版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年山西林业职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.在复平面内,记复数3+i对应的向量为OZ,若向量OZ饶坐标原点逆时针旋转60°得到向量OZ所对应的复数为______.答案:向量OZ饶坐标原点逆时针旋转60°得到向量所对应的复数为(3+i)(cos60°+isin60°)=(3+i)(12+32i)=2i,故为2i.2.如图,△ABC中,∠C=90°,∠A=30°,BC=1.在三角形内挖去半圆(圆心O在边AC上,半圆与BC、AB相切于点C、M,与AC交于N,见图中非阴影部分),则该半圆的半径长为______.答案:连接OM,则OM⊥AB.设⊙O的半径OM=OC=r.在Rt△OAM中,OA=OMsin30°=2r.在Rt△ABC中,AC=BCtan30°=3,∴3=AC=OA+OC=3r,∴r=33.故为33.3.P为△ABC内一点,且PA+3PB+7PC=0,则△PAC与△ABC面积的比为______.答案:(如图)分别延长
PB、PC
至
B1、C1,使
PB1=3PB,PC1=7PC,则由已知可得:PA+PB1+PC1=0,故点P是三角形
AB1C1
的重心,设三角形
AB1C1
的面积为
3S,则S△APC1=S△APB1=S△PB1C1=S,而S△APC=17S△APC1=S7,S△ABP=13S△APB1=S3,S△PBC=13×17S△PB1C1=S21,所以△PAC与△ABC面积的比为:S7S7+S3+S21=311,故为:3114.已知|a|=3,|b|=2,a与b的夹角为300,则|a+b|等于()A.13B.15C.17D.19答案:∵|a|=3,|b|=2,a与b的夹角为300,∴a?b=|a||b|cos30°=2×3×32=3则|a+b|=a2+2a?b+b2=13故选A5.由1、2、3可以组成______个没有重复数字的两位数.答案:没有重复数字的两位数共有3×2=6个故为:66.用数学归纳法证明等式时,第一步验证n=1时,左边应取的项是()
A.1
B.1+2
C.1+2+3
D.1+2+3+4答案:D7.将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是()
A.a=bb=a
B.c=b
b=a
a=c
C.b=aa=b
D.a=cc=bb=a答案:B8.命题“每一个素数都是奇数”的否定是______.答案:原命题“每一个素数都是奇数”是一个全称命题它的否定是一个特称命题,即“有的素数不是奇数”故为:有的素数不是奇数9.已知△ABC的顶点B、C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()
A.2
B.6
C.4
D.12答案:C10.若直线ax+by+c=0(a,b,c都是正数)与圆x2+y2=1相切,则以a,b,c为边长的三角形是()
A.锐角三角形
B.直角三角形
C.钝角三角形
D.不能确定答案:B11.在某项体育比赛中,七位裁判为一选手打出分数的茎叶图如图,去掉一个最高分和一个摄低分后,该选手的平均分为()A.90B.91C.92D.93答案:由图表得到评委为该选手打出的7个分数数据为:89,90,90,93,93,94,95.去掉一个最低分89,去掉一个最高分95,该选手得分的平均数为15(90+90+93+93+94)=92.故选C.12.若椭圆x225+y216=1上一点P到焦点F1的距离为6,则点P到另一个焦点F2的距离是______.答案:由椭圆的定义知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.故为413.(本题10分)设函数的定义域为A,的定义域为B.(1)求A;
(2)若,求实数a的取值范围答案:(1);(2)。解析:略14.若复数z=a+bi(a、b∈R)是虚数,则a、b应满足的条件是()A.a=0,b≠0B.a≠0,b≠0C.a≠0,b∈RD.b≠0,a∈R答案:∵复数z=a+bi(a、b∈R)是虚数,∴根据虚数的定义得b≠0,a∈R,故选D.15.输入3个数,输出其中最大的公约数,编程序完成上述功能.答案:INPUT
m,n,kr=m
MOD
nWHILE
r<>0m=nn=rr=m
MOD
nWENDr=k
MOD
nWHILE
r<>0k=nn=rr=k
MOD
nWENDPRINT
nEND16.已知三角形ABC的一个顶点A(2,3),AB边上的高所在的直线方程为x-2y+3=0,角B的平分线所在的直线方程为x+y-4=0,求此三角形三边所在的直线方程.答案:由题意可得AB边的斜率为-2,由点斜式求得AB边所在的直线方程为y-3=-2(x-2),即2x+y-7=0.由2x+y-7=0x+y-4=0
求得x=3y=1,故点B的坐标为(3,1).设点A关于角B的平分线所在的直线方程为x+y-4=0的对称点为M(a,b),则M在BC边所在的直线上.则由b-3a-2=-1a+22+b+32-4=0
求得a=1b=2,故点M(1,2),由两点式求得BC的方程为y-12-1=x-31-3,即x+2y-5=0.再由x-2y+3=0x+2y-5=0求得点C的坐标为(2,52),由此可得得AC的方程为x=2.17.已知集合P={(x,y)|y=m},Q={(x,y)|y=ax+1,a>0,a≠1},如果P∩Q有且只有一个元素,那么实数m的取值范围是
______.答案:如果P∩Q有且只有一个元素,即函数y=m与y=ax+1(a>0,且a≠1)图象只有一个公共点.∵y=ax+1>1,∴m>1.∴m的取值范围是(1,+∞).故:(1,+∞)18.如图所示,I为△ABC的内心,求证:△BIC的外心O与A、B、C四点共圆.答案:证明:连接OB、BI、OC,由O是外心知∠IOC=2∠IBC.由I是内心知∠ABC=2∠IBC.从而∠IOC=∠ABC.同理∠IOB=∠ACB.而∠A+∠ABC+∠ACB=180°,故∠BOC+∠A=180°,于是O、B、A、C四点共圆.19.国旗上的正五角星的每一个顶角是多少度?答案:由图可知:∠AFG=∠C+∠E=2∠C,∠AGF=∠B+∠D=2∠B,∴∠A+∠AFG+∠AGF=∠A+2∠C+2∠B=5∠A∴5∠A=180°,∴∠A=36°.20.若某简单组合体的三视图(单位:cm)如图所示,说出它的几何结构特征,并求该几何体的表面积。答案:解:该几何体由球和圆台组成。球的半径为1,圆台的上下底面半径分别为1、4,高为4,母线长为5,S球=4πcm2,S台=π(12+42+1×5+4×5)=42πcm2,故S表=S球+S台=46πcm2。21.已知某车间加工零件的个数x与所花费时间y(h)之间的线性回归方程为=0.01x+0.5,则加工600个零件大约需要的时间为()
A.6.5h
B.5.5h
C.3.5h
D.0.3h答案:A22.直线过原点且倾角的正弦值是45,则直线方程为______.答案:因为倾斜角α的范围是:0≤α<π,又由题意:sinα=45所以:tanα=±43x直线过原点,由直线的点斜式方程得到:y=±43x故为:y=±43x23.
选修1:几何证明选讲
如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证:
(1)l是⊙O的切线;
(2)PB平分∠ABD.答案:证明:(1)连接OP,因为AC⊥l,BD⊥l,所以AC∥BD.又OA=OB,PC=PD,所以OP∥BD,从而OP⊥l.因为P在⊙O上,所以l是⊙O的切线.(2)连接AP,因为l是⊙O的切线,所以∠BPD=∠BAP.又∠BPD+∠PBD=90°,∠BAP+∠PBA=90°,所以∠PBA=∠PBD,即PB平分∠ABD.24.将一枚均匀硬币
随机掷20次,则恰好出现10次正面向上的概率为()
A.
B.
C.
D.答案:D25.点O是四边形ABCD内一点,满足OA+OB+OC=0,若AB+AD+DC=λAO,则λ=______.答案:设BC中点为E,连接OE.则OB+OC=2OE,又有已知OB+OC=AO,所以AO=2OE,A,O,E三点都在BC边的中线上,且|AO|=2|OE|,所以O为△ABC重心.AB+AD+DC=
AB+(AD+DC)=AB+AC=2AE=2×32AO=3AO,∴λ=3故为:3.26.下面哪个不是算法的特征()A.抽象性B.精确性C.有穷性D.唯一性答案:根据算法的概念,可知算法具有抽象性、精确性、有穷性等,同一问题,可以有不同的算法,故选D.27.在直角坐标系中,x=-1+3cosθy=2+3sinθ,θ∈[0,2π],所表示曲线的解析式是:______.答案:由题意并根据cos2θ+sin2θ=1
可得,(x+13)2+(y-23)2=1,即(x+1)2+(y-2)2=9,故为(x+1)2+(y-2)2=9.解析:在直角坐标系中,28.若直线x-y-1=0与直线x-ay=0的夹角为,则实数a等于()
A.
B.0
C.
D.0或答案:D29.若向量的起点与终点M、A、B、C互不重合且无三点共线,且满足下列关系(O为空间任一点),则能使向量成为空间一组基底的关系是()
A.
B.
C.
D.答案:C30.一个盒子装有10个红、白两色同一型号的乒乓球,已知红色乒乓球有3个,若从盒子里随机取出3个乒乓球,则其中含有红色乒乓球个数的数学期望是______.答案:由题设知含有红色乒乓球个数ξ的可能取值是0,1,2,3,P(ξ=0)=C37C310=724,P(ξ=1)=C27C13C310=2140,P(ξ=2)=C17C23C310=740,P(ξ=3)=C33C310=1120.∴Eξ=0×724+1×
2140+2×740+3×1120=910.故为:910.31.已知x1,x2,…,xn都是正数,且x1+x2+…+xn=1,求证:
++…+≥n2.答案:证明略解析:证明
++…+=(x1+x2+…+xn)(
++…+)≥=n2.32.如果:在10进制中2004=4×100+0×101+0×102+2×103,那么类比:在5进制中数码2004折合成十进制为()A.29B.254C.602D.2004答案:(2004)5=2×54+4=254.故选B.33.设双曲线x2a2-y2b2=1(a>b>0)的半焦距为c,直线l过(a,0),(0,b)两点,已知原点到直线l的距离为34c,则双曲线的离心率为______.答案:∵直线l过(a,0),(0,b)两点,∴直线l的方程为:xa+yb=1,即bx+ay-ab=0,∵原点到直线l的距离为34c,∴|ab|a2+b2=3c4,又c2=a2+b2,∴3e4-16e2+16=0,∴e2=4,或e2=43.∵a>b>0,∴离心率为e=2或e=233;故为2或233.34.现有含盐7%的食盐水为200g,需将它制成工业生产上需要的含盐5%以上且在6%以下(不含5%和6%)的食盐水,设需要加入4%的食盐水xg,则x的取值范围是(
)。答案:(100,400)35.求圆Cx=3+4cosθy=-2+4sinθ(θ为参数)的圆心坐标,和圆C关于直线x-y=0对称的圆C′的普通方程.答案:圆Cx=3+4cosθy=-2+4sinθ(θ为参数)
即
(x-3)2+(y+2)2=16,表示圆心坐标(3,-2),半径等于4的圆.C(3,-2)关于直线x-y=0对称的点C′(-2,3),半径还是4,故圆C′的普通方程(x+2)2+(y-3)2=16.36.已知x,y的取值如下表所示:
x0134y2.24.34.86.7从散点图分析,y与x线性相关,且y^=0.95x+a,以此预测当x=2时,y=______.答案:∵从所给的数据可以得到.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5∴这组数据的样本中心点是(2,4.5)∴4.5=0.95×2+a,∴a=2.6∴线性回归方程是y=0.95x+2.6,∴预测当x=2时,y=0.95×2+2.6=4.5故为:4.537.对于函数y=f(x),在给定区间上有两个数x1,x2,且x1<x2,使f(x1)<f(x2)成立,则y=f(x)()A.一定是增函数B.一定是减函数C.可能是常数函数D.单调性不能确定答案:解析:由单调性定义可知,不能用特殊值代替一般值.故选D.38.过点P(-3,0)且倾斜角为30°的直线和曲线x=t+1ty=t-1t(t为参数)相交于A,B两点.求线段AB的长.答案:直线的参数方程为
x
=
-3
+
32sy
=
12s
(s
为参数),曲线x=t+1ty=t-1t
可以化为
x2-y2=4.将直线的参数方程代入上式,得
s2-63s+
10
=
0.设A、B对应的参数分别为s1,s2,∴s1+
s2=
6
3,s1•s2=10.∴AB=|s1-s2|=(s1+s2)2-4s1s2=217.39.已知等差数列{an}的前n项和为Sn,若向量OB=a100OA+a101OC,且A、B、C三点共线(该直线不过点O),则S200等于______.答案:由题意可知:向量OB=a100OA+a101OC,又∵A、B、C三点共线,则a100+a101=1,等差数列前n项的和为Sn=(a1+an)?n
2,∴S200=(a1+a200)×200
2=(a100+
a101)×2002=100,故为100.40.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为()
A.35
B.25
C.15
D.7答案:C41.已知=(3,4),=(5,12),与则夹角的余弦为()
A.
B.
C.
D.答案:A42.如图程序输出的结果是()
A.3,4
B.4,4
C.3,3
D.4,3
答案:B43.给出下列四个命题,其中正确的一个是()
A.在线性回归模型中,相关指数R2=0.80,说明预报变量对解释变量的贡献率是80%
B.在独立性检验时,两个变量的2×2列联表中对角线上数据的乘积相差越大,说明这两个变量没有关系成立的可能性就越大
C.相关指数R2用来刻画回归效果,R2越小,则残差平方和越大,模型的拟合效果越好
D.线性相关系数r的绝对值越接近于1,表明两个随机变量线性相关性越强答案:D44.已知三个数a=60.7,b=0.76,c=log0.76,则a,b,c从小到大的顺序为______.答案:因为a=60.7>60=1,b=0.76<0.70=1,且b>0,c=log0.76<0,所以c<b<a.故为c<b<a.45.抛掷两个骰子,若至少有一个1点或一个6点出现,就说这次试验失败.那么,在3次试验中成功2次的概率为()
A.
B.
C.
D.答案:D46.函数y=x2x4+9(x≠0)的最大值为______,此时x的值为______.答案:y=x2x4+9=1x2+9x2≤129=16,当且仅当x2=9x2,即x=±3时取等号.故为:16,
±347.已知=2+i,则复数z=()
A.-1+3i
B.1-3i
C.3+i
D.3-i答案:B48.已知矩阵M=2a21,其中a∈R,若点P(1,-2)在矩阵M的变换下得到点P'(-4,0)
(1)求实数a的值;
(2)求矩阵M的特征值及其对应的特征向量.答案:(1)由2a211-2=-40,∴2-2a=-4⇒a=3.(2)由(1)知M=2321,则矩阵M的特征多项式为f(λ)=.λ-2-3-2λ-1.=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩阵M的特征值为-1与4.当λ=-1时,(λ-2)x-3y=0-2x+(λ-1)y=0⇒x+y=0∴矩阵M的属于特征值-1的一个特征向量为1-1;当λ=4时,(λ-2)x-3y=0-2x+(λ-1)y=0⇒2x-3y=0∴矩阵M的属于特征值4的一个特征向量为32.49.已知函数f(x),如果对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“保三角形函数”.在函数①f1(x)=x,②f2(x)=x,③f3(x)=x2中,其中______是“保三角形函数”.(填上正确的函数序号)答案:f1(x),f2(x)是“保三角形函数”,f3(x)不是“保三角形函数”.任给三角形,设它的三边长分别为a,b,c,则a+b>c,不妨假设a≤c,b≤c,由于a+b>a+b>c>0,所以f1(x),f2(x)是“保三角形函数”.对于f3(x),3,3,5可作为一个三角形的三边长,但32+32<52,所以不存在三角形以32,32,52为三边长,故f3(x)不是“保三角形函数”.故为:①②.50.安排6名演员的演出顺序时,要求演员甲不第一个出场,也不最后一个出场,则不同的安排方法种数是()
A.120
B.240
C.480
D.720答案:C第2卷一.综合题(共50题)1.随机变量ξ服从二项分布ξ~B(n,p),且Eξ=300,Dξ=200,则p等于()
A.
B.0
C.1
D.答案:D2.给出下列说法:①球的半径是球面上任意一点与球心的连线段;②球的直径是球面上任意两点的连线段;③用一个平面截一个球面,得到的是一个圆;④球常用表示球心的字母表示.其中说法正确的是______.答案:根据球的定义直接判断①正确;②错误;;③用一个平面截一个球面,得到的是一个圆;可以是小圆,也可能是大圆,正确;④球常用表示球心的字母表示.满足球的定义正确;故为:①③④3.下列物理量中,不能称为向量的是()A.质量B.速度C.位移D.力答案:既有大小,又有方向的量叫做向量;质量只有大小没有方向,因此质量不是向量.而速度、位移、力既有大小,又有方向,因此它们都是向量.故选A.4.双曲线x2n-y2=1(n>1)的两个焦点为F1,F2,P在双曲线上,且满足|PF1|+|PF2|=2n+2,则△PF1F2的面积为______.答案:令|PF1|=x,|PF2|=y,依题意可知x+y=2n+2x-y=2n解得x=n+2+n,y=n+2-n,∴x2+y2=(2n+2+n)2+(2n+2-n)2=4n+4∵|F1F2|=2n+1∴|F1F2|2=4n+4∴x2+y2|F1F2|2∴△PF1F2为直角三角形∴△PF1F2的面积为12xy=(2n+2+n)(n+2-n)=1故为:1.5.如图,在空间直角坐标系中,已知直三棱柱的顶点A在x轴上,AB平行于y轴,侧棱AA1平行于z轴.当顶点C在y轴正半轴上运动时,以下关于此直三棱柱三视图的表述正确的是()
A.该三棱柱主视图的投影不发生变化
B.该三棱柱左视图的投影不发生变化
C.该三棱柱俯视图的投影不发生变化
D.该三棱柱三个视图的投影都不发生变化
答案:B6.若{、、}为空间的一组基底,则下列各项中,能构成基底的一组向量是[
]A.,+,﹣
B.,+,﹣
C.,+,﹣
D.+,﹣,+2答案:C7.命题“当AB=AC时,△ABC是等腰三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题有______个.答案:原命题为真命题.逆命题“当△ABC是等腰三角形时,AB=AC”为假命题.否命题“当AB≠AC时,△ABC不是等腰三角形”为假命题.逆否命题“当△ABC不是等腰三角形时,AB≠AC”为真命题.故为:2.8.当圆x=4cosθy=4sinθ上一点P的旋转角为θ=23π时,点P的坐标为______.答案:根据圆的参数方程的意义,当圆x=4cosθy=4sinθ上一点P的旋转角为θ=23π时,点P的坐标为(4cos2π3,4sin2π3),即(-2,23).故为:(-2,23).9.不等式的解集是(
)
A.(-3,2)
B.(2,+∞)
C.(-∞,-3)∪(2,+∞)
D.(-∞,-3)∪(3,+∞)答案:C10.将1,2,3,9这9个数字填在如图的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法数为()
A.6种
B.12种
C.18种
D.24种
答案:A11.若P(2,-1)为曲线x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中点,则该弦所在直线的普通方程为______.答案:∵曲线x=1+5cosθy=5sinθ(0≤θ<2π),∴(x-1)2+y2=25,∵P(2,-1)为曲线x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中点,设过点P(2,-1)的弦与(x-1)2+y2=25交于A(x1,y1),B(x2,y2),则x1+x2=4y1+y2=-2,把A(x1,y1),B(x2,y2)代入(x-1)2+y2=25,得(x1-1)2+y
12=25(x2-1)2+y22=25,∴x12-2x1+1+y12=25,①x22-2x2+1+y22=25,②,①-②,得4(x1-x2)-2(x1-x2)-2(y1-y2)=0,∴k=y1-y2x1-x2=1,∴该弦所在直线的普通方程为y+1=x-2,即x-y-3=0.故为:x-y-3=0.12.等于()
A.a
B.a2
C.a3
D.a4答案:B13.不等式的解集是
(
)A.B.C.D.答案:B解析:当时,不等式成立;当时,不等式可化为,解得综上,原不等式解集为故选B14.已知函数y=ax2+bx+c,如果a>b>c,且a+b+c=0,则它的图象是(
)
A.
B.
C.
D.
答案:D15.设O是正△ABC的中心,则向量AO,BO.CO是()
A.相等向量
B.模相等的向量
C.共线向量
D.共起点的向量答案:B16.若某简单组合体的三视图(单位:cm)如图所示,说出它的几何结构特征,并求该几何体的表面积。答案:解:该几何体由球和圆台组成。球的半径为1,圆台的上下底面半径分别为1、4,高为4,母线长为5,S球=4πcm2,S台=π(12+42+1×5+4×5)=42πcm2,故S表=S球+S台=46πcm2。17.若直线l的方向向量为a,平面α的法向量为n,能使l∥α的是()A.a=(1,0,0),n=(-2,0,0)B.a=(1,3,5),n=(1,0,1)C.a=(0,2,1),n=(-1,0,-1)D.a=(1,-1,3),n=(0,3,1)答案:若l∥α,则a•n=0.而A中a•n=-2,B中a•n=1+5=6,C中a•n=-1,只有D选项中a•n=-3+3=0.故选D.18.曲线C:x=t-2y=1t+1(t为参数)的对称中心坐标是______.答案:曲线C:x=t-2y=1t+1(t为参数)即y-1=1x+2,其对称中心为(-2,1).故为:(-2,1).19.电子手表厂生产某批电子手表正品率为,次品率为,现对该批电子手表进行测试,设第X次首次测到正品,则P(1≤X≤2013)等于()
A.1-()2012
B.1-()2013
C.1-()2012
D.1-()2013答案:B20.已知△ABC的顶点坐标为A(3,4),B(-2,-1),C(4,5),D在BC上,且S△ABC=3S△ABD,则AD的长为______.答案:D在BC上,且S△ABC=3S△ABD,∴D点为BC边上的三等分点则D点分线段BC所成的比为12则易求出D点坐标为:x=-2+12×41+12y=-1+12×51+12∴x=0y=1故AD=32故为:3221.如图,设a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐标系中的图象如图,则a,b,c,d的大小顺序()
A.a<b<c<d
B.a<b<d<c
C.b<a<d<c
D.b<a<c<d
答案:C22.点M,N分别是曲线ρsinθ=2和ρ=2cosθ上的动点,则|MN|的最小值是______.答案:∵曲线ρsinθ=2和ρ=2cosθ分别为:y=2和x2+y2=2x,即直线y=2和圆心在(1,0)半径为1的圆.显然|MN|的最小值为1.故为:1.23.规定运算.abcd.=ad-bc,则.1i-i2.=______.答案:根据题目的新规定知,.1i-i2.=1×2-(-i)i=2+i2=2-1=1.故为:1.24.(1+2x)7的展开式中第4项的系数是______
(用数字作答)答案:(1+2x)7的展开式的通项为Tr+1=Cr7?(2x)r∴(1+2x)7的展开式中第4项的系数是C37?23=280,故为:280.25.若曲线C的极坐标方程为
ρcos2θ=2sinθ,则曲线C的普通方程为______.答案:曲线C的极坐标方程为ρcos2θ=2sinθ,即ρ2?cos2θ=2ρsinθ,化为直角坐标方程为x2=2y,故为x2=2y26.确定方程3x2-9+4x2-16+5x2-25=120x的解集______.答案:由题意,x2-9≥0x2-16≥0x2-25≥0x>0,∴x≥5∴x2-9≥4,x2-16≥3,x2-25≥0,∴3x2-9+4x2-16+5x2-25≥24∵3x2-9+4x2-16+5x2-25=120x∴120x≥24∵x≥5,∴120x≤24∴120x=24∴x=5故为:{5}27.各项都为正数的数列{an},满足a1=1,an+12-an2=2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明1a1+1a2+…+1an≤2n-1对一切n∈N+恒成立.答案:(Ⅰ)∵an+12-an2=2,∴an2为首项为1,公差为2的等差数列,∴an2=1+(n-1)×2=2n-1,又an>0,则an=2n-1(Ⅱ)只需证:1+13+…+12n-1≤
2n-1.1当n=1时,左边=1,右边=1,所以命题成立.当n=2时,左边<右边,所以命题成立②假设n=k时命题成立,即1+13+…+12k-1≤2k-1,当n=k+1时,左边=1+13+…+12K-1+12K+1≤2K-1+12K+1.<2K-1+22K+1+2K-1=2K-1+2(2K+1-2K-1)
2=2(K+1)-1.命题成立由①②可知,1a1+1a2+…+1an≤2n-1对一切n∈N+恒成立.28.关于x的方程(m+3)x2-4mx+2m-1=0的两根异号,且负数根的绝对值比正数根大,那么实数m的取值范围是()
A.-3<m<0
B.0<m<3
C.m<-3或m>0
D.m<0或m>3答案:A29.已知某人在某种条件下射击命中的概率是,他连续射击两次,其中恰有一次射中的概率是()
A.
B.
C.
D.答案:C30.点M(2,-3,1)关于坐标原点对称的点是()
A.(-2,3,-1)
B.(-2,-3,-1)
C.(2,-3,-1)
D.(-2,3,1)答案:A31.已知函数f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=sinx.当x1>x2>π时,使f(x1)+f(x2)2<f(x1+x22)恒成立的函数是()A.f1(x)=x2B.f2(x)=2xC.f3(x)=log2xD.f4(x)=sinx答案:由题意,当x1>x2>π时,使f(x1)+f(x2)2<f(x1+x22)恒成立,图象呈上凸趋势由于f1(x)=x2,f2(x)=2x,f4(x)=sinx在x1>x2>π上的图象为图象呈下凹趋势,故f(x1)+f(x2)2<f(x1+x22)不成立故选C.32.已知一物体在共点力F1=(lg2,lg2),F2=(lg5,lg2)的作用下产生位移S=(2lg5,1),则这两个共点力对物体做的总功W为()A.1B.2C.lg2D.lg5答案:∵F1+F2=(lg2,lg2)+(lg5,lg2)=(1,2lg2)又∵在共点力的作用下产生位移S=(2lg5,1)∴这两个共点力对物体做的总功W为(1,2lg2)?(2lg5,1)=2lg5+2lg2=2故选B33.已知a=4,b=1,焦点在x轴上的椭圆方程是(
)
A.
B.
C.
D.答案:C34.已知点A(-3,8),B(2,4),若y轴上的点P满足PA的斜率是PB斜率的2倍,则P点的坐标为______.答案:设P(0,y),则∵点P满足PA的斜率是PB斜率的2倍,∴y-80+3=2•y-40-2∴y=5∴P(0,5)故为:(0,5)35.设复数z满足条件|z|=1,那么|z+22+i|的最大值是______.答案:∵|z|=1,∴可设z=cosα+sinα,于是|z+22+i|=|cosα+22+(sinα+1)i|=(cosα+22)2+(sinα+1)2=10+6sin(α+θ)≤10+6=4.∴|z+22+i|的最大值是4.故为436.若不共线的平面向量,,两两所成角相等,且||=1,||=1,||=3,则|++|等于(
)
A.2
B.5
C.2或5
D.或答案:A37.(1)已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;
(2)已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1,以下结论正确的是()
A.(1)的假设错误,(2)的假设正确
B.(1)与(2)的假设都正确
C.(1)的假设正确,(2)的假设错误
D.(1)与(2)的假设都错误答案:A38.已知x与y之间的一组数据:
x
0
1
2
3
y
2
4
6
8
则y与x的线性回归方程为y=bx+a必过点()
A.(1.5,4)
B.(1.5,5)
C.(1,5)
D.(2,5)答案:B39.已知全集U=R,A⊆U,B⊆U,如果命题P:2∈A∪B,则命题非P是()A.2∉AB.2∈(CUA)C.2∈(CUA)∩(CUB)D.2∈(CUA)∪(CUB)答案:命题P:2∈A∪B,∴┐p为2∈(CUA)∩(CUB)故选C40.“因为对数函数y=logax是增函数(大前提),而y=logx是对数函数(小前提),所以y=logx是增函数(结论).”上面推理的错误是()
A.大前提错导致结论错
B.小前提错导致结论错
C.推理形式错导致结论错
D.大前提和小前提都错导致结论错答案:A41.由直角△ABC勾上一点D作弦AB的垂线交弦于E,交股的延长线于F,交外接圆于G,求证:EG为EA和EB的比例中项,又为ED和EF的比例中项.
答案:证明:连接GA、GB,则△AGB也是一个直角三角形,因为EG为直角△AGB的斜边AB上的高,所以,EG为EA和EB的比例中项,即EG2=EA?EB∵∠AFE=∠ABC,∴直角△AEF∽直角△DEB,EAEF=EDEB即EA?EB=ED?EF.又∵EG2=EA?EB,∴EG2=ED?EF(等量代换),故EG也是ED和EF的比例中项.42.(选做题)方程ρ=cosθ与(t为参数)分别表示何种曲线(
)。答案:圆,双曲线43.某小组有3名女生、4名男生,从中选出3名代表,要求至少女生与男生各有一名,共有______种不同的选法.(要求用数字作答)答案:由题意知本题是一个分类计数问题,要求至少女生与男生各有一名有两个种不同的结果,即一个女生两个男生和一个男生两个女生,∴共有C31C42+C32C41=30种结果,故为:3044.①平行向量一定相等;②不相等的向量一定不平行;③相等向量一定共线;④共线向量一定相等;⑤长度相等的向量是相等向量;⑥平行于同一个向量的两个向量是共线向量,其中正确的命题是______.答案:∵平行向量即为共线向量其定义是方向相同或相反;相等向量的定义是模相等、方向相同;①平行向量不一定相等;故错;②不相等的向量也可能不平行;故错;③相等向量一定共线;正确;④共线向量不一定相等;故错;⑤长度相等的向量方向相反时不是相等向量;故错;⑥平行于零向量的两个向量是不一定是共线向量,故错.其中正确的命题是③.故为:③.45.把的图象按向量平移得到的图象,则可以是(
)A.B.C.D.答案:D解析:∵,∴要得到的图象,需将的图象向右平移个单位长度,故选D。46.如图,四边形ABCD内接于圆O,且AC、BD交于点E,则此图形中一定相似的三角形有()对.
A.0
B.3
C.2
D.1
答案:C47.设复数z的实部是
12,且|z|=1,则z=______.答案:设复数z的虚部等于b,b∈z,由复数z的实部是12,且|z|=1,可得14+b2=1,∴b=±32,故z=12±32i.故为:12±32i.48.若动点P到两个定点F1(-1,0)、F2(1,0)的距离之差的绝对值为定值a(0≤a≤2),试求动点P的轨迹.答案:①当a=0时,||PF1|-|PF2||=0,从而|PF1|=|PF2|,所以点P的轨迹为直线:线段F1F2的垂直平分线.②当a=2时,||PF1|-|PF2||=2=|F1F2|,所以点P的轨迹为两条射线.③当0<a<2时,||PF1|-|PF2||=a<|F1F2|,所以点P的轨迹是以F1、F2为焦点的双曲线.49.下列说法中正确的是()A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真答案:A、逆命题与逆否命题之间不存在必然的真假关系,故A错误;B、由不等式的性质可知,“a>b”与“a+c>b+c”等价,故B错误;C、“a2+b2=0,则a,b全为0”的逆否命题是“若a,b不全为0,则a2+b2≠0”,故C错误;D、否命题和逆命题是互为逆否命题,有着一致的真假性,故D正确;故选D50.不等式|x+3|-|x-1|≤a2-3a对任意实数x恒成立,则实数a的取值范围为()
A.(-∞,-1]∪[4,+∞)
B.(-∞,-2]∪[5,+∞)
C.[1,2]
D.(-∞,1]∪[2,+∞)答案:A第3卷一.综合题(共50题)1.已知在△ABC和点M满足
MA+MB+MC=0,若存在实数m使得AB+AC=mAM成立,则m=______.答案:由点M满足MA+MB+MC=0,知点M为△ABC的重心,设点D为底边BC的中点,则AM=23AD=23×
12×(AB+AC)=13(AB+AC)∴AB+AC=3AM∴m=3故为:32.已知=(1,2),=(-3,2),k+与-3垂直时,k的值为(
)
A.17
B.18
C.19
D.20答案:C3.国旗上的正五角星的每一个顶角是多少度?答案:由图可知:∠AFG=∠C+∠E=2∠C,∠AGF=∠B+∠D=2∠B,∴∠A+∠AFG+∠AGF=∠A+2∠C+2∠B=5∠A∴5∠A=180°,∴∠A=36°.4.点O是△ABC内一点,若+=-,则是S△AOB:S△AOC=()
A.1
B.
C.
D.答案:A5.对任意实数x,y,定义运算x*y=ax+by+cxy,其中a,b,c是常数,等式右边的运算是通常的加法和乘法运算。已知1*2=3,2*3=4,并且有一个非零常数m,使得对任意实数x,都有x*m=x,则m的值是[
]
A.4
B.-4
C.-5
D.6答案:A6.已知棱长都相等的正三棱锥内接于一个球,某学生画出四个过球心的平面截球与正三棱锥所得的图形,如图所示,则()A.以上四个图形都是正确的B.只有(2)(4)是正确的C.只有(4)是错误的D.只有(1)(2)是正确的答案:(1)当平行于三棱锥一底面,过球心的截面如(1)图所示;(2)过三棱锥的一条棱和圆心所得截面如(2)图所示;(3)过三棱锥的一个顶点(不过棱)和球心所得截面如(3)图所示;(4)棱长都相等的正三棱锥和球心不可能在同一个面上,所以(4)是错误的.故选C.7.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:()A.110B.120C.140D.1120答案:由题意知本题是一个古典概型,∵试验发生包含的所有事件是10位同学参赛演讲的顺序共有:A1010;满足条件的事件要得到“一班有3位同学恰好被排在一起而二班的2位同学没有被排在一起的演讲的顺序”可通过如下步骤:①将一班的3位同学“捆绑”在一起,有A33种方法;②将一班的“一梱”看作一个对象与其它班的5位同学共6个对象排成一列,有A66种方法;③在以上6个对象所排成一列的7个间隙(包括两端的位置)中选2个位置,将二班的2位同学插入,有A72种方法.根据分步计数原理(乘法原理),共有A33?A66?A72种方法.∴一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:P=A33?A66?A27A1010=120.故选B.8.已知函数f(x)=x21+x2.
(1)求f(2)与f(12),f(3)与f(13);
(2)由(1)中求得结果,你能发现f(x)与f(1x)有什么关系?并证明你的结论;
(3)求f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)的值.答案:(1)f(2)=45,f(12)=15…1分f(3)=910,f(13)=110…2分(2)f(x)+f(1x)=1…5分证:f(x)+f(1x)=x21+x2+(1x)21+(1x)2=x21+x2+11+x2=1…8分(3)f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)=f(1)+[f(2)+f(12)]+[f(3)+f(13)]+…+[f(2013)+f(12013)]=12+2012=40252…12分9.如图表示空间直角坐标系的直观图中,正确的个数为()
A.1个
B.2个
C.3个
D.4个答案:C10.选修4-4:坐标系与参数方程
已知直线l:x=m+tcosαy=tsinα(t为参数)经过椭圆C:x=2cosφy=3sinφ(φ为参数)的左焦点F.
(Ⅰ)求m的值;
(Ⅱ)设直线l与椭圆C交于A、B两点,求|FA|•|FB|的最大值和最小值.答案:(Ⅰ)将椭圆C的参数方程化为普通方程,得x24+y23=1.a=2,b=3,c=1,则点F坐标为(-1,0).l是经过点(m,0)的直线,故m=-1.…(4分)(Ⅱ)将l的参数方程代入椭圆C的普通方程,并整理,得(3cos2α+4sin2α)t2-6tcosα-9=0.设点A,B在直线参数方程中对应的参数分别为t1,t2,则|FA|•|FB|=|t1t2|=93cos2α+4sin2α=93+sin2α.当sinα=0时,|FA|•|FB|取最大值3;当sinα=±1时,|FA|•|FB|取最小值94.…(10分)11.如果方程x2+(m-1)x+m2-2=0的两个实根一个小于1,另一个大于1,那么实数m的取值范围是()
A.
B.(-2,0)
C.(-2,1)
D.(0,1)答案:C12.在平面直角坐标系xOy中,椭圆x2a2+y2b2=1(a>b>0)的焦距为2c,以O为圆心,a为半径作圆M,若过P(a2c,0)作圆M的两条切线相互垂直,则椭圆的离心率为______.答案:设切线PA、PB互相垂直,又半径OA垂直于PA,所以△OAP是等腰直角三角形,故a2c=2a,解得e=ca=22,故为22.13.一圆台上底半径为5cm,下底半径为10cm,母线AB长为20cm,其中A在上底面上,B在下底面上,从AB中点M,拉一条绳子,绕圆台的侧面一周转到B点,则这条绳子最短长为______cm.答案:画出圆台的侧面展开图,并还原成圆锥展开的扇形,且设扇形的圆心为O.有图得:所求的最短距离是MB',设OA=R,圆心角是α,则由题意知,10π=αR
①,20π=α(20+R)
②,由①②解得,α=π2,R=20,∴OM=30,OB'=40,则MB'=50cm.故为:50cm.14.化简的结果是()
A.a2
B.a
C.a
D.a答案:C15.若a1-i=1-bi,其中a,b都是实数,i是虚数单位,则|a+bi|=______.答案:a1-i=a(1+i)(1-i)(1+i)=a2+a2i=1-bi∴a=2,b=-1∴|a+bi|=a2+b2=5故为:5.16.设是定义在正整数集上的函数,且满足:“当成立时,总可推出成立”.那么,下列命题总成立的是A.若成立,则当时,均有成立B.若成立,则当时,均有成立C.若成立,则当时,均有成立D.若成立,则当时,均有成立答案:D解析:若成立,依题意则应有当时,均有成立,故A不成立,若成立,依题意则应有当时,均有成立,故B不成立,因命题“当成立时,总可推出成立”.“当成立时,总可推出成立”.因而若成立,则当时,均有成立,故C也不成立。对于D,事实上,依题意知当时,均有成立,故D成立。17.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)不等式|x-5|+|x+3|≥10的解集是______.
B.(坐标系与参数方程选做题)在极坐标系中,圆ρ=-2sinθ的圆心的极坐标是______.
C.(几何证明选做题)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=22,BE=1,BF=2,若CE与圆相切,则线段CE的长为______.答案:A:当x<-3时不等式|x-5|+|x+3|≥10可化为:-(x-5)-(x+3)≥10解得:x≤-4当-3≤x≤5时不等式|x-5|+|x+3|≥10可化为:-(x-5)+(x+3)=8≥10恒不成立当x>5时不等式|x-5|+|x+3|≥10可化为:(x-5)+(x+3)≥10解得:x≥6故不等式|x-5|+|x+3|≥10解集为:(-∞,-4]∪[6,+∞).B:圆ρ=-2sinθ即ρ2=-2ρsinθ,即x2+y2+2y=0,即x2+(y+1)2=1.表示以(0,-1)为圆心,半径等于1的圆,故圆心的极坐标为(1,3π2).C:由题意,DF=CF=22,BE=1,BF=2,由DF•FC=AF•BF,得22•22=AF•2,∴AF=4,又BF=2,BE=1,∴AE=7;由切割线定理得CE2=BE•EA=1×7=7.∴CE=7.故为:(-∞,-4]∪[6,+∞);(1,3π2)(不唯一);7.18.选修4-2:矩阵与变换
已知矩阵M=0110,N=0-110.在平面直角坐标系中,设直线2x-y+1=0在矩阵MN对应的变换作用下得到曲线F,求曲线F的方程.答案:由题设得MN=01100-111=100-1.…(3分)设(x,y)是直线2x-y+1=0上任意一点,点(x,y)在矩阵MN对应的变换作用下变为(x′,y′),则有1001xy=x′y′,即x-y=x′y′,所以x=x′y=-y′…(7分)因为点(x,y)在直线2x-y+1=0上,从而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲线F的方程为2x+y+1=0.
…(10分)19.|a|=2,|b|=3,|a+b|=4,则a与b的夹角是______.答案:∵|a+b|=4,∴a2+2a?b+b2=16∴a?b=32∴cos<a,b>=a?b|.a|×|.b|=322×3=14∵<a,b>∈[0°,180°]∴.a与.b的夹角为arccos14故为arccos1420.如图是集合的知识结构图,如果要加入“全集”,则应该放在()
A.“集合的概念”的下位
B.“集合的表示”的下位
C.“基本关系”的下位
D.“基本运算”的下位答案:D21.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为______.答案:依题设P在抛物线准线的投影为P',抛物线的焦点为F,则F(12,0),依抛物线的定义知P到该抛物线准线的距离为|PP'|=|PF|,则点P到点A(0,2)的距离与P到该抛物线准线的距离之和d=|PF|+|PA|≥|AF|=(12)2+22=172.故为:172.22.将参数方程x=1+2cosθy=2sinθ(θ为参数)化成普通方程为
______.答案:由题意得,x=1+2cosθy=2sinθ⇒x-1=2cosθy=2sinθ,将参数方程的两个等式两边分别平方,再相加,即可消去含θ的项,所以有(x-1)2+y2=4.23.若关于x的方程x2+ax+a2-1=0有一正根和一负根,则a的取值范围为______.答案:令f(x)=x2+ax+a2-1,∴二次函数开口向上,若方程有一正一负根,则只需f(0)<0,即a2-1<0,∴-1<a<1.故为:-1<a<1.24.△ABC中,A(1,2),B(3,1),重心G(3,2),则C点坐标为______.答案:设点C(x,y)由重心坐标公式知3×3=1+3+x,6=2+1+y解得x=5,y=3故点C的坐标为(5,3)故为(5,3)25.某产品的广告费用x与销售额y的统计数据如下表:
广告费用x(万元)
2
3
4
5
销售额y(万元)
27
39
48
54
根据上表可得回归方程y=bx+a中的b为9.4,据此模型预报广告费用为6万元时销售额为()
A.65.5万元
B.66.2万元
C.67.7万元
D.72.0万元答案:A26.
在△ABC中,点D在线段BC的延长线上,且BC=3CD,点O在线段CD上(与点C、D不重合),若AO=xAB+(1-x)AC,则x的取值范围是()
A.
B.
C.
D.答案:D27.已知x∈{1,2,x2},则实数x=______.答案:∵x∈{1,2,x2},分情况讨论可得:①x=1此时集合为{1,2,1}不合题意②x=2此时集合为{1,2,4}合题意③x=x2解得x=0或x=1当x=0时集合为{1,2,0}合题意故为0或2.28.正方体的表面积与其外接球表面积的比为()A.3:πB.2:πC.1:2πD.1:3π答案:设正方体的棱长为a,不妨设a=1,正方体外接球的半径为R,则由正方体的体对角线的长就是外接球的直径的大小可知:2R=3a,即R=3a2=32?1=32;所以外接球的表面积为:S球=4πR2=3π.则正方体的表面积与其外接球表面积的比为:6:3π=2:π.故选B.29.不等式的解集是(
)
A.(-3,2)
B.(2,+∞)
C.(-∞,-3)∪(2,+∞)
D.(-∞,-3)∪(3,+∞)答案:C30.在数列{an}中,a1=2,an+1=λan+λn+1+(2-λ)2n(n∈N+).(Ⅰ)求a2,a3,a4,并猜想数列{an}的通项公式(不必证明);(Ⅱ)证明:当λ≠0时,数列{an}不是等比数列;(Ⅲ)当λ=1时,试比较an与n2+1的大小,证明你的结论.答案:(Ⅰ)∵a1=2,∴a2=λa1+λ2+2(2-λ)=λ2+4,同理可得,a3=2λ3+8,a4=3λ4+16,猜想an=(n-1)λn+2n.(Ⅱ)假设数列{an}是等比数列,则a1,a2,a3也成等比数列,∴a22=a1•a3⇒(λ2+4)2=2(2λ3+8)⇒λ4-4λ3+8λ2=0,∵λ≠0,∴λ2-4λ+8=0,即(λ-2)2+4=0,但(λ-2)2+4>0,矛盾,∴数列{an}不是等比数列.(Ⅲ)∵λ=1,∴an=(n+1)+2n,∴an-(n2+1)=2n-(n2-n+2),∵当n=1,2,3时,2n=n2-n+2,∴an=n2+1.当n≥4时,猜想2n>n2-n+2,证明如下:当n=4时,显然2k>k2-4+2假设当n=k≥4时,猜想成立,即2k>k2-k+2,则当n=k+1时,2k+1=2•2k>2(k2-k+2),∵2(k2-k+2)-[(k+1)20-(k+1)+2]=(k-1)(k-2)>0∴2k+1>2(k2-k+2)>(k+1)2-(k+1)+2,∴当n≥4时,猜想2n>n2-n+2成立,∴当n≥4时,an>n2+1.31.命题“所有能被2整除的数都是偶数”的否定
是()
A.所有不能被2整除的整数都是偶数
B.所有能被2整除的整数都不是偶数
C.存在一个不能被2整除的整数是偶数
D.存在一个能被2整除的整数不是偶数答案:D32.若a,b∈R,求证:≤+.答案:证明略解析:证明
当|a+b|=0时,不等式显然成立.当|a+b|≠0时,由0<|a+b|≤|a|+|b|≥,所以=≤=≤+.33.向量在基底{,,}下的坐标为(1,2,3),则向量在基底{}下的坐标为()
A.(3,4,5)
B.(0,1,2)
C.(1,0,2)
D.(0,2,1)答案:D34.已知函数f(x)=2x+a的图象不过第三象限,则常数a的取值范围是
______.答案:函数f(x)=2x+a的图象可根据指数函数f(x)=2x的图象向上(a>0)或者向下(a<0)平移|a|个单位得到,若函数f(x)=2x+a的图象不过第三象限,则只能向上平移或者不平移,因此,a的取值范围是a≥0.故为:a≥0.35.频率分布直方图的重心是()
A.众数
B.中位数
C.标准差
D.平均数答案:D36.平面向量与的夹角为60°,=(2,0),||=1,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度智能电网建设股东合作协议3篇
- 电影剧组化妆师聘用合同
- 城市监控系统防水涂料施工合同
- 保险公司租赁合同
- 太阳能电站水电路施工合同
- 2024年跨境投资代持协议书3篇
- 国有企业采购项目招标
- 临时珠宝鉴定师聘用协议模板
- 跨界合作项目橱窗施工合同
- 医疗诊所场所租赁合约
- WPS Office办公软件应用教学教案
- 2024年度租赁期满退房检查清单:租户与房东的交接确认单
- 第八版糖尿病
- 幼儿园后勤主任年终总结
- 机器人设备巡检管理制度
- 带式运输机传动装置的设计
- DB50T 1689-2024 绿茶型老鹰茶加工技术规范
- 初级消防设施操作员实操题库 (一)
- 国家职业技术技能标准 4-02-01-01 轨道列车司机(动车组司机)人社厅发2019121号
- CURTIS1232-1234-1236-SE-SERIES交流控制器手册
- 2024年国家开放大学(电大)-混凝土结构设计(A)考试近5年真题集锦(频考类试题)带答案
评论
0/150
提交评论