2023年广西工商职业技术学院高职单招(数学)试题库含答案解析_第1页
2023年广西工商职业技术学院高职单招(数学)试题库含答案解析_第2页
2023年广西工商职业技术学院高职单招(数学)试题库含答案解析_第3页
2023年广西工商职业技术学院高职单招(数学)试题库含答案解析_第4页
2023年广西工商职业技术学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年广西工商职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.不等式|x+3|-|x-1|≤a2-3a对任意实数x恒成立,则实数a的取值范围为()

A.(-∞,-1]∪[4,+∞)

B.(-∞,-2]∪[5,+∞)

C.[1,2]

D.(-∞,1]∪[2,+∞)答案:A2.设复数z的实部是

12,且|z|=1,则z=______.答案:设复数z的虚部等于b,b∈z,由复数z的实部是12,且|z|=1,可得14+b2=1,∴b=±32,故z=12±32i.故为:12±32i.3.现有编号分别为1,2,3,4,5,6,7,8,9的九道不同的数学题,某同学从这九道题中一次随机抽取两道题,每题被抽到的概率是相等的,用符号(x,y)表示事件“抽到两题的编号分别为x,y,且x<y”.

(1)共有多少个基本事件?并列举出来.

(2)求该同学所抽取的两道题的编号之和小于17但不小于11的概率.答案:(1)共有36种基本事件,列举如下:(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9);(2)设事件A=“两道题的编号之和小于17但不小于11”则事件A包含事件有:(2,9),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9)共15种.∴P(A)=1536=512.4.已知θ是三角形内角且sinθ+cosθ=,则表示答案:C5.已知△ABC的顶点坐标分别为A(2,3),B(-1,0),C(2,0),则△ABC的周长是()

A.2

B.6+

C.3+2

D.6+3答案:D6.(1+3x)n(其中n∈N且n≥6)的展开式中x5与x6的系数相等,则n=()A.6B.7C.8D.9答案:二项式展开式的通项为Tr+1=3rCnrxr∴展开式中x5与x6的系数分别是35Cn5,36Cn6∴35Cn5=36Cn6解得n=7故选B7.在极坐标系中,极点到直线ρcosθ=2的距离为______.答案:直线ρcosθ=2即x=2,极点的直角坐标为(0,0),故极点到直线ρcosθ=2的距离为2,故为2.8.下列几何体各自的三视图中,有且仅有两个视图相同的是()

A.①②B.①③C.①④D.②④答案:正方体的三视图都相同,而三棱台的三视图各不相同,圆锥和正四棱锥的,正视图和侧视图相同,所以,正确为D.故选D9.直线过原点且倾角的正弦值是45,则直线方程为______.答案:因为倾斜角α的范围是:0≤α<π,又由题意:sinα=45所以:tanα=±43x直线过原点,由直线的点斜式方程得到:y=±43x故为:y=±43x10.将图形F按=(,)(其中)平移,就是将图形F()A.向x轴正方向平移个单位,同时向y轴正方向平移个单位.B.向x轴负方向平移个单位,同时向y轴正方向平移个单位.C.向x轴负方向平移个单位,同时向y轴负方向平移个单位.D.向x轴正方向平移个单位,同时向y轴负方向平移个单位.答案:A解析:根据图形容易得出结论.11.点P(2,5)关于直线x+y=1的对称点的坐标是(

)。答案:(-4,-1)12.若a>0,b>0,2a+3b=1,则ab的最大值为______.答案:∵a>0,b>0,2a+3b=1∴2a+3b=1≥26ab∴ab≤124故为12413.如图,圆周上按顺时针方向标有1,2,3,4,5五个点.一只青蛙按顺时针方向绕圆从一个点跳到另一个点,若它停在奇数点上,则下次只能跳一个点;若停在偶数点上,则跳两个点.该青蛙从“5”这点起跳,经2

011次跳后它停在的点对应的数字是______.答案:起始点为5,按照规则,跳一次到1,再到2,4,1,2,4,1,2,4,…,“1,2,4”循环出现,而2011=3×670+1.故经2011次跳后停在的点是1.故为114.极坐标方程ρcos2θ=0表示的曲线为()

A.极点

B.极轴

C.一条直线

D.两条相交直线答案:D15.将函数的图象F按向量平移后所得到的图象的解析式是,求向量.答案:向量解析:将函数的图象F按向量平移后所得到的图象的解析式是,求向量.16.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连接EC、CD.

(1)求证:直线AB是⊙O的切线;

(2)若tan∠CED=12,⊙O的半径为3,求OA的长.答案:(1)如图,连接OC,∵OA=OB,CA=CB,∴OC⊥AB.∴AB是⊙O的切线;(2)∵BC是圆O切线,且BE是圆O割线,∴BC2=BD?BE,∵tan∠CED=12,∴CDEC=12.∵△BCD∽△BEC,∴BDBC=CDEC=12,设BD=x,BC=2x.又BC2=BD?BE,∴(2x)2=x?(x+6),解得x1=0,x2=2,∵BD=x>0,∴BD=2,∴OA=OB=BD+OD=3+2=5.(10分).17.若圆C过点M(0,1)且与直线l:y=-1相切,设圆心C的轨迹为曲线E,A、B为曲线E上的两点,点P(0,t)(t>0),且满足AP=λPB(λ>1).

(I)求曲线E的方程;

(II)若t=6,直线AB的斜率为12,过A、B两点的圆N与抛物线在点A处共同的切线,求圆N的方程;

(III)分别过A、B作曲线E的切线,两条切线交于点Q,若点Q恰好在直线l上,求证:t与QA•QB均为定值.答案:【解】(Ⅰ)依题意,点C到定点M的距离等于到定直线l的距离,所以点C的轨迹为抛物线,曲线E的方程为x2=4y.(Ⅱ)直线AB的方程是y=12x+6,即x-2y+12=0.由{_x2=4y,x-2y+12=0,及AP=λPB(λ>1)知|AP|>|PB|,得A(6,9)和B(-4,4)由x2=4y得y=14x2,y′=12x.所以抛物线x2=4y在点A处切线的斜率为y'|x=6=3.直线NA的方程为y-9=-13(x-6),即y=-13x+11.①线段AB的中点坐标为(1,132),线段AB中垂线方程为y-132=-2(x-1),即y=-2x+172.②由①、②解得N(-32,232).于是,圆C的方程为(x+32)2+(y-232)2=(-4+32)2+(4-232)2,即(x+32)2+(y-232)2=1252.(Ⅲ)设A(x1,x124),B(x2,x224),Q(a,-1).过点A的切线方程为y-x214=x12(x-x1),即x12-2ax1-4=0.同理可得x22-2ax2-4=0,所以x1+x2=2a,x1x2=-4.又kAB=x124-x224x1-x2=x1+x24,所以直线AB的方程为y-x124=x1+x24(x-x

1),即y=x1+x24x-x1x24,亦即y=a2x+1,所以t=-1.而QA=(x1-a,x124+1),QB=(x2-a,x224+1),所以QA•QB=(x1-a)(x2-a)+(x214+1)(x224+1)=x1x2-a(x1+x2)+a2+x21x2216+(x1+x2)2-2x1x24+1=-4-2a2+a2+1+4a2+84+1=0.18.某超市推出如下优惠方案:

(1)一次性购物不超过100元不享受优惠;

(2)一次性购物超过100元但不超过300元的一律九折;

(3)一次性购物超过300元的一律八折,有人两次购物分别付款80元,252元.

如果他一次性购买与上两次相同的商品,则应付款______.答案:该人一次性购物付款80元,据条件(1)、(2)知他没有享受优惠,故实际购物款为80元;另一次购物付款252元,有两种可能,其一购物超过300元按八折计,则实际购物款为2520.8=315元.其二购物超过100元但不超过300元按九折计算,则实际购物款为2520.9=280元.故该人两次购物总价值为395元或360元,若一次性购买这些商品应付款316元或288元.故为316元或288元.19.如图是一个空间几何体的三视图,试用斜二测画法画出它的直观图.(尺寸不作严格要求,但是凡是未用铅笔作图不得分,随手画图也不得分)答案:由题可知题目所述几何体是正六棱台,画法如下:画法:(1)、画轴画x轴、y轴、z轴,使∠x′O′y′=45°,∠x′O′z′=90°

(图1)(2)、画底面以O′为中心,在XOY坐标系内画正六棱台下底面正方形的直观图ABCDEF.在z′轴上取线段O′O1等于正六棱台的高;过O1

画O1M、O1N分别平行O’x′、O′y′,再以O1为中心,画正六棱台上底面正方形的直观图A′B′C′E′F′(3)、成图连接AA′、BB′、CC′、DD′、EE′、FF′,并且加以整理,就得到正六棱台的直观图

(如图2).20.已知直线l的参数方程为x=-4+4ty=-1-2t(t为参数),圆C的极坐标方程为ρ=22cos(θ+π4),则圆心C到直线l的距离是______.答案:直线l的普通方程为x+2y+6=0,圆C的直角坐标方程为x2+y2-2x+2y=0.所以圆心C(1,-1)到直线l的距离d=|1-2+6|5=5.故为5.21.用WHILE语句求1+2+22+23+…+263的值.答案:程序如下:i=0S=0While

i<=63s=s+2^ii=i+1WendPrint

send22.在空间直角坐标系中,已知点P(a,0,0),Q(4,1,2),且|PQ|=,则a=()

A.1

B.-1

C.-1或9

D.1或9答案:C23.在残差分析中,残差图的纵坐标为______.答案:有残差图的定义知道,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重的估计值,这样做出的图形称为残差图.故为:残差.24.如图中的阴影部分用集合表示为______.答案:由已知中阴影部分所表示的集合元素满足是A的元素且C的元素,或是B的元素”,故阴影部分所表示的集合是(A∪C)∩(CUB)故为:B∪(A∩C)25.直线l:y-1=k(x-1)和圆C:x2+y2-2y=0的关系是()

A.相离

B.相切或相交

C.相交

D.相切答案:C26.已知圆的极坐标方程ρ=2cosθ,直线的极坐标方程为ρcosθ-2ρsinθ+7=0,则圆心到直线距离为

______.答案:由ρ=2cosθ⇒ρ2=2ρcosθ⇒x2+y2-2x=0⇒(x-1)2+y2=1,ρcosθ-2ρsinθ+7=0⇒x-2y+7=0,∴圆心到直线距离为:d=1-2×0+712+22=855.故为:855.27.在平面几何里,我们知道,正三角形的外接圆和内切圆的半径之比是2:1。拓展到空间,研究正四面体(四个面均为全等的正三角形的四面体)的外接球和内切球的半径关系,可以得出的正确结论是:正四面体的外接球和内切球的半径之比是(

)。答案:3:128.已知双曲线x2-y22=1,经过点M(1,1)能否作一条直线l,使直线l与双曲线交于A、B,且M是线段AB的中点,若存在这样的直线l,求出它的方程;若不存在,说明理由.答案:设过点M(1,1)的直线方程为y=k(x-1)+1或x=1(1)当k存在时有y=k(x-1)+1x2

-y22=1得(2-k2)x2+(2k2-2k)x-k2+2k-3=0

(1)当直线与双曲线相交于两个不同点,则必有△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,k<32

又方程(1)的两个不同的根是两交点A、B的横坐标∴x1+x2=2(k-k2)2-k2

又M(1,1)为线段AB的中点∴x1+x22=1

即k-k22-k2=1

k=2

∴k=2,使2-k2≠0但使△<0因此当k=2时,方程(1)无实数解故过点m(1,1)与双曲线交于两点A、B且M为线段AB中点的直线不存在.(2)当x=1时,直线经过点M但不满足条件,综上,符合条件的直线l不存在29.已知正方体ABCD-A1B1C1D1中,M、N分别为BB1、C1D1的中点,建立适当的坐标系,求平面AMN的法向量.答案:(-3,2,-4)为平面AMN的一个法向量.解析:以D为原点,DA、DC、DD1所在直线为坐标轴建立空间直角坐标系.(如图所示).设棱长为1,则A(1,0,0),M(1,1,),N(0,,1).∴=(0,1,),=(-1,,1).设平面AMN的法向量n=(x,y,z)∴令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).∴(-3,2,-4)为平面AMN的一个法向量.30.在△ABC中,已知向量=(cos18°,cos72°),=(2cos63°,2cos27°),则△ABC的面积等于()

A.

B.

C.

D.

答案:A31.已知△ABC的顶点坐标为A(3,4),B(-2,-1),C(4,5),D在BC上,且S△ABC=3S△ABD,则AD的长为______.答案:D在BC上,且S△ABC=3S△ABD,∴D点为BC边上的三等分点则D点分线段BC所成的比为12则易求出D点坐标为:x=-2+12×41+12y=-1+12×51+12∴x=0y=1故AD=32故为:3232.已知P为抛物线y2=4x上一点,设P到准线的距离为d1,P到点A(1,4)的距离为d2,则d1+d2的最小值为______.答案:∵y2=4x,焦点坐标为F(1,0)根据抛物线定义可知P到准线的距离为d1=|PF|d1+d2=|PF|+|PA|进而可知当A,P,F三点共线时,d1+d2的最小值=|AF|=4故为433.书架上有5本数学书,4本物理书,5本化学书,从中任取一本,不同的取法有()A.14B.25C.100D.40答案:由题意,∵书架上有5本数学书,4本物理书,5本化学书,∴从中任取一本,不同的取法有5+4+5=14种故选A.34.“因为指数函数y=ax是增函数(大前提),而y=()x是指数函数(小前提),所以y=()x是增函数(结论)”,上面推理的错误是()

A.大前提错导致结论错

B.小前提错导致结论错

C.推理形式错导致结论错

D.大前提和小前提错都导致结论错答案:A35.设m∈R,向量=(1,m).若||=2,则m等于()

A.1

B.

C.±1

D.±答案:D36.如图所示直角梯形ABCD中,∠A=90°,PA⊥面ABCD,AD||BC,AB=BC=a,AD=2a,与底面ABCD成300角.若AE⊥PD,E为垂足,PD与底面成30°角.

(1)求证:BE⊥PD;

(2)求异面直线AE与CD所成的角的大小.答案:为了计算方便不妨设a=1.(1)证明:根据题意可得:以A为原点,AB,AD,AP所在直线为坐标轴建立直角坐标系(如图)则A(0,0,0),B(1,0,0)D(0,2,0)P(0,0,233)AB•PD=(1,0,0)•(0,2,-233)=0又AE•PD=0∴AB⊥PD,AE⊥PD所以PD⊥面BEA,BE⊂面BEA,∴PD⊥BE(2)∵PA⊥面ABCD,PD与底面成30°角,∴∠PDA=30°过E作EF⊥AD,垂足为F,则AE=AD•sin30°=1,∠EAF=60°AF=12,EF=32∴E(0,12,32),于是AE=(0,12,32)又C(1,1,0),D(0,2,0),CD=(-1,1,0)则COSθ=AE•CD|AE||CD|=24∴AE与CD所成角的余弦值为24.37.如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则BD=______cm.答案:∵易知AB=32+42=5,又由切割线定理得BC2=BD?AB,∴42=BD?5∴BD=165.故为:16538.曲线C:x=t-2y=1t+1(t为参数)的对称中心坐标是______.答案:曲线C:x=t-2y=1t+1(t为参数)即y-1=1x+2,其对称中心为(-2,1).故为:(-2,1).39.某学校为了解该校1200名男生的百米成绩(单位:秒),随机选择了50名学生进行调查.如图是这50名学生百米成绩的频率分布直方图.根据样本的频率分布,估计这1200名学生中成绩在[13,15](单位:秒)内的人数大约是______.答案:∵由图知,前面两个小矩形的面积=0.02×1+0.18×1=0.2,即频率,∴1200名学生中成绩在[13,15](单位:s)内的人数大约是0.2×1200=240.故为240.40.如图,四面体ABCD中,点E是CD的中点,记=(

A.

B.

C.

D.

答案:B41.椭圆=1的焦点为F1,点P在椭圆上,如果线段PF1的中点M在y轴上,那么点M的纵坐标是()

A.±

B.±

C.±

D.±答案:A42.拟定从甲地到乙地通话m分钟的电话费由f(x)=1.06×(0.50×[m]+1)给出,其中m>0,[m]是大于或等于m的最小整数,若通话费为10.6元,则通话时间m∈______.答案:∵10.6=1.06(0.50×[m]+1),∴0.5[m]=9,∴[m]=18,∴m∈(17,18].故为:(17,18].43.命题“方程|x|=1的解是x=±1”中,使用逻辑词的情况是()A.没有使用逻辑连接词B.使用了逻辑连接词“或”C.使用了逻辑连接词“且”D.使用了逻辑连接词“或”与“且”答案:∵命题“方程|x|=1的解是x=±1”等价于命题“方程|x|=1的解是x=1或x=-1.”∴该命题使用了逻辑连接词“或”.故选B.44.若下列算法的程序运行的结果为S=132,那么判断框中应填入的关于k的判断条件是

______.答案:本题考查根据程序框图的运算,写出控制条件按照程序框图执行如下:s=1

k=12s=12

k=11s=12×11=132

k=10因为输出132故此时判断条件应为:K≤10或K<11故为:K≤10或K<1145.一圆形纸片的圆心为点O,点Q是圆内异于O点的一定点,点A是圆周上一点.把纸片折叠使点A与Q重合,然后展平纸片,折痕与OA交于P点.当点A运动时点P的轨迹是()A.圆B.椭圆C.双曲线D.抛物线答案:如图所示,由题意可知:折痕l为线段AQ的垂直平分线,∴|AP|=|PQ|,而|OP|+|PA|=|OA|=R,∴|PO|+|PQ|=R定值>|OQ|.∴当点A运动时点P的轨迹是以点O,D为焦点,长轴长为R的椭圆.故选B.46.如图1,一个“半圆锥”的主视图是边长为2的正三角形,左视图是直角三角形,俯视图是半圆及其圆心,这个几何体的体积为()A.33πB.36πC.23πD.3π答案:由已知中“半圆锥”的主视图是边长为2的正三角形,左视图是直角三角形,俯视图是半圆及其圆心,我们可以判断出底面的半径为1,母线长为2,则半圆锥的高为3故V=13×12×π×3=36π故选B47.由圆C:x=2+cosθy=3+sinθ(θ为参数)求圆的标准方程.答案:圆的参数方程x=2+cosθy=3+sinθ变形为:cosθ=2-xsinθ=3-y,根据同角的三角函数关系式cos2θ+sin2θ=1,可得到标准方程:(x-2)2+(y-3)2=1.所以为(x-2)2+(y-3)2=1.48.如图所示,以直角三角形ABC的直角边AC为直径作⊙O,交斜边AB于点D,过点D作⊙O的切线,交BC边于点E.则BEBC=______.答案:连接CD,∵AC是⊙O的直径,∴CD⊥AB.∵BC经过半径OC的端点C且BC⊥AC,∴BC是⊙O的切线,而DE是⊙O的切线,∴EC=ED.∴∠ECD=∠CDE,∴∠B=∠BDE,∴DE=BE.∴BE=CE=12BC.∴BEBC=12.故为12.49.如果双曲线的焦距为6,两条准线间的距离为4,那么该双曲线的离心率为()

A.

B.

C.

D.2答案:C50.3科老师都布置了作业,在同一时刻4名学生都做作业的可能情况有()

A.43种

B.4×3×2种

C.34种

D.1×2×3种答案:C第2卷一.综合题(共50题)1.若直线x=1的倾斜角为α,则α等于()A.0°B.45°C.90°D.不存在答案:直线x=1与x轴垂直,故直线的倾斜角是90°,故选C.2.命题“当AB=AC时,△ABC是等腰三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题有______个.答案:原命题为真命题.逆命题“当△ABC是等腰三角形时,AB=AC”为假命题.否命题“当AB≠AC时,△ABC不是等腰三角形”为假命题.逆否命题“当△ABC不是等腰三角形时,AB≠AC”为真命题.故为:2.3.若数据x1,x2,x3…xn的平均数.x=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1…,3xn+1的方差为______.答案:∵x1,x2,x3,…,xn的方差为2,∴3x1+1,3x2+1,3x3+1,…,3xn+1的方差是32×2=18.故为:18.4.直线(x+1)a+(y+1)b=0与圆x2+y2=2的位置关系是______.答案:直线(x+1)a+(y+1)b=0化为ax+by+(a+b)=0,所以圆心点到直线的距离d=|a+b|a2+b2=a2+b2+2aba2+b2≤2(a2+b2)a2+b2=2.所以直线(x+1)a+(y+1)b=0与圆x2+y2=2的位置关系是:相交或相切.故为:相交或相切.5.已知双曲线的两条准线将两焦点间的线段三等分,则双曲线的离心率是______.答案:由题意可得2c×13=2a2c,∴3a2=c2,∴e=ca=3,故为:3.6.半径为1、2、3的三个圆两两外切.证明:以这三个圆的圆心为顶点的三角形是直角三角形.

答案:证明:设⊙O1、⊙O2、⊙O3的半径分别为1、2、3.因这三个圆两两外切,故有O1O2=1+2=3,O2O3=2+3=5,O1O3=1+3=4,则有O1O22+O1O32=32+42=52=O2O32根据勾股定理的逆定理,得到△O1O2O3为直角三角形.7.下面哪个不是算法的特征()A.抽象性B.精确性C.有穷性D.唯一性答案:根据算法的概念,可知算法具有抽象性、精确性、有穷性等,同一问题,可以有不同的算法,故选D.8.若动点P到两个定点F1(-1,0)、F2(1,0)的距离之差的绝对值为定值a(0≤a≤2),试求动点P的轨迹.答案:①当a=0时,||PF1|-|PF2||=0,从而|PF1|=|PF2|,所以点P的轨迹为直线:线段F1F2的垂直平分线.②当a=2时,||PF1|-|PF2||=2=|F1F2|,所以点P的轨迹为两条射线.③当0<a<2时,||PF1|-|PF2||=a<|F1F2|,所以点P的轨迹是以F1、F2为焦点的双曲线.9.设全集U={1,2,3,4,5},A∩C∪B={1,2},则集合C∪A∩B的所有子集个数最多为()A.3B.4C.7D.8答案:∵全集U={1,2,3,4,5},A∩C∪B={1,2},∴当集合C∪A∩B的所有子集个数最多时,集合B中最多有三个元素:3,4,5,且A∩B=?,作出文氏图∴CUA∩B={3,4,5},∴集合C∪A∩B的所有子集个数为:23=8.故选D.10.若角α和β的两边分别对应平行且方向相反,则当α=45°时,β=______.答案:由题意知∠α=45°°,AB∥CE,AE∥BD∵AE∥BD∴∠BDC=∠α=45°∵AB∥CE∴∠β=∠BDC=45°故为45°.11.若集合A={x|x2-4x-5<0,x∈Z},B={x|y=log0.5x>-3,x∈Z},记x0为抛掷一枚骰子出现的点数,则x0∈A∩B的概率等于______.答案:由x2-4x-5<0,x∈Z,解得:-1<x<5,x∈Z,∴x=0,1,2,3,4.即A={0,1,2,3,4},B={x|y=log0.5x>-3,x∈Z}={1,2,3,4,5,6,7},∴A∩B={1,2,3,4},而x0为抛掷一枚骰子出现的点数可能有6种,∴P=46=23,故为:23.12.如图,直线l1,l2,l3的斜率分别为k1,k2,k3,则()

A.k1>k2>k3

B.k3>k2>k1

C.k2>k1>k3

D.k3>k1>k2

答案:C13.已知f(x)=2x2+1,则函数f(cosx)的单调减区间为______.答案:解;∵f(x)=2x2+1,∴f(cosx)=2cos2x+1=1+cos2x+1=cos2x+2,令2kπ≤2x≤2kπ+π,k∈Z.解得kπ≤x≤kπ+π2,k∈Z.∴函数f(cosx)的单调减区间为[kπ,π2+kπ],k∈Z.故为:[kπ,π2+kπ],k∈Z.14.为了参加奥运会,对自行车运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度的数据如表所示:

甲273830373531乙332938342836请判断:谁参加这项重大比赛更合适,并阐述理由.答案:.X甲=27+38+30+37+35+316=33S甲=946≈3.958,(

4分).X乙=33+29+38+34+28+366=33S乙=383≈3.559(8分).X甲=.X乙,S甲>S乙

(10分)乙参加更合适

(12分)15.平面直角坐标系中,O为坐标原点,设向量其中,若且0≤μ≤λ≤1,那么C点所有可能的位置区域用阴影表示正确的是()

A.

B.

C.

D.

答案:A16.若方程Ax+By+C=0表示与两条坐标轴都相交的直线,则()

A.A≠0B≠0C≠0

B.A≠0B≠0

C.B≠0C≠0

D.A≠0C≠0答案:B17.下面程序运行后,输出的值是()

A.42

B.43

C.44

D.45

答案:C18.已知下列命题(其中a,b为直线,α为平面):

①若一条直线垂直于一个平面内无数条直线,则这条直线与这个平面垂直;

②若一条直线平行于一个平面,则垂直于这条直线的直线必垂直于这个平面;

③若a∥α,b⊥α,则a⊥b;

④若a⊥b,则过b有且只有一个平面与a垂直.

上述四个命题中,真命题是()A.①,②B.②,③C.②,④D.③,④答案:①平面内无数条直线均为平行线时,不能得出直线与这个平面垂直,将“无数条”改为“所有”才正确;故①错误;②垂直于这条直线的直线与这个平面可以是任何的位置关系,有可能是平行、相交、线在面内,故②错误.③若a∥α,b⊥α,则必有a⊥b,正确;④若a⊥b,则过b有且只有一个平面与a垂直,显然正确.故选D.19.由9个正数组成的矩阵

中,每行中的三个数成等差数列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比数列,给出下列判断:①第2列a12,a22,a32必成等比数列;②第1列a11,a21,a31不一定成等比数列;③a12+a32≥a21+a23;④若9个数之和等于9,则a22≥1.其中正确的个数有()

A.1个

B.2个

C.3个

D.4个答案:B20.直线kx-y+1=3k,当k变动时,所有直线都通过定点

A.(0,0)

B.(0,1)

C.(3,1)

D.(2,1)答案:C21.已知0<a<1,loga(1-x)<logax则()

A.0<x<1

B.x<

C.0<x<

D.<x<1答案:C22.已知向量a与b的夹角为π3,|a|=2,则a在b方向上的投影为______.答案:由投影的定义可得:a在b方向上的投影为:|a|cos<a,b>,而|a|cos<a,b>=2cosπ3=22故为:2223.函数f(x)=x2+2的单调递增区间为

______.答案:如图所示:函数的递增区间是:[0,+∞)故为:[0,+∞)24.按ABO血型系统学说,每个人的血型为A、B、O、AB型四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB型时,子女的血型一定不是O型,若某人的血型为O型,则其父母血型的所有可能情况有()

A.12种

B.6种

C.10种

D.9种答案:D25.椭圆焦点在x轴,离心率为32,直线y=1-x与椭圆交于M,N两点,满足OM⊥ON,求椭圆方程.答案:设椭圆方程x2a2+y2b2=1(a>b>0),∵e=32,∴a2=4b2,即a=2b.∴椭圆方程为x24b2+y2b2=1.把直线方程代入化简得5x2-8x+4-4b2=0.设M(x1,y1)、N(x2,y2),则x1+x2=85,x1x2=15(4-4b2).∴y1y2=(1-x1)(1-x2)=1-(x1+x2)+x1x2=15(1-4b2).由于OM⊥ON,∴x1x2+y1y2=0.解得b2=58,a2=52.∴椭圆方程为25x2+85y2=1.26.若直线x+y=m与圆x=mcosφy=msinφ(φ为参数,m>0)相切,则m为

______.答案:圆x=mcosφy=msinφ的圆心为(0,0),半径为m∵直线x+y=m与圆相切,∴d=r即|m|2=m,解得m=2故为:227.关于斜二测画法画直观图说法不正确的是()

A.在实物图中取坐标系不同,所得的直观图有可能不同

B.平行于坐标轴的线段在直观图中仍然平行于坐标轴

C.平行于坐标轴的线段长度在直观图中仍然保持不变

D.斜二测坐标系取的角可能是135°答案:C28.O为△ABC平面上一定点,该平面上一动点p满足M={P|OP=OA+λ(AB|AB|sinC+AC|AC|sinB)

,λ>0},则△ABC的()一定属于集合M.A.重心B.垂心C.外心D.内心答案:如图:D是BC的中点,在△ABC中,由正弦定理得,|AB|sinC=|AC|sinB即sinc|AB|=sinB||AC|,设t=sinc|AB|=sinB||AC|,代入OP=OA+λ(AB|AB|sinC+AC|AC|sinB)得,OP=OA+λt(AB+AC)①,∵D是BC的中点,∴AB+AC=2AD,代入①得,OP=OA+2λtAD,∴AP=2λtAD且λ、t都是常数,则AP∥AD,∴点P得轨迹是直线AD,△ABC的重心一定属于集合M,故选A.29.有一个正四棱锥,它的底面边长与侧棱长均为a,现用一张正方形包装纸将其完全包住(不能裁剪纸,但可以折叠),那么包装纸的最小边长应为()A.2+62aB.(2+6)aC.1+32aD.(1+3)a答案:由题意可知:当正四棱锥沿底面将侧面都展开时如图所示:分析易知当以PP′为正方形的对角线时,所需正方形的包装纸的面积最小,此时边长最小.设此时的正方形边长为x则:(PP′)2=2x2,又因为PP′=a+2×32a=a+3a,∴(

a+3a)2=2x2,解得:x=6+22a.故选A30.若2x+3y=1,求4x2+9y2的最小值,并求出最小值点.答案:由柯西不等式(4x2+9y2)(12+12)≥(2x+3y)2=1,∴4x2+9y2≥12.当且仅当2x?1=3y?1,即2x=3y时取等号.由2x=3y2x+3y=1得x=14y=16∴4x2+9y2的最小值为12,最小值点为(14,16).31.用数学归纳法证明等式时,第一步验证n=1时,左边应取的项是()

A.1

B.1+2

C.1+2+3

D.1+2+3+4答案:D32.如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线上一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.

(1)求证:DE是⊙O的切线;

(2)若AB=6,AE=245,求BD和BC的长.答案:(1)证明:连接OC∵AC平分∠EAB∴∠EAC=∠BAC又在圆中OA=OC∴∠AC0=∠BAC∴∠EAC=∠ACO∴OC∥AE(内错角相等,两直线平行)则由AE⊥DC知OC⊥DC即DE是⊙O的切线.(2)∵∠D=∠D,∠E=∠OCD=90°∴△DCO∽△DEA∴BD=2∵Rt△EAC∽Rt△CAB.∴AC2=1445由勾股定理得BC=655.33.以抛物线的焦点弦为直径的圆与其准线的位置关系是(

A.相切

B.相交

C.相离

D.以上均有可能答案:A34.把38化为二进制数为()A.101010(2)B.100110(2)C.110100(2)D.110010(2)答案:可以验证所给的四个选项,在A中,2+8+32=42,在B中,2+4+32=38经过验证知道,B中的二进制表示的数字换成十进制以后得到38,故选B.35.已知平面上直线l的方向向量=(-,),点O(0,0)和A(1,-2)在l上的射影分别是O'和A′,则=λ,其中λ等于()

A.

B.-

C.2

D.-2答案:D36.若直线l的方程为x=2,则该直线的倾斜角是()A.60°B.45°C.90°D.180°答案:∵直线l的方程为x=2∴直线l与x轴垂直∴直线l的倾斜角为90°故选C37.已知M(-2,7)、N(10,-2),点P是线段MN上的点,且PN=-2PM,则P点的坐标为______.答案:设P(x,y),则PN=(10-x,-2-y),PM=(-2-x,7-y),∵PN=-2PM,∴10-x=-2(-2-x)-2-y=-2(7-y),∴x=2y=4∴P点的坐标为(2,4).故为:(2,4)38.如图表示空间直角坐标系的直观图中,正确的个数为()

A.1个

B.2个

C.3个

D.4个答案:C39.(坐标系与参数方程选做题)在极坐标系中,点M(ρ,θ)关于极点的对称点的极坐标是______.答案:由点的极坐标的意义可得,点M(ρ,θ)关于极点的对称点到极点的距离等于ρ,极角为π+θ,故点M(ρ,θ)关于极点的对称点的极坐标是(ρ,π+θ),故为(ρ,π+θ).40.在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是______.答案:由题意知本题是一个古典概型,试验发生包含的基本事件有C52=10种结果,其中至少有一个红球的事件包括C22+C21C31=7个基本事件,根据古典概型公式得到P=710,故为:710.41.根据给出的程序语言,画出程序框图,并计算程序运行后的结果.

答案:程序框图:模拟程序运行:当j=1时,n=1,当j=2时,n=1,当j=3时,n=1,当j=4时,n=2,…当j=8时,n=2,…当j=11时,n=2,当j=12时,此时不满足循环条件,退出循环程序运行后的结果是:2.42.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()

A.

B.

C.

D.答案:C43.命题“每一个素数都是奇数”的否定是______.答案:原命题“每一个素数都是奇数”是一个全称命题它的否定是一个特称命题,即“有的素数不是奇数”故为:有的素数不是奇数44.已知M为椭圆x2a2+y2b2=1(a>b>0)上的动点,F1、F2为椭圆焦点,延长F2M至点B,则ρF1MB的外角的平分线为MN,过点F1作

F1Q⊥MN,垂足为Q,当点M在椭圆上运动时,则点Q的轨迹方程是______.答案:点F1关于∠F1MF2的外角平分线MQ的对称点N在直线F1M的延长线上,故|F1N|=|PF1|+|PF2|=2a(椭圆长轴长),又OQ是△F2F1N的中位线,故|OQ|=a,点Q的轨迹是以原点为圆心,a为半径的圆,点Q的轨迹方程是x2+y2=a2故为:x2+y2=a245.(1)求过两直线l1:7x-8y-1=0和l2:2x+17y+9=0的交点,且平行于直线2x-y+7=0的直线方程.

(2)求点A(--2,3)关于直线l:3x-y-1=0对称的点B的坐标.答案:(1)联立两条直线的方程可得:7x-8y-1=02x+17y+9=0,解得x=-1127,y=-1327所以l1与l2交点坐标是(-1127,-1327).(2)设与直线2x-y+7=0平行的直线l方程为2x-y+c=0因为直线l过l1与l2交点(-1127,-1327).所以c=13所以直线l的方程为6x-3y+1=0.点P(-2,3)关于直线3x-y-1=0的对称点Q的坐标(a,b),则b-3a+2×3=-1,且3×a-22-b+32-1=0,解得a=10且b=-1,对称点的坐标(10,-1)46.椭圆的长轴长为10,短轴长为8,则椭圆上的点到椭圆中心的距离的取值范围是______.答案:椭圆上的点到圆心的最小距离为短半轴的长度,最大距离为长半轴的长度因为椭圆的长轴长为10,短轴长为8,所以椭圆上的点到圆心的最小距离为4,最大距离为5所以椭圆上的点到椭圆中心距离的取值范围是[4,5]故为:[4,5]47.如图是一个几何体的三视图(单位:cm),则这个几何体的表面积是()A.(7+2)

cm2B.(4+22)cm2C.(6+2)cm2D.(6+22)cm2答案:图中的几何体可看成是一个底面为直角梯形的直棱柱.直角梯形的上底为1,下底为2,高为1;棱柱的高为1.可求得直角梯形的四条边的长度为1,1,2,2.所以此几何体的表面积S表面=2S底+S侧面=12(1+2)×1×2+(1+1+2+2)×1=7+2(cm2).故选A.48.用随机数表法进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字,这些步骤的先后顺序应为()A.①②③B.③②①C.①③②D.③①②答案:∵随机数表法进行抽样,包含这样的步骤,①将总体中的个体编号;②选定开始的数字,按照一定的方向读数;③获取样本号码,∴把题目条件中所给的三项排序为:①③②,故选C.49.三直线ax+2y+8=0,4x+3y=10,2x-y=10相交于一点,则a的值是(

A.-2

B.-1

C.0

D.1答案:B50.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则CU(S∪T)等于()A.φB.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}答案:∵S∪T={1,3,5,6},∴CU(S∪T)={2,4,7,8}.故选B.第3卷一.综合题(共50题)1.设a=20.3,b=0.32,c=log20.3,则用“>”表示a,b,c的大小关系式是______.答案:∵0<0.32<1,log20.3<0,20.3>1∴0.32<20.3<log20.3故为:a>b>c2.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为32,过右焦点F且斜率为k(k>0)的直线与C相交于A、B两点,若AF=3FB,则k=______.答案:设l为椭圆的右准线,过A、B作AA1,BB1垂直于l,A1,B1为垂足,过B作BE⊥AA1于E,则|AA1|=|AF|e,|BB1|=|BF|e,由AF=3FB知,|AA1|=3|BF|e,∴cos<BAE=|AE||AB|=2|BF|e4|BF|=12e=33,∴sin∠BAE=63,∴tan∠BAE=2.∴k=2.故:2.3.直线x=-2+ty=1-t(t为参数)被圆x=2+2cosθy=-1+2sinθ(θ为参数)所截得的弦长为______.答案:∵圆x=2+2cosθy=-1+2sinθ(θ为参数),消去θ可得,(x-2)2+(y+1)2=4,∵直线x=-2+ty=1-t(t为参数),∴x+y=-1,圆心为(2,-1),设圆心到直线的距离为d=|2-1+1|2=2,圆的半径为2∴截得的弦长为222-(2)2=22,故为22.4.已知z=1+i,则|z|=______.答案:由z=1+i,所以|z|=12+12=2.故为2.5.从单词“equation”选取5个不同的字母排成一排,含有“qu”(其中“qu”相连且顺序不变)的不同排列共有()A.120个B.480个C.720个D.840个答案:要选取5个字母时首先从其它6个字母中选3个有C63种结果,再与“qu“组成的一个元素进行全排列共有C63A44=480,故选B.6.椭圆=1的焦点为F1,点P在椭圆上,如果线段PF1的中点M在y轴上,那么点M的纵坐标是()

A.±

B.±

C.±

D.±答案:A7.某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,则此样本的容量为()

A.40

B.80

C.160

D.320答案:B8.直线被圆x2+y2=9截得的弦长为(

A.

B.

C.

D.答案:B9.从集合M={1,2,3,…,10}选出5个数组成的子集,使得这5个数的任两个数之和都不等于11,则这样的子集有______个.答案:集合{1,2,…,10}中和是11的有:1+10,2+9,3+8,4+7,5+6,选出5个不同的数组成子集,就是从这5组中分别取一个数,而每组的取法有2种,所以这样的子集有:2×2×2×2×2=32故这样的子集有32个故为:3210.已知圆C:x2+y2-4y-6y+12=0,求:

(1)过点A(3,5)的圆的切线方程;

(2)在两条坐标轴上截距相等的圆的切线方程.答案:(l)设过点A(3,5)的直线ɭ的方程为y-5=k(x-3).因为直线ɭ与⊙C相切,而圆心为C(2,3),则|2k-3-3k+5|k2+1=1,解得k=34所以切线方程为y-5=34(x-3),即3x-4y+11=0.由于过圆外一点A与圆相切的直线有两条,因此另一条切线方程为x=3.(2)因为原点在圆外,所以设在两坐标轴上截距相等的直线方程x+y=a或y=kx.由直线与圆相切得,|2+3-a|2=1或|2k-3|k2+1=1,解得a=5士2,k=6±223故所求的切线方程为x+y=5士2或y=6±223x.11.已知两个点M(-5,0)和N(5,0),若直线上存在点P,使|PM|-|PN|=6,则称该直线为“B型直线”给出下列直线①y=x+1;②y=2;③y=x④y=2x+1;其中为“B型直线”的是()

A.①③

B.①②

C.③④

D.①④答案:B12.摇奖器有10个小球,其中8个小球上标有数字2,2个小球上标有数字5,现摇出3个小球,规定所得奖金(元)为这3个小球上记号之和,求此次摇奖获得奖金数额的数学期望.答案:设此次摇奖的奖金数额为ξ元,当摇出的3个小球均标有数字2时,ξ=6;当摇出的3个小球中有2个标有数字2,1个标有数字5时,ξ=9;当摇出的3个小球有1个标有数字2,2个标有数字5时,ξ=12.所以,P(ξ=6)=C38C310=715P(ξ=9)=C28C12C310=715P(ξ=12)=C18C22C310=115Eξ=6×715+9×715+12×115=395(元)

答:此次摇奖获得奖金数额的数字期望是395元.13.直线y=2x+1的参数方程是()

A.(t为参数)

B.(t为参数)

C.(t为参数)

D.(θ为参数)

答案:B14.已知平面上直线l的方向向量=(-,),点O(0,0)和A(1,-2)在l上的射影分别是O'和A′,则=λ,其中λ等于()

A.

B.-

C.2

D.-2答案:D15.已知a>b>0,则3a,3b,4a由小到大的顺序是______.答案:由于指数函数y=3x在R上是增函数,且a>b>0,可得3a>3b.由于幂函数y=xa在(0,+∞)上是增函数,故有3a<4a,故3a,3b,4a由小到大的顺序是3b<3a<4a.,故为3b<3a<4a.16.设复数z的实部是

12,且|z|=1,则z=______.答案:设复数z的虚部等于b,b∈z,由复数z的实部是12,且|z|=1,可得14+b2=1,∴b=±32,故z=12±32i.故为:12±32i.17.已知定义在实数集上的偶函数y=f(x)在区间(0,+∞)上是增函数,那么y1=f(π3),y2=f(3x2+1)和y3=f(log214)之间的大小关系为()A.y1<y3<y2B.y1<y2<y3C.y3<y1<y2D.y3<y2<y1答案:∵偶函数y=f(x)在区间(0,+∞)上是增函数∴|x|越大,函数值就越大∵|3x2+1|≥3,|log214|=2∴|3x2+1|>|log214|>π3∴y1<y3<y2故选A18.用秦九韶算法求多项式f(x)=8x7+5x6+3x4+2x+1,当x=2时的值.答案:根据秦九韶算法,把多项式改写成如下形式f(x)=8x7+5x6+0?x5+3?x4+0?x3+0?x2+2x+1=((((((8x+5)x+0)x+3)x+0)x+0)x+2)x+1v0=8,v1=8×2+5=21v2=21×2+0=42,v3=42×2+3=87v4=87×2+0=174,v5=174×2+0=348v6=348×2+2=698,v7=698×2+1=1397.∴当x=2时,多项式的值为1397.19.如图,在△ABC中,∠ACB=90°,AB=8,∠BAC=60°,PC⊥平面ABC,PC=4,M为AB边上的一个动点,求PM的最小值.答案:过C作CM⊥AB,连接PM,因为PC⊥AB,所以AB⊥平面PCM,所以PM⊥AB,此时PM最短,∵∠BAC=60°,AB=8,∴AC=AB?cos60°=4.∴CM=AC?sin60°=4?32=23.∴PM=PC2+CM2=16+12=27.20.在语句PRINT

3,3+2的结果是()

A.3,3+2

B.3,5

C.3,5

D.3,2+3答案:B21.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦的长为23,则a=______.答案:由已知x2+y2+2ay-6=0的半径为6+a2,由图可知6+a2-(-a-1)2=(3)2,解之得a=1.故为:1.22.在茎叶图中,样本的中位数为______,众数为______.答案:由茎叶图可知样本数据共有6,出现在中间两位位的数据是20,24,所以样本的中位数是(20+24)÷2=22由茎叶图可知样本数据中出现最多的是12,样本的众数是12为:22,1223.在某电视歌曲大奖赛中,最有六位选手争夺一个特别奖,观众A,B,C,D猜测如下:A说:获奖的不是1号就是2号;A说:获奖的不可能是3号;C说:4号、5号、6号都不可能获奖;D说:获奖的是4号、5号、6号中的一个.比赛结果表明,四个人中恰好有一个人猜对,则猜对者一定是观众

获特别奖的是

号选手.答案:C,3.解析:推理如下:因为只有一人猜对,而C与D互相否定,故C、D中一人猜对。假设D对,则推出B也对,与题设矛盾,故D猜错,所以猜对者一定是C;于是B一定猜错,故获奖者是3号选手(此时A错).24.例3.设a>0,b>0,解关于x的不等式:|ax-2|≥bx.答案:原不等式|ax-2|≥bx可化为ax-2≥bx或ax-2≤-bx,(1)对于不等式ax-2≤-bx,即(a+b)x≤2

因为a>0,b>0即:x≤2a+b.(2)对于不等式ax-2≥bx,即(a-b)x≥2①当a>b>0时,由①得x≥2a-b,∴此时,原不等式解为:x≥2a-b或x≤2a+b;当a=b>0时,由①得x∈ϕ,∴此时,原不等式解为:x≤2a+b;当0<a<b时,由①得x≤2a-b,∴此时,原不等式解为:x≤2a+b.综上可得,当a>b>0时,原不等式解集为(-∞,2a+b]∪[2a-b,+∞),当0<a≤b时,原不等式解集为(-∞,2a+b].25.口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以ξ表示取出的球的最大号码,则Eξ的值是()A.4B.4.5C.4.75D.5答案:由题意,ξ的取值可以是3,4,5ξ=3时,概率是1C35=110ξ=4时,概率是C23C35=310(最大的是4其它两个从1、2、3里面随机取)ξ=5时,概率是C24C35=610(最大的是5,其它两个从1、2、3、4里面随机取)∴期望Eξ=3×110+4×310+5×610=4.5故选B.26.双曲线的中心在坐标原点,离心率等于2,一个焦点的坐标为(2,0),则此双曲线的渐近线方程是______.答案:∵离心率等于2,一个焦点的坐标为(2,0),∴ca=2,

c=2且焦点在x轴上,∴a=1∵c2=a2+b2∴b2=3∴b=3.所以双曲线的渐进方程为y=±3x.故为y=±3x27.(本题满分12分)

已知:

求证:答案:.证明:…………2分由于=………………5分…………①………………6分由于………②……………8分同理:…………③……………10分①+②+③得:即原不等式成立………………12分解析:同答案28.用样本估计总体,下列说法正确的是()A.样本的结果就是总体的结果B.样本容量越大,估计就越精确C.样本容量越小,估计就越精确D.样本的方差可以近似地反映总体的平均状态答案:用样本估计总体时,样本容量越大,估计就越精确,样本的平均值可以近似地反映总体的平均状态,样本的标准差可以近似地反映总体的波动状态,数据的方差越大,说明数据越不稳定,样本的结果可以粗略的估计总体的结果,但不就是总体的结果.故选B.29.圆x2+y2-4x=0,在点P(1,)处的切线方程为()

A.x+y-2=0

B.x+y-4=0

C.x-y+4=0

D.x-y+2=0答案:D30.如果关于x的不等式|x-4|-|x+5|≥b的解集为空集,则实数b的取值范围为______.答案:|x-4|-|x+5|的几何意义就是数轴上的点到4的距离与到-5的距离的差,差的最大值为9,如果关于x的不等式|x-4|-|x+5|≥b的解集为空集,则实数b的取值范围为b>9;故为:b>9.31.如图,D、E分别在AB、AC上,下列条件不能判定△ADE与△ABC相似的有()

A.∠AED=∠B

B.

C.

D.DE∥BC

答案:C32.要考察某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第11列的数1开始向右读,请你依次写出最先检测的4颗种子的编号______,______,______,______.

(下面摘取了随机数表第7行至第9行的一部分)

84

42

17

53

31

57

24

55

06

88

77

04

74

47

67

21

76

33

50

25

63

01

63

78

59

16

95

55

67

19

98

10

50

71

75

12

86

73

58

07

44

39

52

38

79

33

21

12

34

29

78

64

56

07

82

52

42

07

44

38.答案:由于随机数表中第8行的数字为:63

01

63

78

59

16

95

5567

19

98

10

50

71

75

12

86

73

58

07其第11列数字为1,故产生的第一个数字为:169,第二个数字为:555,第三个数字为:671,第四个数字为:998(超出编号范围舍)第五个数字为:105故为:169,555,671,10533.根据一组数据判断是否线性相关时,应选用()

A.散点图

B.茎叶图

C.频率分布直方图

D.频率分布折线图答案:A34.下列图象中不能作为函数图象的是()A.

B.

C.

D.

答案:根据函数的概念:如果在一个变化过程中,有两个变量x、y,对于x的每一个值,y都有唯一确定的值与之对应,这时称y是x的函数.结合选项可知,只有选项B中是一个x对应1或2个y故选B.35.在残差分析中,残差图的纵坐标为______.答案:有残差图的定义知道,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重的估计值,这样做出的图形称为残差图.故为:残差.36.

008年北京成功举办了第29届奥运会,中国取得了51金、21银、28铜的骄人成绩.下表为北京奥运会官方票务网站公布的几种球类比赛的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论