2023年河北劳动关系职业学院高职单招(数学)试题库含答案解析_第1页
2023年河北劳动关系职业学院高职单招(数学)试题库含答案解析_第2页
2023年河北劳动关系职业学院高职单招(数学)试题库含答案解析_第3页
2023年河北劳动关系职业学院高职单招(数学)试题库含答案解析_第4页
2023年河北劳动关系职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年河北劳动关系职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.如果椭圆x225+y216=1上一点P到焦点F1的距离为6,则点P到另一个焦点F2的距离为()A.5B.4C.8D.6答案:由椭圆的定义知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.故选B.2.已知x2a2+y2b2=1(a>b>0),则a2+b2与(x+y)2的大小关系为

______.答案:由已知x2a2+y2b2=1(a>b>0)和柯西不等式的二维形式.得a2+b2=(a2+b2)(x2a2+y2b2)≥(a?xa+b?yb)2=(x+y)2.故为a2+b2≥(x+y)2.3.某厂一批产品的合格率是98%,检验单位从中有放回地随机抽取10件,则计算抽出的10件产品中正品数的方差是______.答案:用X表示抽得的正品数,由于是有放回地随机抽取,所以X服从二项分布B(10,0.98),所以方差D(X)=10×0.98×0.02=0.196故为:0.196.4.解不等式:2<|3x-1|≤3.答案:由原不等式得-3≤3x-1<-2或2<3x-1≤3,∴-2≤3x<-1或3<3x≤4,∴-23≤x<-13或1<x≤43,∴不等式的解集是{x|-23≤x<-13或1<x≤43}.5.现有编号分别为1,2,3,4,5,6,7,8,9的九道不同的数学题,某同学从这九道题中一次随机抽取两道题,每题被抽到的概率是相等的,用符号(x,y)表示事件“抽到两题的编号分别为x,y,且x<y”.

(1)共有多少个基本事件?并列举出来.

(2)求该同学所抽取的两道题的编号之和小于17但不小于11的概率.答案:(1)共有36种基本事件,列举如下:(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9);(2)设事件A=“两道题的编号之和小于17但不小于11”则事件A包含事件有:(2,9),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9)共15种.∴P(A)=1536=512.6.某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30min抽取一包产品,称其重量,分别记录抽查数据如下:

甲:86、72、92、78、77;

乙:82、91、78、95、88

(1)这种抽样方法是哪一种?

(2)将这两组数据用茎叶图表示;

(3)将两组数据比较,说明哪个车间产品较稳定.答案:(1)因为间隔时间相同,故是系统抽样.(2)茎叶图如下:.(3)因为.x甲=15(86+72+92+78+77)=81,.x乙=15(82+92+78+95+88)=87,所以s甲2=15(52+92+92+72+42)=50.4,s乙2=15(52+52+92+82+12)=39.2,而s甲2>s乙2,所以乙车间产品较稳定.7.山东鲁洁棉业公司的科研人员在7块并排、形状大小相同的试验田上对某棉花新品种进行施化肥量x对产量y影响的试验,得到如下表所示的一组数据(单位:kg).

施化肥量x15202530354045棉花产量y330345365405445450455(1)画出散点图;

(2)判断是否具有相关关系.答案:(1)根据已知表格中的数据可得施化肥量x和产量y的散点图如下所示:(2)根据(1)中散点图可知,各组数据对应点大致分布在一个条形区域内(一条直线附近)故施化肥量x和产量y具有线性相关关系.8.P为椭圆x225+y216=1上一点,F1,F2分别为其左,右焦点,则△PF1F2周长为______.答案:由题意知△PF1F2周长=2a+2c=10+6=16.9.已知两个函数f(x)和g(x)的定义域和值域都是集合1,2,3,其定义如下表:

表1:

x123f(x)231表2:

x123g(x)321则方程g[f(x)]=x的解集为______.答案:由题意得,当x=1时,g[f(1)]=g[2]=2不满足方程;当x=2时,g[f(2)]=g[3]=1不满足方程;x=3,g[f(3)]=g[1]=3满足方程,是方程的解.故为:{3}10.已知a=(1,-2,1),a+b=(3,-6,3),则b等于()A.(2,-4,2)B.(-2,4,-2)C.(-2,0,-2)D.(2,1,-3)答案:∵a+b=(3,-6,3),∴b=a+b-a=(3,-6,3)-(1,-2,1)=(2,-4,2).故选A.11.(参数方程与极坐标)已知F是曲线x=2cosθy=1+cos2θ(θ∈R)的焦点,M(12,0),则|MF|的值是

______.答案:y=1+cos2θ=2cos2θ=2•(x2)2化简得x2=2y∴F(0,12)而M(12,0),∴|MF|=22故为:2212.要使直线y=kx+1(k∈R)与焦点在x轴上的椭圆x27+y2a=1总有公共点,实数a的取值范围是______.答案:要使方程x27+y2a=1表示焦点在x轴上的椭圆,需a<7,由直线y=kx+1(k∈R)恒过定点(0,1),所以要使直线y=kx+1(k∈R)与椭圆x27+y2a=1总有公共点,则(0,1)应在椭圆上或其内部,即a>1,所以实数a的取值范围是[1,7).故为[1,7).13.向量化简后等于()

A.

B.

C.

D.答案:C14.给定点A(x0,y0),圆C:x2+y2=r2及直线l:x0x+y0y=r2,给出以下三个命题:

①当点A在圆C上时,直线l与圆C相切;

②当点A在圆C内时,直线l与圆C相离;

③当点A在圆C外时,直线l与圆C相交.

其中正确的命题个数是()

A.0

B.1

C.2

D.3答案:D15.不等式的解集是(

A.(-∞,-1)∪(-1,2]

B.[-1,2]

C.(-∞,-1)∪[2,+∞)

D.(-1,2]答案:D16.在直角坐标系xOy中,i,j分别是与x轴,y轴平行的单位向量,若在Rt△ABC中,AB=i+j,AC=2i+mj,则实数m=______.答案:把AB、AC平移,使得点A与原点重合,则AB=(1,1)、AC=(2,m),故BC=(1,m-1),若∠B=90°时,AB•BC=0,∴(1,1)•(2-1,m-1)=0,得m=0;若∠A=90°时,AB•AC=0,∴(1,1)•(2,m)=0,得m=-2.若∠C=90°时,AC•BC=0,即2+m2-m=0,此方程无解,综上,m为-2或0满足三角形为直角三角形.故为-2或017.如图,在四棱柱的上底面ABCD中,AB=DC,则下列向量相等的是()

A.AD与CB

B.OA与OC

C.AC与DB

D.DO与OB

答案:D18.已知集合A={1,2,3},集合B={4,5},映射f:A→B,且满足1对应的元素是4,则这样的映射有()A.2个B.4个C.8个D.9个答案:∵满足1对应的元素是4,集合A中还有两个元素2和3,2可以和4对应,也可以和5对应,3可以和4对应,也可以和5对应,每个元素有两种不同的对应,∴共有2×2=4种结果,故选B.19.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为()A.123B.363C.273D.6答案:此几何体为一个三棱柱,棱柱的高是4,底面正三角形的高是33,设底面边长为a,则32a=33,∴a=6,故三棱柱体积V=12?62?32?4=363.故选B20.设O是坐标原点,F是抛物线y2=2px(p>0)的焦点,A是抛物线上的一点,FA与x轴正向的夹角为60°,则|OA|为______.答案:过A作AD⊥x轴于D,令FD=m,则FA=2m,p+m=2m,m=p.∴OA=(p2+p)2+(3p)2=212p.故为:212p21.函数数列{fn(x)}满足:f1(x)=x1+x2(x>0),fn+1(x)=f1[fn(x)]

(1)求f2(x),f3(x);

(2)猜想fn(x)的表达式,并证明你的结论.答案:(1)f2(x)=f1(f1(x))=f1(x)1+f21(x)=x1+2x2f3(x)=f1(f2(x))=f2(x)1+f22(x)=x1+3x2(2)猜想:fn(x)=x1+nx2(n∈N*)下面用数学归纳法证明:①当n=1时,f1(x)=x1+x22,已知,显然成立②假设当n=K(K∈N*)4时,猜想成立,即fk(x)=x1+kx2则当n=K+1时,fk+1(x)=f1(fk(x))=fk(x)1+f2k(x)=x1+kx21+(x1+kx2)2=x1+(k+1)x2即对n=K+1时,猜想也成立.结合①②可知:猜想fn(x)=x1+nx2对一切n∈N*都成立.22.如图是容量为150的样本的频率分布直方图,则样本数据落在[6,10)内的频数为()A.12B.48C.60D.80答案:根据频率分布直方图,样本数据落在[6,10)内的频数为0.08×4×150=48故选B.23.来自中国、英国、瑞典的乒乓球裁判各两名,执行北京奥运会的一号、二号和三号场地的乒乓球裁判工作,每个场地由两名来自不同国家的裁判组成,则不同的安排方案总数有()

A.12种

B.48种

C.90种

D.96种答案:B24.如图,△ABC中,CD=2DB,设AD=mAB+nAC(m,n为实数),则m+n=______.答案:∵CD=2DB,∴B、C、D三点共线,由三点共线的向量表示,我们易得AD=23AB+13AC,由平面向量基本定理,我们易得m=23,n=13,∴m+n=1故为:125.求圆心在直线y=-4x上,并且与直线l:x+y-1=0相切于点P(3,-2)的圆的方程.答案:设圆的方程为(x-a)2+(y-b)2=r2(r>0)由题意有:b=-4a|a+b+1|2=rb+2a-3•(-1)=-1解之得a=1b=-4r=22∴所求圆的方程为(x-1)2+(y+4)2=826.已知向量a=(8,x,x).b=(x,1,2),其中x>0.若a∥b,则x的值为()

A.8

B.4

C.2

D.0答案:B27.在△ABC中,D为AB上一点,M为△ABC内一点,且满足AD=34AB,AM=AD+35BC,则△AMD与△ABC的面积比为()A.925B.45C.916D.920答案:AP=AD+DP=AD+35BC,DP=35BC.∴三角形ADP的高三角形ABC=ADAB=34,∴S△APDS△ABC=35?34=920.故选D.28.已知A(2,1,1),B(1,1,2),C(2,0,1),则下列说法中正确的是()A.A,B,C三点可以构成直角三角形B.A,B,C三点可以构成锐角三角形C.A,B,C三点可以构成钝角三角形D.A,B,C三点不能构成任何三角形答案:∵|AB|=2,|BC|=3,|AC|=1,∴|BC|2=|AC|2+|AB|2,∴A,B,C三点可以构成直角三角形,故选A.29.已知三角形ABC的一个顶点A(2,3),AB边上的高所在的直线方程为x-2y+3=0,角B的平分线所在的直线方程为x+y-4=0,求此三角形三边所在的直线方程.答案:由题意可得AB边的斜率为-2,由点斜式求得AB边所在的直线方程为y-3=-2(x-2),即2x+y-7=0.由2x+y-7=0x+y-4=0

求得x=3y=1,故点B的坐标为(3,1).设点A关于角B的平分线所在的直线方程为x+y-4=0的对称点为M(a,b),则M在BC边所在的直线上.则由b-3a-2=-1a+22+b+32-4=0

求得a=1b=2,故点M(1,2),由两点式求得BC的方程为y-12-1=x-31-3,即x+2y-5=0.再由x-2y+3=0x+2y-5=0求得点C的坐标为(2,52),由此可得得AC的方程为x=2.30.位于直角坐标原点的一个质点P按下列规则移动:质点每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为,向右移动的概率为,则质点P移动五次后位于点(1,0)的概率是()

A.

B.

C.

D.答案:D31.已知双曲线的渐近线方程为2x±3y=0,F(0,-5)为双曲线的一个焦点,则双曲线的方程为()

A.

B.

C.

D.答案:B32.半径为5,圆心在y轴上,且与直线y=6相切的圆的方程为______.答案:如图所示,因为半径为5,圆心在y轴上,且与直线y=6相切,所以可知有两个圆,上圆圆心为(0,11),下圆圆心为(0,1),所以圆的方程为x2+(y-1)2=25或x2+(y-11)2=25.33.过点A(-1,4)作圆C:(x-2)2+(y-3)2=1的切线l,求切线l的方程.答案:设方程为y-4=k(x+1),即kx-y+k+4=0∴d=|2k-3+k+4|k2+1=1∴4k2+3k=0∴k=0或k=-34∴切线l的方程为y=4或3x+4y-13=034.如图为某平面图形用斜二测画法画出的直观图,则其原来平面图形的面积是(

A.4

B.

C.

D.8

答案:A35.如图所示的程序框图,运行相应的程序,若输出S的值为254,则判断框①中应填入的条件是()A.n≤5B.n≤6C.n≤7D.n≤8答案:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出满足条件S=2+22+23+…+2n=126时S的值∵2+22+23+…+27=254,故最后一次进行循环时n的值为7,故判断框中的条件应为n≤7.故选C.36.已知数列{an}中,a1=1,an+1=an+n,若利用如图所示的种序框图计算该数列的第10项,则判断框内的条件是()

A.n≤8?

B.n≤9?

C.n≤10?

D.n≤11?

答案:B37.若=(2,0),那么=(

A.(1,2)

B.3

C.2

D.1答案:C38.已知{x1,x2,x3,…,xn}的平均数是2,则3x1+2,3x2+2,…,3xn+2的平均数=_______.答案:∵x1,x2,x3,…,xn的平均数是2即(x1+x2+x3+…+xn)÷n=2∴3x1+2,3x2+2,…,3xn+2的平均数为(3x1+2+3x2+2+…+3xn+2)÷n=[3(x1+x2+x3+…+xn)+2n]÷n=3×2+2=8故为:839.若f(x)是定义在R上的函数,满足对任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,且f(2)=3,则f(8)=______.答案:由题意可知:对任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,所以x=y=2,可知f(4)=f(2+2)=f(2)?f(2),所以f(4)=9;令x=y=4,可知f(8)=f(4+4)=f(4)?f(4)=92=81.故为:81.40.如图,平行四边形ABCD中,AE:EB=1:2,若△AEF的面积为6,则△ABC的面积为()A.18B.54C.64D.72答案:∵ABCD为平行四边形∴AB平行于CD∴△AEF∽△CDF∵AE:EB=1:2∴AE:CD=AE:AB=1:3∴S△CDF=32×S△AEF=9×6=54∵AF:CF=AE:CD=1:3∴S△ADF=S△CDF÷3=54÷3=18∴S△ABC=S△ACD=S△CDF+S△ADF=54+18=72故选D41.复数,且A+B=0,则m的值是()

A.

B.

C.-

D.2答案:C42.读下面的程序:

上面的程序在执行时如果输入6,那么输出的结果为()

A.6

B.720

C.120

D.1答案:B43.已知A(0,1),B(3,7),C(x,15)三点共线,则x的值是()

A.5

B.6

C.7

D.8答案:C44.在△ABC中,“A=45°”是“sinA=22”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:当A=45°时,sinA=22成立.若当A=135°时,满足sinA=22.所以,“A=45°”是“sinA=22”的充分不必要条件.故选A.45.若log

23(x-2)≥0,则x的范围是______.答案:由log

23(x-2)≥0=log231,可得0<x-2≤1,解得2<x≤3,故为(2,3].46.设a,b∈R.“a=O”是“复数a+bi是纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:因为a,b∈R.“a=O”时“复数a+bi不一定是纯虚数”.“复数a+bi是纯虚数”则“a=0”一定成立.所以a,b∈R.“a=O”是“复数a+bi是纯虚数”的必要而不充分条件.故选B.47.如图,四边形OABC是边长为1的正方形,OD=3,点P为△BCD内(含边界)的动点,设(α,β∈R),则α+β的最大值等于

()

A.

B.

C.

D.1

答案:B48.已知圆C:x2+y2-4x-6y+12=0的圆心在点C,点A(3,5),求:

(1)过点A的圆的切线方程;

(2)O点是坐标原点,连接OA,OC,求△AOC的面积S.答案:(1)⊙C:(x-2)2+(y-3)2=1.当切线的斜率不存在时,对直线x=3,C(2,3)到直线的距离为1,满足条件;当k存在时,设直线y-5=k(x-3),即y=kx+5-3k,∴|-k+2|k2+1=1,得k=34.∴得直线方程x=3或y=34x+114.(2)|AO|=9+25=34,l:5x-3y=0,d=134,S=12d|AO|=12.49.如图所示,有两个独立的转盘(A)、(B),其中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘玩游戏,规则是:依次随机转动两个转盘再随机停下(指针固定不动,当指针恰好落在分界线时,则这次转动无效,重新开始)为一次游戏,记转盘(A)指针所对的数为X转盘(B)指针对的数为Y设X+Yξ,每次游戏得到的奖励分为ξ分.

(1)求X<2且Y>1时的概率

(2)某人玩12次游戏,求他平均可以得到多少奖励分?答案:(1)由几何概型知P(x=1)=16,P(x=2)=13,P(x=3)=12;

P(y=1)=13,P(y=2)=12,P(y=3)=16.则P(x<2)=P(x=1)=16,P(y>1)=p(y=2)+P(y=3)=23,P(x<2且y>1)=P(x<2)?P(y>1)=19.(2)ξ的取值范围为2,3,4,6.P(ξ=2)=P(x=1)?P(y=1)=16×13=118;P(ξ=3)=P(x=1)?P(y=2)+P(x=2)?P(y=1)=16×12+13×13=736;P(ξ=4)=P(x=1)?P(y=3)+P(x=2)?P(y=2)+P(x=3)?P(y=1)=16×16+13×12+12×13=1336;P(ξ=5)=P(x=2)P(y=3)+P(x=3)P(y=2)=13×16+12×12=1136;P(ξ=6)=P(x=3)?P(y=3)=12×16=112.其分布为:ξ23456P11873613361136112他平均每次可得到的奖励分为Eξ=2×118+3×736+4×1336+5×1136+6×112=256,所以,他玩12次平均可以得到的奖励分为12×Eξ=50.50.若关于x的方程3x2-5x+a=0的一个根在(-2,0)内,另一个根在(1,3)内,求a的取值范围。答案:解:设f(x)=3x2-5x+a,则f(x)为开口向上的抛物线,如右图所示,∵f(x)=0的两根分别在区间(-2,0),(1,3)内,∴,即,解得-12<a<0,故所求a的取值范围是{a|-12<a<0}。第2卷一.综合题(共50题)1.已知直线过点A(2,0),且平行于y轴,方程:|x|=2,则(

A.l是方程|x|=2的曲线

B.|x|=2是l的方程

C.l上每一点的坐标都是方程|x|=2的解

D.以方程|x|=2的解(x,y)为坐标的点都在l上答案:C2.“a=18”是“对任意的正数x,2x+ax≥1的”()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:当“a=18”时,由基本不等式可得:“对任意的正数x,2x+ax≥1”一定成立,即“a=18”?“对任意的正数x,2x+ax≥1”为真命题;而“对任意的正数x,2x+ax≥1的”时,可得“a≥18”即“对任意的正数x,2x+ax≥1”?“a=18”为假命题;故“a=18”是“对任意的正数x,2x+ax≥1的”充分不必要条件故选A3.一个水平放置的平面图形,其斜二测直观图是一个等腰梯形,其底角为45°,腰和上底均为1(如图),则平面图形的实际面积为______.答案:恢复后的原图形为一直角梯形,上底为1,高为2,下底为1+2,S=12(1+2+1)×2=2+2.故为:2+24.在平面直角坐标系xOy中,点P的坐标为(-1,1),若取原点O为极点,x轴正半轴为极轴,建立极坐标系,则在下列选项中,不是点P极坐标的是()

A.()

B.()

C.()

D.()答案:D5.若f(x)在定义域[a,b]上有定义,则在该区间上()A.一定连续B.一定不连续C.可能连续也可能不连续D.以上均不正确答案:f(x)有定义是f(x)在区间上连续的必要而不充分条件.有定义不一定连续.还需加上极限存在才能推出连续.故选C.6.若定义运算a⊕b=b,a<ba,a≥b则函数f(x)=2x⊕(12)x的值域为______(用区间表示).答案:由题意画出f(x)=2x?(12)x的图象(实线部分),由图可知f(x)的值域为[1,+∞).故为:[1,+∞).7.某科目考试有30道题每小题有三个选项,每题2分,另有20道题,每题有四个选项每题3分,每题只有一个答案,某人随机去选答案,则平均能得______分.答案:由题意,30道题每小题有三个选项,每题2分,每题只有一个,某人随机去选,则可得2×30×13=20分;20道题,每题有四个选项每题3分,每题只有一个,某人随机去选,则可得3×20×14=15分故平均能得35分故为:35分.8.赋值语句M=M+3表示的意义()

A.将M的值赋给M+3

B.将M的值加3后再赋给M

C.M和M+3的值相等

D.以上说法都不对答案:B9.如图程序输出的结果是()

A.3,4

B.4,4

C.3,3

D.4,3

答案:B10.函数y=ax2+1的图象与直线y=x相切,则a=______.答案:设切点为(x0,y0),∵y′=2ax,∴k=2ax0=1,①又∵点(x0,y0)在曲线与直线上,即y0=ax20+1y0=x0,②由①②得a=14.故为14.11.从1,2,3,4,5中不放回地依次取2个数,事件A=“第一次取到的是奇数”,B=“第二次取到的是奇数”,则P(B|A)=()

A.

B.

C.

D.答案:D12.“∵四边形ABCD为矩形,∴四边形ABCD的对角线相等”,补充以上推理的大前提为()

A.正方形都是对角线相等的四边形

B.矩形都是对角线相等的四边形

C.等腰梯形都是对角线相等的四边形

D.矩形都是对边平行且相等的四边形答案:B13.教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是______.答案:这两章的内容都是通过建立直角坐标系,用代数中的函数思想来解决图形中的几何性质.故为用代数的方法研究图形的几何性质解析:教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是______.14.下面五个命题:(1)所有的单位向量相等;(2)长度不等且方向相反的两个向量不一定是共线向量;(3)由于零向量的方向不确定,故0与任何向量不平行;(4)对于任何向量a,b,必有|a+b|≤|a|+|b|.其中正确命题的序号为:______.答案:(1)单位向量指模为1的向量,方向可为任意的,故错误;(2)由共线向量的定义,方向相反的两个向量一定是共线向量,故错误;(3)规定:零向量与任何向量为平行向量,故错误;(4)因为|a+b|2=a2+b2+2a?b≤a2+b2+2|a|?|b|=(|a|+|b|)2,故正确故为:(4)15.甲射击运动员击中目标为事件A,乙射击运动员击中目标为事件B,则事件A,B为()

A.互斥事件

B.独立事件

C.对立事件

D.不相互独立事件答案:B16.某超市推出如下优惠方案:

(1)一次性购物不超过100元不享受优惠;

(2)一次性购物超过100元但不超过300元的一律九折;

(3)一次性购物超过300元的一律八折,有人两次购物分别付款80元,252元.

如果他一次性购买与上两次相同的商品,则应付款______.答案:该人一次性购物付款80元,据条件(1)、(2)知他没有享受优惠,故实际购物款为80元;另一次购物付款252元,有两种可能,其一购物超过300元按八折计,则实际购物款为2520.8=315元.其二购物超过100元但不超过300元按九折计算,则实际购物款为2520.9=280元.故该人两次购物总价值为395元或360元,若一次性购买这些商品应付款316元或288元.故为316元或288元.17.已知两条直线y=ax-2和y=(a+2)x+1互相垂直,则a等于(

A.2

B.1

C.0

D.-1答案:D18.若一元二次方程ax2+2x+1=0有一个正根和一个负根,则有

A.a<0

B.a>0

C.a<-1

D.a>1答案:A19.若P(A∪B)=P(A)+P(B)=1,则事件A与事件B的关系是()

A.互斥事件

B.对立事件

C.不是互斥事件

D.前者都不对答案:D20.已知a,b,c∈R+,且a+b+c=1,求3a+1+3b+1+3c+1的最大值.答案:根据柯西不等式,可得(3a+1+3b+1+3c+1)2=(1?3a+1+1?3b+1+1?3c+1)2≤(12+12+12)[(3a+1)2+(3b+1)2+(3c+1)2]=3[3(a+b+c)+3]=18当且仅当3a+1=3b+1=3c+1,即a=b=c=13时,(3a+1+3b+1+3c+1)2的最大值为18因此,3a+1+3b+1+3c+1的最大值为18=3221.从抛物线y2=4x上一点P引抛物线准线的垂线,垂足为M,且|PM|=5,设抛物线的焦点为F,则△MPF的面积为()

A.6

B.8

C.10

D.15答案:C22.已知,棱长都相等的正三棱锥内接于一个球,某学生画出四个过球心的平面截球与正三棱锥所得的图形,如下图所示,则

A、以上四个图形都是正确的

B、只有(2)(4)是正确的

C、只有(4)是错误的

D、只有(1)(2)是正确的答案:C23.把点按向量平移到点,则的图象按向量平移后的图象的函数表达式为(

).A.B.C.D.答案:D解析:,由可得,所以平移后的函数解析式为24.已知向量a,b,向量c=2a+b,且|a|=1,|b|=2,a与b的夹角为60°

(1)求|c|2;(2)若向量d=ma-b,且d∥c,求实数m的值.答案:(1)∵|a|=1,|b|=2,a和b的夹角为60°∴a•b=|a||b|cos60°=1∴|c|2=(

2a+b)2=4a2+4ab+b2=4+4+4=12(2)∵d∥c∴存在实数λ使得d=λc即ma-b=λ(2a+b)又∵a,b不共线∴2λ=m,λ=-1∴m=-225.已知正方形ABCD的边长为1,=,=,=,则|++|等于(

A.0

B.2

C.

D.3答案:B26.把38化为二进制数为()A.101010(2)B.100110(2)C.110100(2)D.110010(2)答案:可以验证所给的四个选项,在A中,2+8+32=42,在B中,2+4+32=38经过验证知道,B中的二进制表示的数字换成十进制以后得到38,故选B.27.设P是边长为23的正△ABC内的一点,x,y,z是P到三角形三边的距离,则x+y+z的最大值为______.答案:正三角形的边长为a=23,可得它的高等于32a=3∵P是正三角形内部一点∴点P到三角形三边的距离之和等于正三角形的高,即x+y+z=3∵(x+y+z)2=(1×x+1×y+1×z)2≤(1+1+1)(x+y+z)=9∴x+y+z≤3,当且仅当x=y=z=1时,x+y+z的最大值为3故为:328.设双曲线(a>0,b>0)的右顶点为A,P为双曲线上的一个动点(不是顶点),从点A引双曲线的两条渐近线的平行线,与直线OP分别交于Q,R两点,其中O为坐标原点,则|OP|2与|OQ|•|OR|的大小关系为()

A.|OP|2<|OQ|•|OR|

B.|OP|2>|OQ|•|OR|

C.|OP|2=|OQ|•|OR|

D.不确定答案:C29.双曲线的中心在坐标原点,离心率等于2,一个焦点的坐标为(2,0),则此双曲线的渐近线方程是______.答案:∵离心率等于2,一个焦点的坐标为(2,0),∴ca=2,

c=2且焦点在x轴上,∴a=1∵c2=a2+b2∴b2=3∴b=3.所以双曲线的渐进方程为y=±3x.故为y=±3x30.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…,用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下图与故事情节相吻合的是()

A.

B.

C.

D.

答案:B31.(上海卷理3文8)动点P到点F(2,0)的距离与它到直线x+2=0的距离相等,则P的轨迹方程为______.答案:由抛物线的定义知点P的轨迹是以F为焦点的抛物线,其开口方向向右,且p2=2,解得p=4,所以其方程为y2=8x.故为y2=8x32.若向量a=(4,2,-4),b=(6,-3,2),则(2a-3b)•(a+2b)=______.答案:∵2a-3b=(-10,13,-14),a+2b=(16,-4,0)∴(2a-3b)•(a+2b)=-10×16+13×(-4)=-212故为-21233.直线l过椭圆x24+y23=1的右焦点F2并与椭圆交与A、B两点,则△ABF1的周长是()A.4B.6C.8D.16答案:根据题意结合椭圆的定义可得:|AF1|+|AF2|=2a=4,,并且|BF1|+|BF2|=2a=4,又因为|AF2|+|BF2|=|AB|,所以△ABF1的周长为:|AF1|+|BF1|+|AB|=|AF1|+|AF2|+|BF1|+|BF2|=4a=8.故选C.34.定义平面向量之间的一种运算“⊙”如下:对任意的=(m,n),=(p,q)

,令⊙=mq-np,下面说法错误的序号是()

①若若a与共线,则⊙=0

②⊙=⊙a

③对任意的λ∈R,有(λ)⊙=λ(⊙)

④(⊙)2+(a)2=||2||2

A.②

B.①②

C.②④

D.③④答案:A35.AB是圆O的直径,EF切圆O于C,AD⊥EF于D,AD=2,AB=6,则AC长为()

A.

B.3

C.2

D.2答案:A36.构成多面体的面最少是(

A.三个

B.四个

C.五个

D.六个答案:B37.到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是()

A.直线

B.椭圆

C.抛物线

D.双曲线答案:D38.先后2次抛掷一枚骰子,将得到的点数分别记为a,b.

(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;

(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.答案:(1)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.∵直线ax+by+c=0与圆x2+y2=1相切的充要条件是5a2+b2=1即:a2+b2=25,由于a,b∈{1,2,3,4,5,6}∴满足条件的情况只有a=3,b=4,c=5;或a=4,b=3,c=5两种情况.∴直线ax+by+c=0与圆x2+y2=1相切的概率是236=118(2)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.∵三角形的一边长为5∴当a=1时,b=5,(1,5,5)1种当a=2时,b=5,(2,5,5)1种当a=3时,b=3,5,(3,3,5),(3,5,5)2种当a=4时,b=4,5,(4,4,5),(4,5,5)2种当a=5时,b=1,2,3,4,5,6,(5,1,5),(5,2,5),(5,3,5),(5,4,5),(5,5,5),(5,6,5)6种当a=6时,b=5,6,(6,5,5),(6,6,5)2种故满足条件的不同情况共有14种故三条线段能围成不同的等腰三角形的概率为1436=718.39.若向量且与的夹角余弦为则λ等于()

A.4

B.-4

C.

D.答案:C40.已知椭圆C的左右焦点坐标分别是(-2,0),(2,0),离心率22,直线y=x-1与椭圆C交于不同的两点A,B.

(1)求椭圆C的方程;

(2)求弦AB的长度.答案:(本小题满分13分)(1)依题意可设椭圆C的方程为x2a2+y2b2=1(a>b>0)…(1分)则c=2e=ca=22,解得a=22c=2…(3分)∴b2=a2-c2=8-4=4…(5分)∴椭圆C的方程为x28+y24=1…(6分)(2)设A(x1,y1),B(x2,y2)…(7分)联立方程x28+y24=1y=x-1,消去y,并整理得:3x2-4x-6=0…(9分)∴x1+x2=43x1•x2=-2…(10分)∴|AB|=1+12|x2-x1|=2[(x1+x2)2-4x1x2]

=2[(43)2-4×(-2)]=4113…(12分)∴|AB|=4113…(13分)41.设随机变量ζ~N(2,p),随机变量η~N(3,p),若,则P(η≥1)=()

A.

B.

C.

D.答案:D42.已知直线的参数方程为x=1+ty=3+2t.(t为参数),圆的极坐标方程为ρ=2cosθ+4sinθ.

(I)求直线的普通方程和圆的直角坐标方程;

(II)求直线被圆截得的弦长.答案:(I)直线的普通方程为:2x-y+1=0;圆的直角坐标方程为:(x-1)2+(y-2)2=5(4分)(II)圆心到直线的距离d=55,直线被圆截得的弦长L=2r2-d2=4305(10分)43.过点A(0,2),且与抛物线C:y2=6x只有一个公共点的直线l有()条.A.1B.2C.3D.4答案:∵点A(0,2)在抛物线y2=6x的外部,∴与抛物线C:y2=6x只有一个公共点的直线l有三条,有两条直线与抛物线相切,有一条直线与抛物线的对称轴平行,故选C.44.如果e1,e2是平面a内所有向量的一组基底,那么()A.若实数λ1,λ2使λ1e1+λ2e2=0,则λ1=λ2=0B.空间任一向量可以表示为a=λ1e1+λ2e2,这里λ1,λ2∈RC.对实数λ1,λ2,λ1e1+λ2e2不一定在平面a内D.对平面a中的任一向量a,使a=λ1e1+λ2e2的实数λ1,λ2有无数对答案:∵由基底的定义可知,e1和e2是平面上不共线的两个向量,∴实数λ1,λ2使λ1e1+λ2e2=0,则λ1=λ2=0,不是空间任一向量都可以表示为a=λ1e1+λ2e2,而是平面a中的任一向量a,可以表示为a=λ1e1+λ2e2的形式,此时实数λ1,λ2有且只有一对,而对实数λ1,λ2,λ1e1+λ2e2一定在平面a内,故选A.45.设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求实数a的取值范围。答案:解A={0,-4}∵A∩B=B

∴BA由x2+2(a+1)x+a2-1=0

得△=4(a+1)2-4(a2-1)=8(a+1)(1)当a<-1时△<0

B=φA(2)当a=-1时△=0

B={0}A(3)当a>-1时△>0

要使BA,则A=B∵0,-4是方程x2+2(a+1)x+a2-1=0的两根∴解之得a=1综上可得a≤-1或a=146.已知复数w满足w-4=(3-2w)i(i为虚数单位),z=5w+|w-2|,求一个以z为根的实系数一元二次方程.答案:[解法一]∵复数w满足w-4=(3-2w)i,∴w(1+2i)=4+3i,∴w(1+2i)(1-2i)=(4+3i)(1-2i),∴5w=10-5i,∴w=2-i.∴z=52-i+|2-i-2|=5(2+i)(2-i)(2+i)+1=2+i+1=3+i.若实系数一元二次方程有虚根z=3+i,则必有共轭虚根.z=3-i.∵z+.z=6,z•.z=10,∴所求的一个一元二次方程可以是x2-6x+10=0.[解法二]设w=a+b,(a,b∈Z),∴a+bi-4=3i-2ai+2b,得a-4=2bb=3-2a解得a=2b=-1,∴w=2-i,以下解法同[解法一].47.直线l只经过第一、三、四象限,则直线l的斜率k()

A.大于零

B.小于零

C.大于零或小于零

D.以上结论都有可能答案:A48.设A=xn+x-n,B=xn-1+x1-n,当x∈R+,n∈N+时,求证:A≥B.答案:证明:A-B=(xn+x-n)-(xn-1+x1-n)=x-n(x2n+1-x2n-1-x)=x-n[x(x2n-1-1)-(x2n-1-1)]=x-n(x-1)(x2n-1-1).由x∈R+,x-n>0,得当x≥1时,x-1≥0,x2n-1-1≥0;当x<1时,x-1<0,x2n-1<0,即x-1与x2n-1-1同号.∴A-B≥0.∴A≥B.49.已知x∈{1,2,x2},则实数x=______.答案:∵x∈{1,2,x2},分情况讨论可得:①x=1此时集合为{1,2,1}不合题意②x=2此时集合为{1,2,4}合题意③x=x2解得x=0或x=1当x=0时集合为{1,2,0}合题意故为0或2.50.已知空间三点的坐标为A(1,5,-2),B(2,4,1),C(p,3,q+2),若A,B,C三点共线,则p=______,q=______.答案:∵A(1,5,-2),B(2,4,1),C(p,3,q+2),∴AB=(1,-1,3),AC=(p-1,-2,q+4)∵A,B,C三点共线,∴AB=λAC∴(1,-1,3)=λ(p-1,-2,q+4),∴1=λ(p-1)-1=-2λ,3=λ(q+4),∴λ=12,p=3,q=2,故为:3;2第3卷一.综合题(共50题)1.已知函数f(x)=x+3x+1(x≠-1).设数列{an}满足a1=1,an+1=f(an),数列{bn}满足bn=|an-3|,Sn=b1+b2+…+bn(n∈N*).

(Ⅰ)用数学归纳法证明bn≤(3-1)n2n-1;

(Ⅱ)证明Sn<233.答案:证明:(Ⅰ)当x≥0时,f(x)=1+2x+1≥1.因为a1=1,所以an≥1(n∈N*).下面用数学归纳法证明不等式bn≤(3-1)n2n-1.(1)当n=1时,b1=3-1,不等式成立,(2)假设当n=k时,不等式成立,即bk≤(3-1)k2k-1.那么bk+1=|ak+1-3|=(3-1)|ak-3|1+ak3-12bk≤(3-1)k+12k.所以,当n=k+1时,不等式也成立.根据(1)和(2),可知不等式对任意n∈N*都成立.(Ⅱ)由(Ⅰ)知,bn≤(3-1)n2n-1.所以Sn=b1+b2+…+bn≤(3-1)+(3-1)22+…+(3-1)n2n-1=(3-1)•1-(3-12)n1-3-12<(3-1)•11-3-12=233.故对任意n∈N*,Sn<233.2.已知圆C:x2+y2=12,直线l:4x+3y=25.

(1)圆C的圆心到直线l的距离为______;

(2)圆C上任意一点A到直线l的距离小于2的概率为______.答案:(1)由题意知圆x2+y2=12的圆心是(0,0),圆心到直线的距离是d=2532+42=5,(2)由题意知本题是一个几何概型,试验发生包含的事件是从这个圆上随机的取一个点,对应的圆上整个圆周的弧长,满足条件的事件是到直线l的距离小于2,过圆心做一条直线交直线l与一点,根据上一问可知圆心到直线的距离是5,在这条垂直于直线l的半径上找到圆心的距离为3的点做半径的垂线,根据弦心距,半径,弦长之间组成的直角三角形得到符合条件的弧长对应的圆心角是60°根据几何概型的概率公式得到P=60°360°=16故为:5;163.若a>0,b>0,则不等式-b<aA.<x<0或0<x<

答案:D解析:试题分析:4.函数y=()|x|的图象是()

A.

B.

C.

D.

答案:B5.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为

______.答案:如图,过双曲线的顶点A、焦点F分别向其渐近线作垂线,垂足分别为B、C,则:|OF||OA|=|FC||AB|?ca=62=3.故为36.“a>2且b>2”是“a+b>4且ab>4”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件答案:若a>2且b>2,则必有a+b>4且ab>4成立,故充分性易证若a+b>4且ab>4,如a=8,b=1,此时a+b>4且ab>4成立,但不能得出a>2且b>2,故必要性不成立由上证明知“a>2且b>2”是“a+b>4且ab>4”的充分不必要条件,故选A7.对于非零的自然数n,抛物线y=(n2+n)x2-(2n+1)x+1与x轴相交于An,Bn两点,若以|AnBn|表示这两点间的距离,则|A1B1|+|A2B2|+|A3B3|+┅+|A2009B2009|的值

等于______.答案:令(n2+n)x2-(2n+1)x+1=0,得x1=1n,x2=1n+1所以An(1n,0),Bn(1n+1,0)所以|AnBn|=1n-1n+1,所以|A1B1|+|A2B2|+|A3B3|+┅+|A2009B2009|=(11-12)+(12-13)+┉+(12009-12010)=1-12010=20092010.故为:20092010.8.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的14,且样本容量是160,则中间一组的频数为()A.32B.0.2C.40D.0.25答案:设间一个长方形的面积S则其他十个小长方形面积的和为4S,所以频率分布直方图的总面积为5S所以中间一组的频率为S5S=0.2所以中间一组的频数为160×0.2=32故选A9.若A(-2,3),B(3,-2),C(,m)三点共线

则m的值为()

A.

B.-

C.-2

D.2答案:A10.在repeat语句的一般形式中有“until

A”,其中A是

(

)A.循环变量B.循环体C.终止条件D.终止条件为真答案:D解析:此题考查程序语句解:Until标志着直到型循环,直到终止条件为止,因此until后跟的是终止条件为真的语句.答案:D.11.把38化为二进制数为()A.101010(2)B.100110(2)C.110100(2)D.110010(2)答案:可以验证所给的四个选项,在A中,2+8+32=42,在B中,2+4+32=38经过验证知道,B中的二进制表示的数字换成十进制以后得到38,故选B.12.某射手射击所得环数X的分布列为:

ξ

4

5

6

7

8

9

10

P

0.02

0.04

0.06

0.09

0.28

0.29

0.22

则此射手“射击一次命中环数大于7”的概率为()

A.0.28

B.0.88

C.0.79

D.0.51答案:C13.已知矩阵M=2a21,其中a∈R,若点P(1,-2)在矩阵M的变换下得到点P'(-4,0)

(1)求实数a的值;

(2)求矩阵M的特征值及其对应的特征向量.答案:(1)由2a211-2=-40,∴2-2a=-4⇒a=3.(2)由(1)知M=2321,则矩阵M的特征多项式为f(λ)=.λ-2-3-2λ-1.=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩阵M的特征值为-1与4.当λ=-1时,(λ-2)x-3y=0-2x+(λ-1)y=0⇒x+y=0∴矩阵M的属于特征值-1的一个特征向量为1-1;当λ=4时,(λ-2)x-3y=0-2x+(λ-1)y=0⇒2x-3y=0∴矩阵M的属于特征值4的一个特征向量为32.14.双曲线x2a2-y2b2=1,(a>0,b>0)的一条渐近线方程是y=3x,坐标原点到直线AB的距离为32,其中A(a,0),B(0,-b).

(1)求双曲线的方程;

(2)若B1是双曲线虚轴在y轴正半轴上的端点,过点B作直线交双曲线于点M,N,求B1M⊥B1N时,直线MN的方程.答案:(1)∵A(a,0),B(0,-b),∴设直线AB:xa-yb=1∴ba=3aba2+b2=32,∴a=3b=3,∴双曲线方程为:x23-y29=1.(2)∵双曲线方程为:x23-y29=1,∴A1(-3,0),A2(3,0),设P(x0,y0),∴kPA1=y0x0+3,kPA2=y0x0-3,∴k1k2=y02x02-3=3x02-9x02-3=3.B(0,-3)B1(0,3),设M(x1,y1),N(x2,y2)∴设直线l:y=kx-3,∴y=kx-33x2-y2=9,∴3x2-(kx-3)2=9.(3-k2)x2+6kx-18=0,∴x1+x2=6kk2-3

y1+y2=k(x1+x2)-6=18k2-3x1x2=18k2-3

y1y2=k2(x1x2)-3k(x1+x2)+9∵B1M=(x1,y1-3)

B1N=(x2,y2-3)∵B1M•B1N=0∴x1x2+y1y2-3(y1+y2)+9=018k2-3+9-54k2-3+9=0k2=5,即k=±5代入(1)有解,∴lMN:y=±5x-3.15.来自中国、英国、瑞典的乒乓球裁判各两名,执行北京奥运会的一号、二号和三号场地的乒乓球裁判工作,每个场地由两名来自不同国家的裁判组成,则不同的安排方案总数有()

A.12种

B.48种

C.90种

D.96种答案:B16.如果一个水平放置的图形的斜二测直观图是一个底面为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是()

A.2+

B.

C.

D.1+答案:A17.已知空间三点A(1,1,1)、B(-1,0,4)、C(2,-2,3),则AB与CA的夹角θ的大小是

______答案:AB=(-2,-1,3),CA=(-1,3,-2),cos<AB,CA>=(-2)×(-1)+(-1)×3+3×(-2)14•14=-714=-12,∴θ=<AB,CA>=120°.故为120°18.已知P是以F1,F2为焦点的椭圆(a>b>0)上的一点,若PF1⊥PF2,tan∠PF1F2=,则此椭圆的离心率为()

A.

B.

C.

D.答案:D19.已知椭圆C的中心在原点,焦点F1,F2在轴上,离心率e=22,且经过点M(0,2),求椭圆c的方程答案:若焦点在x轴很明显,过点M(0,2)点M即椭圆的上端点,所以b=2ca=22c2=12a2∵a2=b2+c2所以b2=c2=2a2=4椭圆:x24+y22=1若焦点在y轴,则a=2,ca=22,c=1∴b=1椭圆方程:x22+y2=1.20.给定两个长度为1的平面向量OA和OB,它们的夹角为90°.如图所示,点C在以O为圆心的圆弧AB上变动,若OC=xOA+yOB,其中x,y∈R,则xy的范围是______.答案:由OC=xOA+yOB?OC2=x2OA2+y2OB2+2xyOA?OB,又|OC|=|OA|=|OB|=1,OA?OB=0,∴1=x2+y2≥2xy,得xy≤12,而点C在以O为圆心的圆弧AB上变动,得x,y∈[0,1],于是,0≤xy≤12,故为[0,12].21.如图,在⊙O中,AB是弦,AC是⊙O的切线,A是切点,过

B作BD⊥AC于D,BD交⊙O于E点,若AE平分

∠BAD,则∠BAD=()

A.30°

B.45°

C.50°

D.60°

答案:D22.袋中装着标有数字1,2,3,4,5的小球各2个,现从袋中任意取出3个小球,假设每个小球被取出的可能性都相等.

(Ⅰ)求取出的3个小球上的数字分别为1,2,3的概率;

(Ⅱ)求取出的3个小球上的数字恰有2个相同的概率;

(Ⅲ)用X表示取出的3个小球上的最大数字,求P(X≥4)的值.答案:(I)记“取出的3个小球上的数字分别为1,2,3”的事件记为A,则P(A)=C12C12C12C310=8120=115;(Ⅱ)记“取出的3个小球上的数字恰有2个相同”的事件记为A,则P(B)=C15C18C310=40120=13;(Ⅲ)用X表示取出的3个小球上的最大数字,则X≥4包含取出的3个小球上的最大数字为4或5两种情况,当取出的3个小球上的最大数字为4时,P(X=4)=C12C26+C22C16C310=36120=310;当取出的3个小球上的最大数字为5时,P(X=5)=C12C28+C22C18C310=64120=815故P(X≥4)=56.23.每一吨铸铁成本y

(元)与铸件废品率x%建立的回归方程y=56+8x,下列说法正确的是()A.废品率每增加1%,成本每吨增加64元B.废品率每增加1%,成本每吨增加8%C.废品率每增加1%,成本每吨增加8元D.如果废品率增加1%,则每吨成本为56元答案:∵回归方程y=56+8x,∴当x增加一个单位时,对应的y要增加8个单位,这里是平均增加8个单位,故选C.24.已知=(-3,2,5),=(1,x,-1),且=2,则x的值为()

A.3

B.4

C.5

D.6答案:C25.参数方程表示什么曲线?答案:见解析解析:解:显然,则即得,即26.有一个质地均匀的正四面体,它的四个面上分别标有1,2,3,4这四个数字.现将它连续抛掷3次,其底面落于桌面,记三次在正四面体底面的数字和为S,则“S恰好为4”的概率为______.答案:由题意知本题是一个古典概型,试验发生包含的事件是抛掷这颗正四面体骰子两次,共有4×4×4=64种结果,满足条件的事件是三次在正四面体底面的数字和为S,S恰好为4,可以列举出这种事件,(1,1,2),(1,2,1),(2,1,1)共有3种结果,根据古典概型概率公式得到P=364,故为:364.27.对于函数f(x),若存在区间M=[a,b],(a<b),使得{y|y=f(x),x∈M}=M,则称区间M为函数f(x)的一个“稳定区间”现有四个函数:

①f(x)=ex②f(x)=x3③f(x)=sinπ2x④f(x)=lnx,其中存在“稳定区间”的函数有()A.①②B.②③C.③④D.②④答案:①对于函数f(x)=ex若存在“稳定区间”[a,b],由于函数是定义域内的增函数,故有ea=a,eb=b,即方程ex=x有两个解,即y=ex和y=x的图象有两个交点,这与即y=ex和y=x的图象没有公共点相矛盾,故①不存在“稳定区间”.②对于f(x)=x3存在“稳定区间”,如x∈[0,1]时,f(x)=x3∈[0,1].③对于f(x)=sinπ2x,存在“稳定区间”,如x∈[0,1]时,f(x)=sinπ2x∈[0,1].④对于f(x)=lnx,若存在“稳定区间”[a,b],由于函数是定义域内的增函数,故有lna=a,且lnb=b,即方程lnx=x有两个解,即y=lnx

和y=x的图象有两个交点,这与y=lnx和y=x的图象没有公共点相矛盾,故④不存在“稳定区间”.故选B.28.满足{1,2}∪A={1,2,3}的集合A的个数为______.答案:由{1,2}∪A={1,2,3},所以A={3},或{1,3},或{2,3},或{1,2,3}.所以集合A的个数为4.29.在平面直角坐标系中,已知向量a=(-1,2),又点A(8,0),B(n,t),C(ksinθ,t)(0≤θ≤π2).

(1)若AB⊥a,且|AB|=5|OA|(O为坐标原点),求向量OB;

(2)若向量AC与向量a共线,当k>4,且tsinθ取最大值4时,求OA•OC.答案:(1)∵点A(8,0),B(n,t),∴AB=(n-8,t),∵AB⊥a,∴AB•a=(n-8,t)•(-1,2)=0,得n=2t+8.则AB=(2t,t),又|AB|=5|OA|,|OA|=8.∴(2t)2+t2=5×64,解得t=±8,当t=8时,n=24;当t=-8时,n=-8.∴OB=(24,8)或OB=(-8,-8).(2)∵向量AC与向量a共线,∴t=-2ksinθ+16,tsinθ=(-2ksinθ+16)sinθ=-2k(sinθ-4k)2+32k.∵k>4,∴0<4k<1,故当sinθ=4k时,tsinθ取最大值32k,有32k=4,得k=8.这时,sinθ=12,k=8,tsinθ=4,得t=8,则OC=(4,8).∴OA•OC=(8,0)•(4,8)=32.30.4位学生与2位教师并坐合影留念,针对下列各种坐法,试问:各有多少种不同的坐法?(用数字作答)

(1)教师必须坐在中间;

(2)教师不能坐在两端,但要坐在一起;

(3)教师不能坐在两端,且不能相邻.答案:(1)先排4位学生,有A44种坐法,2位教师坐在中间,可以交换位置,有A22种坐法,则共有A22A44=48种坐法;(2)先排4位学生,有A44种坐法,2位教师坐在一起,将其看成一个整体,可以交换位置,有2种坐法,将这个“整体”插在4个学生的空位中,又由教师不能坐在两端,则有3个空位可选,则共有2A44A31=144种坐法;(3)先排4位学生,有A44种坐法,教师不能相邻,将其依次插在4个学生的空位中,又由教师不能坐在两端,则有3个空位可选,有A32种坐法,则共有A44A32=144种坐法..31.①附中高一年级聪明的学生;

②直角坐标系中横、纵坐标相等的点;

③不小于3的正整数;

④3的近似值;

考察以上能组成一个集合的是______.答案:因为直角坐标系中横、纵坐标相等的点是确定的,所以②能构成集合;不小于3的正整数是确定的,所以③能构成集合;附中高一年级聪明的学生,不是确定的,原因是没法界定什么样的学生为聪明的,所以①不能构成集合;3的近似值没说明精确到哪一位,所以是不确定的,故④不能构成集合.32.在某项体育比赛中,七位裁判为一选手打出分数的茎叶图如图,去掉一个最高分和一个摄低分后,该选手的平均分为()A.90B.91C.92D.93答案:由图表得到评委为该选手打出的7个分数数据为:89,90,90,93,93,94,95.去

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论