2023年汉中职业技术学院高职单招(数学)试题库含答案解析_第1页
2023年汉中职业技术学院高职单招(数学)试题库含答案解析_第2页
2023年汉中职业技术学院高职单招(数学)试题库含答案解析_第3页
2023年汉中职业技术学院高职单招(数学)试题库含答案解析_第4页
2023年汉中职业技术学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年汉中职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.设a=0.7,b=0.8,c=log30.7,则()

A.c<b<a

B.c<a<b

C.a<b<c

D.b<a<c答案:B2.(1+2x)6的展开式中x4的系数是______.答案:展开式的通项为Tr+1=2rC6rxr令r=4得展开式中x4的系数是24C64=240故为:2403.方程x2-y2=0表示的图形是()

A.两条相交直线

B.两条平行直线

C.两条重合直线

D.一个点答案:A4.化简:AB+CD+BC=______.答案:如图:AB+CD+BC=AB+BC+CD=AC+CD=AD.故为:AD.5.先后2次抛掷一枚骰子,将得到的点数分别记为a,b.

(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;

(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.答案:(1)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.∵直线ax+by+c=0与圆x2+y2=1相切的充要条件是5a2+b2=1即:a2+b2=25,由于a,b∈{1,2,3,4,5,6}∴满足条件的情况只有a=3,b=4,c=5;或a=4,b=3,c=5两种情况.∴直线ax+by+c=0与圆x2+y2=1相切的概率是236=118(2)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.∵三角形的一边长为5∴当a=1时,b=5,(1,5,5)1种当a=2时,b=5,(2,5,5)1种当a=3时,b=3,5,(3,3,5),(3,5,5)2种当a=4时,b=4,5,(4,4,5),(4,5,5)2种当a=5时,b=1,2,3,4,5,6,(5,1,5),(5,2,5),(5,3,5),(5,4,5),(5,5,5),(5,6,5)6种当a=6时,b=5,6,(6,5,5),(6,6,5)2种故满足条件的不同情况共有14种故三条线段能围成不同的等腰三角形的概率为1436=718.6.不等式|x-2|+|x+1|<5的解集为()

A.(-∞,-2)∪(3,+∞)

B.(-∞,-1)∪(2,+∞)

C.(-2,3)

D.(-∞,+∞)答案:C7.已知实数x,y满足2x+y+5=0,那么x2+y2的最小值为()A.5B.10C.25D.210答案:求x2+y2的最小值,就是求2x+y+5=0上的点到原点的距离的最小值,转化为坐标原点到直线2x+y+5=0的距离,d=522+1=5.故选A.8.椭圆x29+y216=1上一动点P到两焦点距离之和为()A.10B.8C.6D.不确定答案:根据椭圆的定义,可知动点P到两焦点距离之和为2a=8,故选B.9.某校有学生1

200人,为了调查某种情况打算抽取一个样本容量为50的样本,问此样本若采用简单随便机抽样将如何获得?答案:本题可以采用抽签法来抽取样本,首先把该校学生都编上号0001,0002,0003…用抽签法做1200个形状、大小相同的号签,然后将这些号签放到同一个箱子里,进行均匀搅拌,抽签时,每次从中抽一个号签,连续抽取50次,就得到一个容量为50的样本.10.下列函数中,既是偶函数,又在(0,1)上单调递增的函数是()A.y=|log3x|B.y=x3C.y=e|x|D.y=cos|x|答案:对于A选项,函数定义域是(0,+∞),故是非奇非偶函数,不合题意,A选项不正确;对于B选项,函数y=x3是一个奇函数,故不是正确选项;对于C选项,函数的定义域是R,是偶函数,且当x∈(0,+∞)时,函数是增函数,故在(0,1)上单调递增,符合题意,故C选项正确;对于D选项,函数y=cos|x|是偶函数,在(0,1)上单调递减,不合题意综上知,C选项是正确选项故选C11.某学校为了了解学生的日平均睡眠时间(单位:h),随机选择了n名同学进行调查,下表是这n名同学的日平均睡眠时间的频率分布表:

序号(i)分组(睡眠时间)频数(人数)频率1[4,5)40.082[5,6)x0.203[6,7)ay4[7,8)bz5[8,9]m0.O8(1)求n的值;若a=20,试确定x、y、z、m的值;

(2)统计方法中,同一组数据常用该组区间的中点值(例如[4,5)的中点值4.5)作为代表.若据此计算的这n名学生的日平均睡眠时间的平均值为6.68.求a、b的值.答案:(1)样本容量n=40.08=50,∴x=0.20×50=10,y=0.4,z=0.24,m=4(5分)(2)n=50,P(i=3)=a50,P(i=4)=b50平均时间为:4.5×0.08+5.5×0.2+6.5×a50+7.5×b50+8.5×0.08=6.68,即13a+15b=454

①(9分)又4+10+a+b+4=50,即a+b=32

②由①,②解得:a=13,b=1.(12分)12.由9个正数组成的矩阵

中,每行中的三个数成等差数列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比数列,给出下列判断:①第2列a12,a22,a32必成等比数列;②第1列a11,a21,a31不一定成等比数列;③a12+a32≥a21+a23;④若9个数之和等于9,则a22≥1.其中正确的个数有()

A.1个

B.2个

C.3个

D.4个答案:B13.下列各组向量中,可以作为基底的是()A.e1=(0,0),e2=(-2,1)B.e1=(4,6),e2=(6,9)C.e1=(2,-5),e2=(-6,4)D.e1=(2,-3),e2=(12,-34)答案:A、中的2个向量的坐标对应成比例,0-2=01,所以,这2个向量是共线向量,故不能作为基底.B、中的2个向量的坐标对应成比例,46=69,所以,这2个向量是共线向量,故不能作为基底.C中的2个向量的坐标对应不成比例,2-6≠-54,所以,这2个向量不是共线向量,故可以作为基底.D、中的2个向量的坐标对应成比例,212=-3-34,这2个向量是共线向量,故不能作为基底.故选C.14.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:()A.110B.120C.140D.1120答案:由题意知本题是一个古典概型,∵试验发生包含的所有事件是10位同学参赛演讲的顺序共有:A1010;满足条件的事件要得到“一班有3位同学恰好被排在一起而二班的2位同学没有被排在一起的演讲的顺序”可通过如下步骤:①将一班的3位同学“捆绑”在一起,有A33种方法;②将一班的“一梱”看作一个对象与其它班的5位同学共6个对象排成一列,有A66种方法;③在以上6个对象所排成一列的7个间隙(包括两端的位置)中选2个位置,将二班的2位同学插入,有A72种方法.根据分步计数原理(乘法原理),共有A33?A66?A72种方法.∴一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:P=A33?A66?A27A1010=120.故选B.15.已知的单调区间;

(2)若答案:(1)(2)证明略解析:(1)对已知函数进行降次分项变形

,得,(2)首先证明任意事实上,而

.16.双曲线的中心是原点O,它的虚轴长为26,右焦点为F(c,0)(c>0),直线l:x=a2c与x轴交于点A,且|OF|=3|OA|.过点F的直线与双曲线交于P、Q两点.

(Ⅰ)求双曲线的方程;

(Ⅱ)若AP•AQ=0,求直线PQ的方程.答案:解.(Ⅰ)由题意,设曲线的方程为x2a2-y2b2=1(a>0,b>0)由已知a2+6=c2c=3a2c解得a=3,c=3所以双曲线的方程:x23-y26=1.(Ⅱ)由(Ⅰ)知A(1,0),F(3,0),当直线PQ与x轴垂直时,PQ方程为x=3.此时,AP•AQ≠0,应舍去.当直线PQ与x轴不垂直时,设直线PQ的方程为y=k(x-3).由方程组x23-y26=1y=k(x-3)得(k2-2)x2-6k2x+9k2+6=0由于过点F的直线与双曲线交于P、Q两点,则k2-2≠0,即k≠±2,由于△=36k4-4(k2-2)(9k2+6)=48(k2+1)>0得k∈R.∴k∈R且k≠±2(*)设P(x1,y1),Q(x2,y2),则x1+x2=6k2k2-2(1)x1x2=9k2+6k2-2(2)由直线PQ的方程得y1=k(x1-3),y2=k(x2-3)于是y1y2=k2(x1-3)(x2-3)=k2[x1x2-3(x1+x2)+9](3)∵AP•AQ=0,∴(x1-1,y1)•(x2-1,y2)=0即x1x2-(x1+x2)+1+y1y2=0(4)由(1)、(2)、(3)、(4)得9k2+6k2-2-6k2k2-2+1+k2(9k2+6k2-2-36k2k2-2+9)=0整理得k2=12,∴k=±22满足(*)∴直线PQ的方程为x-2y-3=0或x+2y-3=017.根据下面的要求,求满足1+2+3+…+n>500的最小的自然数n.

(1)画出执行该问题的程序框图;

(2)以下是解决该问题的一个程序,但有2处错误,请找出错误并予以更正.答案:(12分)(1)程序框图如图:(两者选其一即可,不唯一)(2)①直到型循环结构是直到满足条件退出循环,While错误,应改成LOOP

UNTIL;②根据循环次数可知输出n+1

应改为输出n;18.直线ax+2y+3=0和直线2x+ay-1=0具有相同的方向向量,则a=______.答案:∵直线ax+2y+3=0和直线2x+ay-1=0具有相同的方向向量∴两条直线互相平行,可得a2=2a≠3-1,解之得a=±2故为:±219.已知矩阵M=2a21,其中a∈R,若点P(1,-2)在矩阵M的变换下得到点P'(-4,0)

(1)求实数a的值;

(2)求矩阵M的特征值及其对应的特征向量.答案:(1)由2a211-2=-40,∴2-2a=-4⇒a=3.(2)由(1)知M=2321,则矩阵M的特征多项式为f(λ)=.λ-2-3-2λ-1.=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩阵M的特征值为-1与4.当λ=-1时,(λ-2)x-3y=0-2x+(λ-1)y=0⇒x+y=0∴矩阵M的属于特征值-1的一个特征向量为1-1;当λ=4时,(λ-2)x-3y=0-2x+(λ-1)y=0⇒2x-3y=0∴矩阵M的属于特征值4的一个特征向量为32.20.抛物线y=14x2的焦点坐标是______.答案:抛物线y=14x2

即x2=4y,∴p=2,p2=1,故焦点坐标是(0,1),故为(0,1).21.方程cos2x=x的实根的个数为

______个.答案:cos2x=x的实根即函数y=cos2x与y=x的图象交点的横坐标,故可以将求根个数的问题转化为求两个函数图象的交点个数.如图在同一坐标系中作出y=cos2x与y=x的图象,由图象可以看出两图象只有一个交点,故方程的实根只有一个.故应该填

1.22.用反证法证明命题:“a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,则a,b,c,d中至少有一个负数”时的假设为()

A.a,b,c,d中至少有一个正数

B.a,b,c,d全为正数

C.a,b,c,d全都大于等于0

D.a,b,c,d中至多有一个负数答案:C23.已知f(x)=,求不等式x+(x+2)·f(x+2)≤5的解集。答案:解:原不等式等价于或解得或即故不等式的解集为。24.从30个足球中抽取10个进行质量检测,说明利用随机数法抽取这个样本的步骤及公平性.答案:第一步:首先将30个足球编号:00,01,02…29,第二步:在随机数表中随机的选一个数作为开始.第三步:从选定的数字向右读,得到二位数字,将它取出,把大于29的去掉,,按照这种方法继续向右读,取出的二位数若与前面相同,则去掉,依次下去,就得到一个具有10个数据的样本.其公平性在于:第一随机数表中每一个位置上出现的哪一个数都是等可能的,第二从30个个体中抽到那一个个体的号码也是机会均等的,基于以上两点,利用随机数表抽取样本保证了各个个体被抽到的机会是等可能的.25.用秦九韶算法求多项式f(x)=8x7+5x6+3x4+2x+1,当x=2时的值.答案:根据秦九韶算法,把多项式改写成如下形式f(x)=8x7+5x6+0?x5+3?x4+0?x3+0?x2+2x+1=((((((8x+5)x+0)x+3)x+0)x+0)x+2)x+1v0=8,v1=8×2+5=21v2=21×2+0=42,v3=42×2+3=87v4=87×2+0=174,v5=174×2+0=348v6=348×2+2=698,v7=698×2+1=1397.∴当x=2时,多项式的值为1397.26.从直径AB的延长线上取一点C,过点C作该圆的切线,切点为D,若∠ACD的平分线交AD于点E,则∠CED的度数是()

A.30°

B.45°

C.60°

D.随点C的变化而变化答案:B27.命题“若a>3,则a>5”的逆命题是______.答案:∵原命题“若a>3,则a>5”的条件是a>3,结论是a>5∴逆命题是“若a>5,则a>3”故为:若a>5,则a>328.

若向量,满足||=||=2,与的夹角为60°,则|+|=()

A.

B.2

C.4

D.12答案:B29.一个算法的流程图如图所示,则输出S的值为

.答案:根据程序框图,题意为求:s=1+2+3+4+5+6+7+8+9,计算得:s=45,故为:45.30.如图所示,在Rt△ABC内有一内接正方形,它的一条边在斜边BC上,设AB=a,∠ABC=θ

(1)求△ABC的面积f(θ)与正方形面积g(θ);

(2)当θ变化时,求f(θ)g(θ)的最小值.答案:(1)由题得:AC=atanθ∴f(θ)=12a2tanθ(0<θ<π2)

设正方形的边长为x,则BG=xsinθ,由几何关系知:∠AGD=θ∴AG=xcosθ

由BG+AG=a?xsinθ+xcosθ=a?x=asinθ1+sinθcosθ∴g(θ)=a2sin2θ(1+sinθcosθ)2(0<θ<π2)(2)f(θ)g(θ)=(1+sinθcoθ)22sinθcosθ=1+1sin2θ+sin2θ4

令:t=sin2θ∵0<θ<π2∴t∈(0,1]∴y=1+1t+t4=1+14(t+t4)∵函数y=1+14(t+t4)在(0,1]递减∴ymin=94(当且仅当t=1即θ=π4时成立)∴当θ=π4时,f(θ)g(θ)的最小值为94.31.若函数y=ax(a>1)在[0,1]上的最大值与最小值之和为3,则a=______.答案:①当0<a<1时函数y=ax在[0,1]上为单调减函数∴函数y=ax在[0,1]上的最大值与最小值分别为1,a∵函数y=ax在[0,1]上的最大值与最小值和为3∴1+a=3∴a=2(舍)②当a>1时函数y=ax在[0,1]上为单调增函数∴函数y=ax在[0,1]上的最大值与最小值分别为a,1∵函数y=ax在[0,1]上的最大值与最小值和为3∴1+a=3∴a=2故为:2.32.设O是平行四边形ABCD的两条对角线AC与BD的交点,对于下列向量组:①AD与AB;②DA与BC;③CA与DC;④OD与OB.其中能作为一组基底的是______(只填写序号).答案:解析:由于①AD与AB不共线,③CA与DC不共线,所以都可以作为基底.②DA与BC共线,④OD与OB共线,不能作为基底.故为:①③.33.参数方程表示什么曲线?答案:见解析解析:解:显然,则即得,即34.请写出所给三视图表示的简单组合体由哪些几何体组成.______.答案:由已知中的三视图我们可以判断出该几何体是由一个底面面积相等的圆锥和圆柱组合而成故为:圆柱体,圆锥体35.阅读程序框图,运行相应的程序,则输出i的值为()A.3B.4C.5D.6答案:该程序框图是循环结构经第一次循环得到i=1,a=2;经第二次循环得到i=2,a=5;经第三次循环得到i=3,a=16;经第四次循环得到i=4,a=65满足判断框的条件,执行是,输出4故选B36.证明不等式的最适合的方法是()

A.综合法

B.分析法

C.间接证法

D.合情推理法答案:B37.过抛物线y2=2px(p>0)的焦点F的直线与抛物线相交于M,N两点,自M,N向准线l作垂线,垂足分别为M1,N1,则∠M1FN1等于()

A.45°

B.60°

C.90°

D.120°答案:C38.设抛物线y2=2px(p>0)上一点A(1,2)到点B(x0,0)的距离等于到直线x=-1的距离,则实数x0的值是______.答案:∵点A(1,2)在抛物线y2=2px(p>0)上,∴4=2p,p=2,故抛物线方程为y2=4x,准线方程为x=1.由点A(1,2)到点B(x0,0)的距离等于到直线x=-1的距离,故点B(x0,0)为抛物线y2=4x的焦点,故x0=1.故为1.39.已知M(-2,7)、N(10,-2),点P是线段MN上的点,且PN=-2PM,则P点的坐标为______.答案:设P(x,y),则PN=(10-x,-2-y),PM=(-2-x,7-y),∵PN=-2PM,∴10-x=-2(-2-x)-2-y=-2(7-y),∴x=2y=4∴P点的坐标为(2,4).故为:(2,4)40.正十边形的一个内角是多少度?答案:由多边形内角和公式180°(n-2),∴每一个内角的度数是180°(n-2)n当n=10时.得到一个内角为180°(10-2)10=144°41.设四边形ABCD中,有且,则这个四边形是()

A.平行四边形

B.矩形

C.等腰梯形

D.菱形答案:C42.已知a>b>0,则3a,3b,4a由小到大的顺序是______.答案:由于指数函数y=3x在R上是增函数,且a>b>0,可得3a>3b.由于幂函数y=xa在(0,+∞)上是增函数,故有3a<4a,故3a,3b,4a由小到大的顺序是3b<3a<4a.,故为3b<3a<4a.43.某校现有高一学生210人,高二学生270人,高三学生300人,学校学生会用分层抽样的方法从这三个年级的学生中随机抽取n名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为()

A.10

B.9

C.8

D.7答案:A44.将函数y=sin(x+)的图象按向量=(-m,0)平移所得的图象关于y轴对称,则m最小正值是

A.

B.

C.

D.答案:A45.设z∈C,|z|≤2,则点Z表示的图形是()A.直线x=2的左半平面B.半径为2的圆面C.直线x=2的右半平面D.半径为2的圆答案:由题意z∈C,|z|≤2,由得数的几何意义知,点Z表示的图形是半径为2的圆面,故选B46.某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错得0分,假设这位同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响,则这名同学得300分的概率为

;这名同学至少得300分的概率为

.答案:0.228;0.564解析:得300分可能是答对第一、三题或第二、三题,其概率为0.8×0.3×0.6+0.2×0.7×0.6=0.228;答对4道题可得400分,其概率为0.8×0.7×0.6=0.336,所以至少得300分的概率为0.228+0.336=0.564。47.已知平面直角坐标系内三点O(0,0),A(1,1),B(4,2)

(Ⅰ)求过O,A,B三点的圆的方程,并指出圆心坐标与圆的半径.

(Ⅱ)求过点C(-1,0)与条件(Ⅰ)的圆相切的直线方程.答案:(Ⅰ)∵O(0,0),A(1,1),B(4,2),∴线段OA中点坐标为(12,12),线段OB的中点坐标为(2,1),kOA=1,kOB=12,∴线段OA垂直平分线的方程为y-12=-(x-12),线段OB垂直平分线的方程为y-1=12(x-2),联立两方程解得:x=4y=-3,即圆心(4,-3),半径r=42+(-3)2=5,则所求圆的方程为x2+y2-8x+6y=0,圆心是(4,-3)、半径r=5;(Ⅱ)分两种情况考虑:当切线方程斜率不存在时,直线x=-1满足题意;当斜率存在时,设为k,切线方程为y=k(x+1),即kx-y+k=0,∴圆心到切线的距离d=r,即|5k+3|k2+1=5,解得:k=815,此时切线方程为y=815(x+1),综上,所求切线方程为x=-1或y=815(x+1).48.(文)将图所示的一个直角三角形ABC(∠C=90°)绕斜边AB旋转一周,所得到的几何体的正视图是下面四个图形中的(

A.

B.

C.

D.

答案:B49.已知空间向量a=(1,2,3),点A(0,1,0),若AB=-2a,则点B的坐标是()A.(-2,-4,-6)B.(2,4,6)C.(2,3,6)D.(-2,-3,-6)答案:设B=(x,y,z),因为AB=-2a,所以(x,y-1,z)=-2(1,2,3),所以:x=-2,y-1=-4,z=-6,即x=-2,y=-3,z=-6.B(-2,-3,-6).故选D.50.已知P(B|A)=,P(A)=,则P(AB)等于()

A.

B.

C.

D.答案:C第2卷一.综合题(共50题)1.一个总体中有100个个体,随机编号为0,1,2,3,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k号码的个位数字相同,若m=6,则在第7组中抽取的号码是()

A.66

B.76

C.63

D.73答案:C2.如果x2+ky2=2表示焦点在y轴上的椭圆,则实数k的取值范围是

______.答案:根据题意,x2+ky2=2化为标准形式为x22+y22k=1;根据题意,其表示焦点在y轴上的椭圆,则有2k>2;解可得0<k<1;故为0<k<1.3.已知O是正方形ABCD对角线的交点,在以O,A,B,C,D这5点中任意一点为起点,另一点为终点的所有向量中,

(1)与BC相等的向量有

______;

(2)与OB长度相等的向量有

______;

(3)与DA共线的向量有

______.答案:如图:(1)与BC相等的向量有AD.(2)与OB长度相等的向量有OA、OC、OD、AO、CO、DO.(3)与DA共线的向量有

CB、BC.4.函数数列{fn(x)}满足:f1(x)=x1+x2(x>0),fn+1(x)=f1[fn(x)]

(1)求f2(x),f3(x);

(2)猜想fn(x)的表达式,并证明你的结论.答案:(1)f2(x)=f1(f1(x))=f1(x)1+f21(x)=x1+2x2f3(x)=f1(f2(x))=f2(x)1+f22(x)=x1+3x2(2)猜想:fn(x)=x1+nx2(n∈N*)下面用数学归纳法证明:①当n=1时,f1(x)=x1+x22,已知,显然成立②假设当n=K(K∈N*)4时,猜想成立,即fk(x)=x1+kx2则当n=K+1时,fk+1(x)=f1(fk(x))=fk(x)1+f2k(x)=x1+kx21+(x1+kx2)2=x1+(k+1)x2即对n=K+1时,猜想也成立.结合①②可知:猜想fn(x)=x1+nx2对一切n∈N*都成立.5.已知函数f(x)=|x+2|-1,g(x)=|3-x|+2,若不等式f(x)-g(x)≤K的解集为R.则实数K的取值范围为______.答案:因为函数f(x)=|x+2|-1,g(x)=|3-x|+2,所以f(x)-g(x)=|x+2|-|x-3|-3,它的几何意义是数轴上的点到-2与到3距离的差再减去3,它的最大值为2,不等式f(x)-g(x)≤K的解集为R.所以K≥2.故为:[2,+∞).6.已知x、y之间的一组数据如下:

x0123y8264则线性回归方程y=a+bx所表示的直线必经过点()A.(0,0)B.(2,6)C.(1.5,5)D.(1,5)答案:∵.x=0+1+2+34=1.5,.y=8+2+6+44=5∴线性回归方程y=a+bx所表示的直线必经过点(1.5,5)故选C7.将5位志愿者分成4组,其中一组为2人,其余各组各1人,到4个路口协助交警执勤,则不同的分配方案有______种(用数字作答).答案:由题意,先分组,再到4个路口协助交警执勤,则不同的分配方案有C25A44=240种故为:240.8.执行下列程序后,输出的i的值是()

A.5

B.6

C.10

D.11答案:D9.在平行四边形ABCD中,等于()

A.

B.

C.

D.答案:C10.设a,b∈R.“a=O”是“复数a+bi是纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:因为a,b∈R.“a=O”时“复数a+bi不一定是纯虚数”.“复数a+bi是纯虚数”则“a=0”一定成立.所以a,b∈R.“a=O”是“复数a+bi是纯虚数”的必要而不充分条件.故选B.11.设直线的参数方程是x=2+12ty=3+32t,那么它的斜截式方程是______.答案:∵直线的参数方程为x=2+12ty=3+32t(t为参数),消去参数化为普通方程可得y-3=3(x-2),那么它的斜截式方程是y=3x+3-23.故为:y=3x+3-23.12.命题:“如果ab=0,那么a、b中至少有一个等于0.”的逆否命题为______

______.答案:∵ab=0的否命题是ab≠0,a、b中至少有一个为零的否命题是a≠0,且b≠0,∴命题“若ab=0,则a、b中至少有一个为零”的逆否命题是“若a≠0,且b≠0,则ab≠0.”故:如果a、b都不为等于0.那么ab≠013.如果一个圆锥的正视图是边长为2的等边三角形,则该圆锥的表面积是______.答案:由已知,圆锥的底面直径为2,母线为2,则这个圆锥的表面积是12×2π×2+π?12=3π.故:3π.14.将函数="2x"+1的图像按向量平移得函数=的图像则

A=(1)B=(1,1)C=()

D(1,1)答案:C解析:分析:本小题主要考查函数图象的平移与向量的关系问题.依题由函数y=2x+1的图象得到函数y=2x+1的图象,需将函数y=2x+1的图象向左平移1个单位,向下平移1个单位;故=(-1,-1).解:设=(h,k)则函数y=2x+1的图象平移向量后所得图象的解析式为y=2x-h+1+k∴∴∴=(-1,-1)故答案为:C.15.椭圆的中心在坐标原点,焦点在坐标轴上,两顶点分别是(3,0),(0,2),则此椭圆的方程是______.答案:依题意,此椭圆方程为标准方程,且焦点在x轴上,设为x2a2+y2b2=1∵椭圆的两顶点分别是(3,0),(0,2),∴a=3,b=2∵∴此椭圆的标准方程为:x29+y22=1.故为:x29+y22=1.16.在Rt△ABC中,∠A=90°,AB=1,BC=2.在BC边上任取一点M,则∠AMB≥90°的概率为______.答案:过A点做BC的垂线,垂足为M',当M点落在线段BM'(含M'点不含B点)上时∠AMB≥90由∠A=90°,AB=1,BC=2解得BM'=12,则∠AMB≥90°的概率p=122=14.故为:1417.设集合A={x|},则A∩B等于(

A.

B.

C.

D.答案:B18.若双曲线与椭圆x216+y225=1有相同的焦点,与双曲线x22-y2=1有相同渐近线,求双曲线方程.答案:依题意可设所求的双曲线的方程为y2-x22=λ(λ>0)…(3分)即y2λ-x22λ=1…(5分)又∵双曲线与椭圆x216+y225=1有相同的焦点∴λ+2λ=25-16=9…(9分)解得λ=3…(11分)∴双曲线的方程为y23-x26=1…(13分)19.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是______.答案:由茎叶图可得甲组共有9个数据中位数为45乙组共9个数据中位数为46故为45、4620.求两条平行直线3x-4y-11=0与6x-8y+4=0的距离是()

A.3

B.

C.

D.4答案:B21.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连接EC、CD.

(1)求证:直线AB是⊙O的切线;

(2)若tan∠CED=12,⊙O的半径为3,求OA的长.答案:(1)如图,连接OC,∵OA=OB,CA=CB,∴OC⊥AB.∴AB是⊙O的切线;(2)∵BC是圆O切线,且BE是圆O割线,∴BC2=BD?BE,∵tan∠CED=12,∴CDEC=12.∵△BCD∽△BEC,∴BDBC=CDEC=12,设BD=x,BC=2x.又BC2=BD?BE,∴(2x)2=x?(x+6),解得x1=0,x2=2,∵BD=x>0,∴BD=2,∴OA=OB=BD+OD=3+2=5.(10分).22.x+y+z=1,则2x2+3y2+z2的最小值为()

A.1

B.

C.

D.答案:C23.天气预报说,在今后的三天中每一天下雨的概率均为40%,用随机模拟的方法进行试验,由1、2、3、4表示下雨,由5、6、7、8、9、0表示不下雨,利用计算器中的随机函数产生0~9之间随机整数的20组如下:

907966191925271932812458569683

431257393027556488730113537989

通过以上随机模拟的数据可知三天中恰有两天下雨的概率近似为(

)。答案:0.2524.已知点A(1,-2,0)和向量a=(-3,4,12),若AB=2a,则点B的坐标为______.答案:∵向量a=(-3,4,12),AB=2a,∴AB=(-6,8,24)∵点A(1,-2,0)∴B(-6+1,8-2,24-0)=(-5,6,24)故为:(-5,6,24)25.直线y=1与直线y=3x+3的夹角为______答案:l1与l2表示的图象为(如下图所示)y=1与x轴平行,y=3x+3与x轴倾斜角为60°,所以y=1与y=3x+3的夹角为60°.故为60°26.已知点A(1-t,1-t,t),B(2,t,t),则A、B两点距离的最小值为()

A.

B.

C.

D.2答案:A27.试指出函数y=3x的图象经过怎样的变换,可以得到函数y=(13)x+1+2的图象.答案:把函数y=3x的图象经过3次变换,可得函数y=(13)x+1+2的图象,步骤如下:y=3x沿y轴对称y=(13)x左移一个单位y=(13)x+1上移2个单位y=(13)x+1+2.28.命题“若a,b都是奇数,则a+b是偶数”的逆否命题是

______.答案:∵“a,b都是奇数”的否命题是“a,b不都是奇数”,“a+b是偶数”的否命题是“a+b不是偶数”,∴命题“若a,b都是奇数,则a+b是偶数”的逆否命题是“若a+b不是偶数,则a,b不都是奇数”.故为:若a+b不是偶数,则a,b不都是奇数.29.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为()A.7B.6C.5D.3答案:设上底面半径为r,因为圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,所以S侧面积=π(r+3r)l=84π,r=7故选A30.某海域有A、B两个岛屿,B岛在A岛正东40海里处.经多年观察研究发现,某种鱼群洄游的路线像一个椭圆,其焦点恰好是A、B两岛.曾有渔船在距A岛正西20海里发现过鱼群.某日,研究人员在A、B两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),A、B两岛收到鱼群反射信号的时间比为5:3.你能否确定鱼群此时分别与A、B两岛的距离?答案:以AB的中点为原点,AB所在直线为x轴建立直角坐标系设椭圆方程为:x2a2+y2b2=1(a>b>0)且c=a2-b2------(3分)因为焦点A的正西方向椭圆上的点为左顶点,所以a-c=20------(5分)又|AB|=2c=40,则c=20,a=40,故b=203------(7分)所以鱼群的运动轨迹方程是x21600+y21200=1------(8分)由于A,B两岛收到鱼群反射信号的时间比为5:3,因此设此时距A,B两岛的距离分别为5k,3k-------(10分)由椭圆的定义可知5k+3k=2×40=80⇒k=10--------(13分)即鱼群分别距A,B两岛的距离为50海里和30海里.------(14分)31.已知A(1,2),B(-3,b)两点的距离等于42,则b=______.答案:∵A(1,2),B(-3,b)∴|AB|=(-3-1)2+(b-2)2=42,解之得b=6或-2故为:6或-232.参数方程x=3cosθy=4sinθ,(θ为参数)化为普通方程是______.答案:由参数方程x=3cosθy=4sinθ,得cosθ=13xsinθ=14y∵cos2θ+sin2θ=1,∴(13x)2+(14y)2=1,化简得x29+y216=1,即为椭圆的普通方程故为:x29+y216=133.选修4-4:坐标系与参数方程

已知极点O与原点重合,极轴与x轴的正半轴重合.点A,B的极坐标分别为(2,π),(22,π4),曲线C的参数方程为答案:(Ⅰ)S△AOB=12×2×234.已知大于1的正数x,y,z满足x+y+z=33.

(1)求证:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32.

(2)求1log3x+log3y+1log3y+log3z+1log3z+log3x的最小值.答案:(1)由柯西不等式得,(x2x+2y+3z+y2y+2z+3z+z2z+2x+3y)[(x+2y+3z)+(y+2z+3x)+(z+2x+3y)]≥(x+y+z)2=27得:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32;(2)∵1log3x+log3y+1log3y+log3z+1log3z+log3x=1log3(xy)+1log3(yz)+1log3(zx),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx)),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx))≥9所以,(1log3(xy)+1log3(yz)+1log3(zx))≥9(log3(xy)+log3(yz)+log3(zx))=92log3(xyz),又∵33=x+y+z≥33xyz.∴xyz≤33.∴log3xyz≤32.得92log3xyz≥92×23=3所以,1log3x+log3y+1log3y+log3z+1log3z+log3x≥3当且仅当x=y=z=3时,等号成立.故所求的最小值是3.35.设随机变量ξ的概率分布如表所示:

求:(l)P(ξ<1),P(ξ≤1),P(ξ<2),P(ξ≤2);

(2)P(x)=P(ξ≤x),x∈R.答案:(1)根据所给的分布列可知14+13+m+112=1,∴m=13,∴P(ξ<1)=0P(ξ≤1)=P(ξ=1)=14P(ξ<2)=P(ξ≤1)=P(ξ=1)=14P(ξ≤2)=P(ξ=1)+P(ξ=2)=14+13=712(2)根据所给的分布列和第一问做出的结果,得到P(X)=14,(x≤1)P(X)=712,(1<X≤2)P(X)=1112,(2<x≤3)p(X)=1,(X≥3)36.已知集合A={x|x>1},则(CRA)∩N的子集有()A.1个B.2个C.4个D.8个答案:∵集合A={x|x>1},∴CRA={x|x≤1},∴(CRA)∩N={0,1},∴(CRA)∩N的子集有22=4个,故选C.37.设矩阵M=.32-121232.的逆矩阵是M-1=.abcd.,则a+c的值为______.答案:由题意,矩阵M的行列式为.32-121232.=32×32+12×12=1∴矩阵M=.32-121232.的逆矩阵是M-1=.3212-1232.∴a+c=3-12故为3-1238.已知直线l:(t为参数)的倾斜角是()

A.

B.

C.

D.答案:D39.已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=2,则:f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=______答案:∵f(p+q)=f(p)f(q),∴f(p+1)=f(p)f(1)即f(p+1)f(p)=f(1)=2,∴f(2)f(1)=2,f(4)f(3)=2…f(2006)f(2005)=2即f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=2×1003=2006故为:200640.已知圆O的两弦AB和CD延长相交于E,过E点引EF∥CB交AD的延长线于F,过F点作圆O的切线FG,求证:EF=FG.答案:证明:∵FG为⊙O的切线,而FDA为⊙O的割线,∴FG2=FD?FA①又∵EF∥CB,∴∠1=∠2.而∠2=∠3,∴∠1=∠3,∠EFD=∠AFE为公共角∴△EFD∽△AFE,FDEF=EFFA,即EF2=FD?FA②由①,②可得EF2=FG2∴EF=FG.41.4个人各写一张贺年卡,集中后每人取一张别人的贺年卡,共有______种取法.答案:根据分类计数问题,可以列举出所有的结果,1甲乙互换,丙丁互换2甲丙互换,乙丁互换3甲丁互换,乙丙互换4甲要乙的乙要丙的丙要丁的丁要甲的5甲要乙的乙要丁的丙要甲的丁要丙的6甲要丙的丙要乙的乙要丁的丁要甲的7甲要丙的丙要丁的乙要丁的丁要甲的8甲要丁的丁要乙的乙要丙的丙要甲的9甲要丁的丁要丙的乙要甲的丙要乙的通过列举可以得到共有9种结果,故为:942.某细胞在培养过程中,每15分钟分裂一次(由1个细胞分裂成2个),则经过两个小时后,1个这样的细胞可以分裂成______个.答案:由于每15分钟分裂一次,则两个小时共分裂8次.一个这样的细胞经过一次分裂后,由1个分裂成2个;经过2次分裂后,由1个分裂成22个;…经过8次分裂后,由1个分裂成28个.∴1个这样的细胞经过两个小时后,共分裂成28个,即256个.故为:25643.设a、b为单位向量,它们的夹角为90°,那么|a+3b|等于()A.7B.10C.13D.4答案:∵a,b它们的夹角为90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10,|a+3b|=10.故选B.44.点(1,-1)在圆(x-a)2+(y-a)2=4的内部,则a取值范围是()

A.-1<a<1

B.0<a<1

C.a<-1或a>1

D.a≠±1答案:A45.椭圆x29+y216=1上一动点P到两焦点距离之和为()A.10B.8C.6D.不确定答案:根据椭圆的定义,可知动点P到两焦点距离之和为2a=8,故选B.46.已知圆的极坐标方程为:ρ2-42ρcos(θ-π4)+6=0.

(1)将极坐标方程化为普通方程;

(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.答案:(1)ρ2-42ρcos(θ-π4)+6=0

ρ2-42(22ρcosθ+22ρsinθ

),即x2+y2-4x-4y+6=0.(2)圆的参数方程为x=

2

+2cosαy=

2

+2sinα,∴x+y=4+2(sinα+cosα)=4+2sin(α+π4).由于-1≤sin(α+π4)≤1,∴2≤x+y≤6,故x+y的最大值为6,最小值等于2.47.mx+ny=1(mn≠0)与两坐标轴围成的三角形面积为______.答案:由mx+ny=1(mn≠0),得x1m+y1n=1,所以mx+ny=1(mn≠0)在两坐标轴上的截距分别为1m,1n.则mx+ny=1(mn≠0)与两坐标轴围成的三角形面积为12|mn|.故为12|mn|.48.栽培甲、乙两种果树,先要培育成苗,然后再进行移栽.已知甲、乙两种果树成苗的概率分别为,,移栽后成活的概率分别为,.

(1)求甲、乙两种果树至少有一种果树成苗的概率;

(2)求恰好有一种果树能培育成苗且移栽成活的概率.答案:(1)甲、乙两种果树至少有一种成苗的概率为;(2).恰好有一种果树培育成苗且移栽成活的概率为.解析:分别记甲、乙两种果树成苗为事件,;分别记甲、乙两种果树苗移栽成活为事件,,,,,.(1)甲、乙两种果树至少有一种成苗的概率为;(2)解法一:分别记两种果树培育成苗且移栽成活为事件,则,.恰好有一种果树培育成苗且移栽成活的概率为.解法二:恰好有一种果树栽培成活的概率为.49.设a1,a2,…,an为实数,证明:a1+a2+…+ann≤a21+a22+…+a2nn.答案:证明:不妨设a1≤a2≤…≤an,则由排序原理得:a12+a22+…+an2=a1a1+a2a2+…+anana12+a22+…+an2≤a1a2+a2a3+…+ana1a12+a22+…+an2≤a1a3+a2a4+…+an-1a1+ana2…a12+a22+…+an2≤a1an+a2a1+…+anan-1.将上述n个式子相加,得:n(a12+a22+…+an2)≤(a1+a2+…+an)2,上式两边除以n2,并开方可得:a1+a2+…+ann≤a21+a22+…+a2nn.50.已知P为x24+y29=1,F1,F2为椭圆的左右焦点,则PF2+PF1=______.答案:∵x24+y29=1,F1,F2为椭圆的左右焦点,∴根据椭圆的定义,可得|PF2|+|PF1|=2×2=4故为:4第3卷一.综合题(共50题)1.下面五个命题:(1)所有的单位向量相等;(2)长度不等且方向相反的两个向量不一定是共线向量;(3)由于零向量的方向不确定,故0与任何向量不平行;(4)对于任何向量a,b,必有|a+b|≤|a|+|b|.其中正确命题的序号为:______.答案:(1)单位向量指模为1的向量,方向可为任意的,故错误;(2)由共线向量的定义,方向相反的两个向量一定是共线向量,故错误;(3)规定:零向量与任何向量为平行向量,故错误;(4)因为|a+b|2=a2+b2+2a?b≤a2+b2+2|a|?|b|=(|a|+|b|)2,故正确故为:(4)2.判断下列结出的输入语句、输出语句和赋值语句是否正确?为什么?

(1)输出语句INPUT

a;b;c

(2)输入语句INPUT

x=3

(3)输出语句PRINT

A=4

(4)输出语句PRINT

20.3*2

(5)赋值语句3=B

(6)赋值语句

x+y=0

(7)赋值语句A=B=2

(8)赋值语句

T=T*T.答案:(1)输入语句

INPUT

a;b;c中,变量名之间应该用“,”分隔,而不能用“;”分隔,故(1)错误;(2)输入语句INPUT

x=3中,命令动词INPUT后面应写成“x=“,3,故(2)错误;(3)输出语句PRINT

A=4中,命令动词PRINT后面应写成“A=“,4,故(3)错误;(4)输出语句PRINT

20.3*2符合规则,正确;(5)赋值语句

3=B中,赋值号左边必须为变量名,故(5)错误;(6)赋值语句

x+y=0中,赋值号左边不能是表达式,故(6)错误;(7)赋值语句

A=B=2中.赋值语句不能连续赋值,故(7)错误;(8)赋值语句

T=T*T是,符合规则,正确;故正确的有(4)、(8)错误的是(1)、(2)、(3)、(5)、(6)、(7).3.若集合A={x|3≤x<7},B={x|2<x<10},则A∪B=______.答案:因为集合A={x|3≤x<7},B={x|2<x<10},所以A∪B={x|3≤x<7}∪{x|2<x<10}={x|2<x<10},故为:{x|2<x<10}.4.若指数函数f(x)与幂函数g(x)的图象相交于一点(2,4),则f(x)=______,g(x)=______.答案:设f(x)=ax(a>0且a≠1),g(x)=xα将(2,4)代入两个解析式得4=a2,4=2α解得a=2,α=2故为:f(x)=2x,g(x)=x25.设i为虚数单位,若(x+i)(1-i)=y,则实数x,y满足()

A.x=-1,y=1

B.x=-1,y=2

C.x=1,y=2

D.x=1,y=1答案:C6.(1)把参数方程(t为参数)x=secty=2tgt化为直角坐标方程;

(2)当0≤t<π2及π≤t<3π2时,各得到曲线的哪一部分?答案:(1)利用公式sec2t=1+tg2t,得x2=1+y24.∴曲线的直角坐标普通方程为x2-y24=1.(2)当0≤t≤π2时,x≥1,y≥0,得到的是曲线在第一象限的部分(包括(1,0)点);当0≤t≤3π2时,x≤-1,y≥0,得到的是曲线在第二象限的部分,(包括(-1,0)点).7.在极坐标系中与圆ρ=4sinθ相切的一条直线的方程为()

A.ρcosθ=2

B.ρsinθ=2

C.ρ=4sin(θ+)

D.ρ=4sin(θ-)答案:A8.如图为△ABC和一圆的重迭情形,此圆与直线BC相切于C点,且与AC交于另一点D.若∠A=70°,∠B=60°,则的度数为何()

A.50°

B.60°

C.100°

D.120°

答案:C9.如图,在正方体ABCD-A1B1C1D1中,E为AB的中点.

(1)求异面直线BD1与CE所成角的余弦值;

(2)求二面角A1-EC-A的余弦值.答案:以D为原点,DC为y轴,DA为x轴,DD1为Z轴建立空间直角坐标系,…(1分)则A1(1,0,1),B(1,1,0),C(0,1,0),D1(0,0,1),E(1,12,0),…(2分)(1)BD1=(-1,-1,1),CE=(1,-12,0)…(1分)cos<BD1,CE>=-1515,…(1分)所以所求角的余弦值为1515…(1分)(2)D1D⊥平面AEC,所以D1D为平面AEC的法向量,D1D=(0,0,1)…(1分)设平面A1EC法向量为n=(x,y,z),又A1E=(0,12,-1),A1C=(-1,1,-1),n•A1E=0n•A1C=0即12y-z=0-x+y-z=0,取n=(1,2,1),…(3分)所以cos<DD1,n>=66…(2分)10.如图,在长方体OAEB-O1A1E1B1中,OA=3,OB=4,OO1=2,点P在棱AA1上,且AP=2PA1,点S在棱BB1上,且SB1=2BS,点Q、R分别是O1B1、AE的中点,求证:PQ∥RS.答案:证明:如图,建立空间直角坐标系,则A(3,0,0),B(0,4,0),O1(0,0,2),A1(3,0,2),B1(0,4,2),E(3,4,0),∵AP=2PA1,∴AP=2PA1=23AA1,即AP=23(0,0,2)=(0,0,43),∴P(3,0,43)同理可得,Q(0,2,2),R(3,2,0),S(0,4,23),∴PQ=(-3,2,23)=RS,∴PQ∥RS,∵R∉PQ,∴PQ∥RS11.设椭圆的左焦点为F,AB为椭圆中过点F的弦,试分析以AB为直径的圆与椭圆的左准线的位置关系.答案:设M为弦AB的中点(即以AB为直径的圆的圆心),A1、B1、M1分别是A、B、M在准线l上的射影(如图).由圆锥曲线的共同性质得|AB|=|AF|+|BF|=e(|AA1|+|BB1|)=2e|MM1|.∵0<e<1,∴|AB|<2|MM1|,即|AB|2<|MM1|.∴以AB为直径的圆与左准线相离.12.如图,⊙O内切于△ABC的边于D,E,F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.

(1)求证:圆心O在直线AD上.

(2)求证:点C是线段GD的中点.答案:证明:(1)∵AB=AC,AF=AE∴CD=BE又∵CF=CD,BD=BE∴CD=BD又∵△ABC是等腰三角形,∴AD是∠CAB的角分线∴圆心O在直线AD上.(5分)(II)连接DF,由(I)知,DH是⊙O的直径,∴∠DHF=90°,∴∠FDH+∠FHD=90°又∵∠G+∠FHD=90°∴∠FDH=∠G∵⊙O与AC相切于点F∴∠AFH=∠GFC=∠FDH∴∠GFC=∠G∴CG=CF=CD∴点C是线段GD的中点.(10分)13.k取何值时,一元二次方程kx2+3kx+k=0的两根为负。答案:解:∴k≤或k>314.一只蚂蚁在三边边长分别为3,4,5的三角形的边上爬行,某时刻该蚂蚁距离三角形的三个顶点的距离均超过1的概率为______.答案:如下图所示,当蚂蚁位于图中红色线段上时,距离三角形的三个顶点的距离均超过1,由已知易得:红色线段的长度和为:6三角形的周长为:12故P=612=12故为:1215.以下程序输入2,3,4运行后,输出的结果是()

INPUT

a,b,c

a=b

b=c

c=a

PRINT

a,b,c.

A.234

B.324

C.343

D.342答案:C16.设a=lg2+lg5,b=ex(x<0),则a与b的大小关系是?答案:a═lg2+lg5=lg10=1又b=ex,由指数函数的性质知,当x<0时,0<b<1∴a>b17.设函数f(x)的定义域为D,如果对于任意的x1∈D,存在唯一的x2∈D,使得

f(x1)+f(x2)2=C成立(其中C为常数),则称函数y=f(x)在D上的均值为C,现在给出下列4个函数:①y=x3②y=4sinx③y=lgx④y=2x,则在其定义域上的均值为

2的所有函数是下面的()A.①②B.③④C.①③④D.①③答案:由题意可得,均值为2,则f(x1)+f(x2)2=2即f(x1)+f(x2)=4①:y=x3在定义域R上单调递增,对应任意的x1,则存在唯一x2满足x13+x23=4①正确②:y=4sinx,满足4sinx1+4sinx2=4,令x1=π2,则根据三角函数的周期性可得,满足sinx2=0的x2无穷多个,②错误③y=lgx在(0,+∞)单调递增,对应任意的x1>0,则满足lgx1+lgx2=4的x2唯一存在③正确④y=2x满足2x1+2x2=4,令x1=3时x2不存在④错误故选D.18.设双曲线x2a2-y2b2=1(a>b>0)的半焦距为c,直线l过(a,0),(0,b)两点,已知原点到直线l的距离为34c,则双曲线的离心率为______.答案:∵直线l过(a,0),(0,b)两点,∴直线l的方程为:xa+yb=1,即bx+ay-ab=0,∵原点到直线l的距离为34c,∴|ab|a2+b2=3c4,又c2=a2+b2,∴3e4-16e2+16=0,∴e2=4,或e2=43.∵a>b>0,∴离心率为e=2或e=233;故为2或233.19.某次乒乓球比赛的决赛在甲乙两名选手之间举行,比赛采用五局三胜制,按以往比赛经验,甲胜乙的概率为23.

(1)求比赛三局甲获胜的概率;

(2)求甲获胜的概率;

(3)设甲比赛的次数为X,求X的数学期望.答案:记甲n局获胜的概率为Pn,n=3,4,5,(1)比赛三局甲获胜的概率是:P3=C33(23)3=827;(2)比赛四局甲获胜的概率是:P4=C23(23)3

(13)=827;比赛五局甲获胜的概率是:P5=C24(13)2(23)3=1681;甲获胜的概率是:P3+P4+P5=6481.(3)记乙n局获胜的概率为Pn′,n=3,4,5.P3′=C33(13)3=127,P4′=C23(13)3

(23)=227;P5′=C24(13)3(23)2=881;故甲比赛次数的分布列为:X345P(X)P3+P3′P4+P4′P5+P5′所以甲比赛次数的数学期望是:EX=3(127+827)+4(827+227)+5(1681+881

)=10727.20.已知函数f(x)=2-x,x≤112+log2x,x>1,则满足f(x)≥1的x的取值范围为______.答案:当x≤1时,2-x≥1,解得-x≥0,即x≤0,所以x≤0;当x>1时,12+log2x≥1,解得x≥2,所以x≥2.所以满足f(x)≥1的x的取值范围为(-∞,0]∪[2,+∞).故为:(-∞,0]∪[2,+∞).21.“若x、y全为零,则xy=0”的否命题为______.答案:由于“全为零”的否定为“不全为零”,所以“若x、y全为零,则xy=0”的否命题为“若x、y不全为零,则xy≠0”.故为:若x、y不全为零,则xy≠0.22.(本小题满分10分)选修4-1:几何证明选讲

如图,的角平分线的延长线交它的外接圆于点.

(Ⅰ)证明:;

(Ⅱ)若的面积,求的大小.答案:(Ⅰ)证明见解析(Ⅱ)90°解析:本题主要考查平面几何中与圆有关的定理及性质的应用、三角形相似及性质的应用.证明:(Ⅰ)由已知条件,可得∠BAE=∠CAD.因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD.故△ABE∽△ADC.(Ⅱ)因为△ABE∽△ADC,所以,即AB·AC=AD·AE.又S=AB·ACsin∠BAC,且S=AD·AE,故AB·ACsin∠BAC=AD·AE.则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.【点评】在圆的有关问题中经常要用到弦切角定理、圆周角定理、相交弦定理等结论,解题时要注意根据已知条件进行灵活的选择,同时三角形相似是证明一些与比例有关问题的的最好的方法.23.若直线ax+by+c=0(a,b,c都是正数)与圆x2+y2=1相切,则以a,b,c为边长的三角形是()

A.锐角三角形

B.直角三角形

C.钝角三角形

D.不能确定答案:B24.赋值语句M=M+3表示的意义()

A.将M的值赋给M+3

B.将M的值加3后再赋给M

C.M和M+3的值相等

D.以上说法都不对答案:B25.如图,在△ABC中,BC边上的高所在的直线方程为x-2y+1=0,∠A的平分线所在的直线方程为y=0,若点B的坐标为(1,2),求点A和点C的坐标.答案:点A为y=0与x-2y+1=0两直线的交点,∴点A的坐标为(-1,0).∴kAB=2-01-(-1)=1.又∵∠A的平分线所在直线的方程是y=0,∴kAC=-1.∴直线AC的方程是y=-x-1.而BC与x-2y+1=0垂直,∴kBC=-2.∴直线BC的方程是y-2=-2(x-1).由y=-x-1,y=-2x+4,解得C(5,-6).∴点A和点C的坐标分别为(-1,0)和(5,-6)26.如图,PA切圆O于点A,割线PBC经过圆心O,OB=PB=1,OA绕点O逆时针旋转600到OD,则PD的长为()

A.3

B.

C.

D.

答案:D27.某细胞在培养过程中,每15分钟分裂一次(由1个细胞分裂成2个),则经过两个小时后,1个这样的细胞可以分裂成______个.答案:由于每15分钟分裂一次,则两个小时共分裂8次.一个这样的细胞经过一次分裂后,由1个分裂成2个;经过2次分裂后,由1个分裂成22个;…经过8次分裂后,由1个分裂成28个.∴1个这样的细胞经过两个小时后,共分裂成28个,即256个.故为:25628.在极坐标系中,过点p(3,)且垂直于极轴的直线方程为()

A.Pcosθ=

B.Psinθ=

C.P=cosθ

D.P=sinθ答案:A29.一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,一学生到达该路口时,见到红灯的概率是()A.25B.58C.115D.35答案:由题意知本题是一个那可能事件的概率,试验发生包含的事件是总的时间长度为30+5+40=75秒,设红灯为事件A,满足条件的事件是红灯的时间为30秒,根据等可能事件的概率得到出现红灯的概率P(A)=构成事件A的时间长度总的时间长度=3075=25.故选A.30.用辗转相除法或者更相减损术求三个数的最大公约数.答案:同解析解析:解:324=243×1+81

243=81×3+0

则324与243的最大公约数为81又135=81×1+54

81=54×1+27

54=27×2+0则81与135的最大公约数为27所以,三个数324、243、135的最大公约数为27.另法为所求。31.若将方程|(x-4)2+y2-(x+4)2+y2|=6化简为x2a2-y2b2=1的形式,则a2-b2=______.答案:方程|(x-4)2+y2-(x+4)2+y2|=6,表示点(x,y)到(4,0),(-4,0)两点距离差的绝对值为6,∴轨迹为以(4,0),(-4,0)为焦点的双曲线,方程为x29-y27=1∴a2-b2=2故为:232.如图,△ABC中,AD=2DB,AE=3EC,CD与BE交于F,若AF=xAB+yAC,则()A.x=13,y=12B.x=14,y=13C.x=37,y=37D.x=25,y=920答案:过点F作FM∥AC、FN∥AB,分别交AB、AC于点M、N∵FM∥AC,∴FMAC=DMAD且FMAE=BMAB∵AD=2DB,AE=3EC,∴AD=23AB,AE=34AC.由此可得AM=13AB同理可得AN=12AC∵四边形AMFN是平行四边形∴由向量加法法则,得AF=13AB+12AC∵AF=xAB+yAC,∴根据平面向量基本定理,可得x=13,y=12故选:A33.已知两条直线a1x+b1y+1=0和a2x+b2y+1=0都过点A(2,3),则过两点P1(a1,b1),P2(a2,b2)的直线方程为______.答案:∵A(2,3)是直线a1x+b1y+1=0和a2x+b2y+1=0的公共点,∴2a1+3b1+1=0,且2a2+3b2+1=0,即两点P1(a1,b1),P2(a2,b2)的坐标都适合方程2x+3y+1=0,∴两点(a1,b1)和(a2,b2)都在同一条直线2x+3y+1=0上,故点(a1,b1)和(a2,b2)所确定的直线方程是2x+3y+1=0,故为:2x+3y+1=0.34.已知随机变量ξ服从二项分布ξ~B(6,),则E(2ξ+4)=()

A.10

B.4

C.3

D.9答案:A35.三棱锥P-ABC中,M为BC的中点,以为基底,则可表示为()

A.

B.

C.

D.答案:D36.已知a=(1,2),则|a|=____

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论