)=m2x1x2-2m2(x1+x2)+4m2∴(1+m2)x1x2-2m2(x1+x2)+4m2>0∴(1+m2)(4m2+3)-8m4+4m2(m2-3)>0即7m2+3-12m2>0∴m2<35,与m2>3矛盾∴不存在16.已知椭圆(a>b>0)的焦点分别为F1,F2,b=4,离心率e=过F1的直线交椭圆于A,B两点,则△ABF2的周长为()

A.10

B.12

C.16

D.20答案:D17.若向量两两所成的角相等,且,则等于()

A.2

B.5

C.2或5

D.或答案:C18.方程x2-y2=0表示的图形是()

A.两条相交直线

B.两条平行直线

C.两条重合直线

D.一个点答案:A19.已知G是△ABC的重心,过G的一条直线交AB、AC两点分别于E、F,且有AE=λAB,AF=μAC,则1λ+1μ=______.答案:∵G是△ABC的重心∴取过G平行BC的直线EF∵AE=λAB,AF=μAC∴λ=23,μ=23∴1λ+1μ=32+32=3故为320.某校为提高教学质量进行教改实验,设有试验班和对照班.经过两个月的教学试验,进行了一次检测,试验班与对照班成绩统计如下的2×2列联表所示(单位:人),则其中m=______,n=______.

80及80分以下80分以上合计试验班321850对照班12m50合计4456n答案:由题意,18+m=56,50+50=n,∴m=38.n=100,故为38,010.21.命题“当AB=AC时,△ABC是等腰三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题有______个.答案:原命题为真命题.逆命题“当△ABC是等腰三角形时,AB=AC”为假命题.否命题“当AB≠AC时,△ABC不是等腰三角形”为假命题.逆否命题“当△ABC不是等腰三角形时,AB≠AC”为真命题.故为:2.22.对于各数互不相等的整数数组(i1,i2,i3,…in)

(n是不小于2的正整数),对于任意p,q∈1,2,3,…,n,当p<q时有ip>iq,则称ip,iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,则数组(2,4,3,1)中的逆序数等于______.答案:由题意知当p<q时有ip>iq,则称ip,iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,在数组(2,4,3,1)中逆序有2,1;4,3;4,1;3,1共有4对逆序数对,故为:4.23.命题“方程|x|=1的解是x=±1”中,使用逻辑词的情况是()A.没有使用逻辑连接词B.使用了逻辑连接词“或”C.使用了逻辑连接词“且”D.使用了逻辑连接词“或”与“且”答案:∵命题“方程|x|=1的解是x=±1”等价于命题“方程|x|=1的解是x=1或x=-1.”∴该命题使用了逻辑连接词“或”.故选B.24.α为第一象限角是sinαcosα>0的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:若α为第一象限角,则sinα>0,cosα>0,所以sinαcosα>0,成立.若sinαcosα>0,则①sinα>0,cosα>0,此时α为第一象限角.或②sinα<0,cosα<0,此时α为第三象限角.所以α为第一象限角是sinαcosα>0的充分不必要条件.故选A.25.半径为R的球内接一个正方体,则该正方体的体积为()A.22RB.4π3R3C.893R3D.193R3答案:∵半径为R的球内接一个正方体,设正方体棱长为a,正方体的对角线过球心,可得正方体对角线长为:a2+a2+a2=2R,可得a=2R3,∴正方体的体积为a3=(2R3)3=83R39,故选C;26.从某校随机抽取了100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图(如图),由图中数据可知m=______,所抽取的学生中体重在45~50kg的人数是______.答案:由频率分步直方图知,(0.02+m+0.06+0.02)×5=1,∴m=0.1,∴所抽取的体重在45~50kg的人数是0.1×5×100=50人,故为:0.1;5027.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为()

A.35

B.25

C.15

D.7答案:C28.H:x-y+z=2为坐标空间中一平面,L为平面H上的一直线.已知点P(2,1,1)为L上距离原点O最近的点,则______为L的方向向量.答案:∵x-y+z=2为坐标空间中一平面∴平面的一个法向量是n=(1,-1,1)设直线L的方向向量为d=(2,b,c)∵L在H上,∴d与平面H的法向量n=(1,-1,1)垂直故d•n=0⇒2-b+c=0∵P(2,1,1)为直线L上距离原点O最近的点,∴.OP⊥L故OP•d=0⇒(2,1,1)•(2,b,c)=0⇒4+b+c=0解得b=-1,c=-3故为:(2,-1,-3)29.如图,已知C点在圆O直径BE的延长线上,CA切圆O于A点,∠ACB的平分线分别交AE、AB于点F、D.

(Ⅰ)求∠ADF的度数;

(Ⅱ)若AB=AC,求ACBC的值.答案:解

(1)∵AC为圆O的切线,∴∠B=∠EAC,又CD是∠ACB的平分线,∴∠ACD=∠DCB,∴∠B+∠DCB=∠EAC+∠ACD,即∠ADF=∠AFD.又∵BE为圆O的直径,∴∠BAE=90°,∴∠ADF=12(180°-∠BAE)=45°(2)∵∠B=∠EAC,∠ACE=∠BCA,∴△ACE∽△BCA又∵AB=AC,∴∠B=∠ACB,∴∠B=∠ACB=∠EAC,由∠BAE=90°及三角形内角和知,∠B=30°,∴在Rt△ABE中,ACBC=AEBA=tan∠B=tan30°=3330.已知P(4,-9),Q(-2,3)且Y轴与线段PQ交于M,则Q分的比为()

A.-2

B.-

C.

D.3答案:B31.”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的(

A.充分而不必要条件

B.必要而不充分条件

C.充要条件

D.既不充分也不必要条件答案:C32.不等式0.52x>0.5x-1的解集为______.答案:由于函数y=0.5x

是R上的减函数,故由0.52x>0.5x-1可得2x<x-1,解得x<-1.故不等式0.52x>0.5x-1的解集为(-∞,-1),故为(-∞,-1).33.函数y=()|x|的图象是()

A.

B.

C.

D.

答案:B34.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()

①若K2的观测值满足K2≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;

②从独立性检验可知有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;

③从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误.

A.①

B.①③

C.③

D.②答案:C35.已知a=(a1,a2),b=(b1,b2),丨a丨=5,丨b丨=6,a•b=30,则a1+a2b1+b2=______.答案:因为丨a丨=5,丨b丨=6,a•b=30,又a⋅b=|a|⋅|b|cos<a,b>=30,即cos<a,b>=1,所以a,b同向共线.设b=ka,(k>0).则b1=ka1,b2=ka2,所以|b|=k|a|,所以k=65,所以a1+a2b1+b2=a1+a2k(a1+a2)=1k=56.故为:56.36.长方体的长、宽、高之比是1:2:3,对角线长是214,则长方体的体积是

______.答案:长方体的长、宽、高之比是1:2:3,所以长方体的长、宽、高是x:2x:3x,对角线长是214,所以,x2+(2x)2+(3x)2=(214)2,x=2,长方体的长、宽、高是2,4,6;长方体的体积是:2×4×6=48故为:4837.用数学归纳法证明不等式:1n+1n+1+1n+2+…+1n2>1(n∈N*且n.1).答案:证明:(1)当n=2时,左边=12+13+14=1312>1,∴n=2时成立(2分)(2)假设当n=k(k≥2)时成立,即1k+1k+1+1k+2+…+1k2>1那么当n=k+1时,左边=1k+1+1k+2+1k+3+…+1(k+1)2=1k+1k+1+1k+2+1k+3+…+1k2+2k+1(k+1)2-1k>1+1k2+1+1k2+2+…+1(k+1)2-1k>1+(2k+1)•1(k+1)2-1k>1+k2-k-1k2+2k+1>1∴n=k+1时也成立(7分)根据(1)(2)可得不等式对所有的n>1都成立(8分)38.将某班的60名学生编号为:01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是______.答案:用系统抽样抽出的5个学生的号码从小到大成等差数列,随机抽得的一个号码为04则剩下的四个号码依次是16、28、40、52.故为:16、28、40、5239.如图所示的几何体ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥AB,M是EC的中点,

(Ⅰ)求证:DM⊥EB;

(Ⅱ)设二面角M-BD-A的平面角为β,求cosβ.答案:分别以直线AE,AB,AD为x轴、y轴、z轴,建立如图所示的空间直角坐标系A-xyz,设CB=a,则A(0,0,0),E(2a,0,0),B(0,2a,0),C(0,2a,a),D(0,0,2a)所以M(a,a,a2).(Ⅰ):DM=(a,a,-3a2)

,EB=(-2a,2a,0)DM•EB=a•(-2a)+a•2a+0=0.∴DM⊥EB,即DM⊥EB.(Ⅱ)设平面MBD的法向量为n=(x,y,z),DB=(0,2a,-2a),由n⊥DB,n⊥DM,得n•DB=2ay-2az=0n•DM=ax+ay-3a2z=0⇒y=zx+y-3z2=0取z=2得平面MBD的一非零法向量为n=(1,2,2),又平面BDA的一个法向量n1=(1,0,0).∴cos<n,n1>

=1+0+012+22+22•12+02+

02=13,即cosβ=1340.知x、y、z均为实数,

(1)若x+y+z=1,求证:++≤3;

(2)若x+2y+3z=6,求x2+y2+z2的最小值.答案:(1)证明略(2)x2+y2+z2的最小值为解析:(1)证明

因为(++)2≤(12+12+12)(3x+1+3y+2+3z+3)=27.所以++≤3.

7分(2)解

因为(12+22+32)(x2+y2+z2)≥(x+2y+3z)2=36,即14(x2+y2+z2)≥36,所以x2+y2+z2的最小值为.

14分41.已知向量a=(2,0),b=(1,x),且a、b的夹角为π3,则x=______.答案:由两个向量的数量积的定义、数量积公式可得a?b=2+0=21+x2cosπ3=21+x2=12,x2=3,∴x=±3,故为±3.42.一条直线的倾斜角的余弦值为32,则此直线的斜率为()A.3B.±3C.33D.±33答案:设直线的倾斜角为α,∵α∈[0,π),cosα=32∴α=π6因此,直线的斜率k=tanα=33故选:C43.若F1、F2是椭圆x24+y2=1的左、右两个焦点,M是椭圆上的动点,则1|MF1|+1|MF2|的最小值为______.答案:∵F1、F2是椭圆x24+y2=1的左、右两个焦点,M是椭圆上的动点,∴1|MF1|+1|MF2|=|MF1|+|MF2||MF1|?|MF2|=4|MF1|?|MF2|,∵|MF1|?|MF2|的最大值为a2=4,∴1|MF1|+1|MF2|的最小值=44=1.故为:1.44.设计一个计算1×3×5×7×9×11×13的算法.图中给出了程序的一部分,则在横线①上不能填入的数是()

A.13

B.13.5

C.14

D.14.5答案:A45.(难线性运算、坐标运算)已知0<x<1,0<y<1,求M=x2+y2+x2+(1-y)2+(1-x)2+y2+(1-x)2+(1-y)2的最小值.答案:设A(0,0),B(1,0),C(1,1),D(0,1),P(x,y),则M=|PA|+|PD|+|PB|+|PC|=(|PA|+|PC|)+(|PB|+|PD|)=(|AP|+|PC|)+(|BP|+|PD|)≥|AP+PC|+|BP+PD|=|AC|+|BD|.而AC=(1,1),BD=(-1,1),得|AC|+|BD|=2+2=22.∴M≥22,当AP与PC同向,BP与PD同向时取等号,设PC=λAP,PD=μBP,则1-x=λx,1-y=λy,-x=μx-μ,1-y=μy,解得λ=μ=1,x=y=12.所以,当x=y=12时,M的最小值为22.46.摇奖器有10个小球,其中8个小球上标有数字2,2个小球上标有数字5,现摇出3个小球,规定所得奖金(元)为这3个小球上记号之和,求此次摇奖获得奖金数额的数学期望.答案:设此次摇奖的奖金数额为ξ元,当摇出的3个小球均标有数字2时,ξ=6;当摇出的3个小球中有2个标有数字2,1个标有数字5时,ξ=9;当摇出的3个小球有1个标有数字2,2个标有数字5时,ξ=12.所以,P(ξ=6)=C38C310=715P(ξ=9)=C28C12C310=715P(ξ=12)=C18C22C310=115Eξ=6×715+9×715+12×115=395(元)

答:此次摇奖获得奖金数额的数字期望是395元.47.在边长为1的正方形中,有一个封闭曲线围成的阴影区域,在正方形中随机的撒入100粒豆子,恰有60粒落在阴影区域内,那么阴影区域的面积为______.

答案:设阴影部分的面积为x,由概率的几何概型知,则60100=x1,解得x=35.故为:35.48.下列在曲线上的点是(

A.

B.

C.

D.答案:B49.某校有老师300人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n的样本,已知从女学生中抽取的人数为80,则n=()

A.171

B.184

C.200

D.392答案:C50.若直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则点P(a,b)与圆C的位置关系是(

A.点在圆上

B.点在圆内

C.点在圆外

D.不能确定答案:C第3卷一.综合题(共50题)1.已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是()

A.圆

B.椭圆

C.双曲线

D.抛物线答案:B2.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为

______.答案:如图,过双曲线的顶点A、焦点F分别向其渐近线作垂线,垂足分别为B、C,则:|OF||OA|=|FC||AB|?ca=62=3.故为33.使关于的不等式有解的实数的最大值是(

)A.B.C.D.答案:D解析:令则的最大值为。选D。还可用Cauchy不等式。4.椭圆的短轴长是2,一个焦点是(3,0),则椭圆的标准方程是______.答案:∵椭圆的一个焦点是(3,0),∴c=3,又∵短轴长是2,∴2b=2.b=1,∴a2=4∵焦点在x轴上,∴椭圆的标准方程是x24+y2=1故为x24+y2=15.某研究小组在一项实验中获得一组数据,将其整理得到如图所示的散点图,下列函数中,最能近似刻画y与t之间关系的是(

A.y=2t

B.y=2t2

C.y=t3

D.y=log2t

答案:D6.以抛物线y2=2px(p>0)的焦半径|PF|为直径的圆与y轴位置关系是______.答案:根据抛物线定义可知|PF|=p2,而圆的半径为p2,圆心为(p2,0),|PF|正好等于所求圆的半径,进而可推断圆与y轴位置关系是相切.7.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A.{3,5}B.{3,6}C.{3,7}D.{3,9}答案:因为A∩B={1,3,5,7,9}∩{0,3,6,9,12}={3,9}故选D8.已知正方体ABCD-A1B1C1D1,点E,F分别是上底面A1C1和侧面CD1的中心,求下列各式中的x,y的值:

(1)AC1=x(AB+BC+CC1),则x=______;

(2)AE=AA1+xAB+yAD,则x=______,y=______;

(3)AF=AD+xAB+yAA1,则x=______,y=______.答案:(1)根据向量加法的首尾相连法则,x=1;(2)由向量加法的三角形法则得,AE=AA1+A1E,由四边形法则和向量相等得,A1E=12(A1B1+A1D1)=12(AB+AD);∴AE=AA1+12AB+12AD,∴x=y=12;(3)由向量加法的三角形法则得,AF=AD+DF,由四边形法则和向量相等得,DF=12(DC+DD1)=12(AB+AA1);∴AF=AD+12AB+12AA1,∴x=y=12.9.已知数列{an}中,a1=1,an+1=an+n,若利用如图所示的种序框图计算该数列的第10项,则判断框内的条件是()

A.n≤8?

B.n≤9?

C.n≤10?

D.n≤11?

答案:B10.函数f(x)=ax(a>0且a≠1)在区间[1,2]上的最大值比最小值大a2,则a的值为()A.32B.2C.12或32D.12答案:当a>1时,函数f(x)=ax(a>0且a≠1)在区间[1,2]上是增函数,由题意可得a2-a=a2,∴a=32.当1>a>0时,函数f(x)=ax(a>0且a≠1)在区间[1,2]上是减函数,由题意可得a-a2=a2,解得

a=12.综上,a的值为12或32故选C.11.如图,△ABC中,AD=2DB,AE=3EC,CD与BE交于F,若AF=xAB+yAC,则()A.x=13,y=12B.x=14,y=13C.x=37,y=37D.x=25,y=920答案:过点F作FM∥AC、FN∥AB,分别交AB、AC于点M、N∵FM∥AC,∴FMAC=DMAD且FMAE=BMAB∵AD=2DB,AE=3EC,∴AD=23AB,AE=34AC.由此可得AM=13AB同理可得AN=12AC∵四边形AMFN是平行四边形∴由向量加法法则,得AF=13AB+12AC∵AF=xAB+yAC,∴根据平面向量基本定理,可得x=13,y=12故选:A12.若方程x2-3x+mx+m=0的两根均在(0,+∞)内,则m的取值范围是(

)

A.m≤1

B.0<m≤1

C.m>1

D.0<m<1答案:B13.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()

A.若k2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病

B.从独立性检验可知,有99%的把握认为吸烟与患肺病有关时,我们说某人吸烟,那么他有99%的可能患有肺病

C.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误

D.以上三种说法都不正确答案:D14.已知圆的极坐标方程是ρ=2cosθ,那么该圆的直角坐标方程是()

A.(x-1)2+y2=1

B.x2+(y-1)2=1

C.(x+1)2+y2=1

D.x2+y2=2答案:A15.用反证法证明命题“三角形中最多只有一个内角是钝角”时,则假设的内容是()

A.三角形中有两个内角是钝角

B.三角形中有三个内角是钝角

C.三角形中至少有两个内角是钝角

D.三角形中没有一个内角是钝角答案:C16.如图所示的方格纸中有定点O,P,Q,E,F,G,H,则=()

A.

B.

C.

D.

答案:C17.已知正方形ABCD的边长为a,则|AC+AD|等于______.答案:∵正方形ABCD的边长为a,∴AC=2a,AC与AD的夹角为45°|AC+AD|2=|AC

|2+2AC?AD+|AD|2=2a2+2×2a×a×22+a2=5a2∴|AC+AD|=5a故为:5a18.在画两个变量的散点图时,下面哪个叙述是正确的(

A.预报变量x轴上,解释变量y轴上

B.解释变量x轴上,预报变量y轴上

C.可以选择两个变量中任意一个变量x轴上

D.可以选择两个变量中任意一个变量y轴上答案:B19.函数f(x)=11+x2(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]答案:∵函数f(x)=11+x2(x∈R),∴1+x2≥1,所以原函数的值域是(0,1],故选B.20.气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22

(℃)”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):

①甲地:5个数据的中位数为24,众数为22;

②乙地:5个数据的中位数为27,总体均值为24;

③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8;

则肯定进入夏季的地区有()A.0个B.1个C.2个D.3个答案:①甲地:5个数据的中位数为24,众数为22,根据数据得出:甲地连续5天的日平均温度的记录数据可能为:22,22,24,25,26.其连续5天的日平均温度均不低于22.

②乙地:5个数据的中位数为27,总体均值为24.根据其总体均值为24可知其连续5天的日平均温度均不低于22.③丙地:5个数据中有一个数据是32,总体均值为26,根据其总体均值为24可知其连续5天的日平均温度均不低于22.则肯定进入夏季的地区有甲、乙、丙三地.故选D.21.类比“等差数列的定义”给出一个新数列“等和数列的定义”是()A.连续两项的和相等的数列叫等和数列B.从第一项起,以后每一项与前一项的和都相等的数列叫等和数列C.从第二项起,以后每一项与前一项的差都不相等的数列叫等和数列D.从第二项起,以后每一项与前一项的和都相等的数列叫等和数列答案:由等差数列的定义:从第二项起,以后每一项与前一项的差都相等的数列叫等差数列类比可得:从第二项起,以后每一项与前一项的和都相等的数列叫等和数列故选D22.已知直线ax+by+c=0(a,b,c都是正数)与圆x2+y2=1相切,则以a,b,c为三边长的三角形()

A.是锐角三角形

B.是钝角三角形

C.是直角三角形

D.不存在答案:C23.算法的有穷性是指()A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确答案:一个算法必须在有限步内结束,简单的说就是没有死循环即算法的步骤必须有限故选C.24.从抛物线y2=4x上一点P引抛物线准线的垂线,垂足为M,且|PM|=5,设抛物线的焦点为F,则△MPF的面积为()

A.6

B.8

C.10

D.15答案:C25.用反证法证明命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”则假设的内容是()

A.a,b都能被5整除

B.a,b都不能被5整除

C.a,b不能被5整除

D.a,b有1个不能被5整除答案:B26.已知x+5y+3z=1,则x2+y2+z2的最小值为______.答案:证明:35(x2+y2+z2)×(1+25+9)≥(x+5y+3z)2=1∴x2+y2+z2≥135,则x2+y2+z2的最小值为135,故为:135.27.已知:如图,四边形ABCD内接于⊙O,,过A点的切线交CB的延长线于E点,求证:AB2=BE·CD。

答案:证明:连结AC,因为EA切⊙O于A,所以∠EAB=∠ACB,因为,所以∠ACD=∠ACB,AB=AD,于是∠EAB=∠ACD,又四边形ABCD内接于⊙O,所以∠ABE=∠D,所以△ABE∽△CDA,于是,即AB·DA=BE·CD,所以。28.已知在平面直角坐标系xOy中,圆C的参数方程为x=3+3cosθy=1+3sinθ,(θ为参数),以Ox为极轴建立极坐标系,直线l的极坐标方程为pcos(θ+π6)=0.

(1)写出直线l的直角坐标方程和圆C的普通方程;

(2)求圆C截直线l所得的弦长.答案:(1)消去参数θ,得圆C的普通方程为(x-3)2+(y-1)2=9.(2分)由ρcos(θ+π6)=0,得32ρcosθ-12ρsinθ=0,∴直线l的直角坐标方程为3x-y=0.(5分)(2)圆心(3,1)到直线l的距离为d=|3×3-1|(3)2+12=1.(7分)设圆C直线l所得弦长为m,则m2=r2-d2=9-1=22,∴m=42.(10分)29.如图所示,设P为△ABC所在平面内的一点,并且AP=15AB+25AC,则△ABP与△ABC的面积之比等于()A.15B.12C.25D.23答案:连接CP并延长交AB于D,∵P、C、D三点共线,∴AP=λAD+μAC且λ+μ=1设AB=kAD,结合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面积与△ABC有相同的底边AB高的比等于|PD|与|CD|之比∴△ABP的面积与△ABC面积之比为25故选:C30.在△ABC中,已知角A,B,C所对的边依次为a,b,c,且2lg(sinB)=lg(sinA)+lg(sinC),则两条直线l1:xsinA+ysinB=a与l2:xsinB+ysinC=c的位置关系是______.答案:依题意,sin2B=sinA?sinC,∴sinAsinB=sinBsinC,即两直线方程中x的系数之比与y的系数之比相等,∴两条直线l1:xsinA+ysinB=a与l2:xsinB+ysinC=c平行或重合.故为:平行或重合.31.直角三角形两直角边边长分别为3和4,将此三角形绕其斜边旋转一周,求得到的旋转体的表面积和体积.答案:根据题意,所求旋转体由两个同底的圆锥拼接而成它的底面半径等于直角三角形斜边上的高,高分别等于两条直角边在斜边的射影长∵两直角边边长分别为3和4,∴斜边长为32+42=5,由面积公式可得斜边上的高为h=3×45=125可得所求旋转体的底面半径r=125因此,两个圆锥的侧面积分别为S上侧面=π×125×4=48π5;S下侧面=π×125×3=36π5∴旋转体的表面积S=48π5+36π5=84π5由锥体的体积公式,可得旋转体的体积为V=13π×(125)2×5=48π532.如图所示,以直角三角形ABC的直角边AC为直径作⊙O,交斜边AB于点D,过点D作⊙O的切线,交BC边于点E.则BEBC=______.答案:连接CD,∵AC是⊙O的直径,∴CD⊥AB.∵BC经过半径OC的端点C且BC⊥AC,∴BC是⊙O的切线,而DE是⊙O的切线,∴EC=ED.∴∠ECD=∠CDE,∴∠B=∠BDE,∴DE=BE.∴BE=CE=12BC.∴B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论