2023年天津广播影视职业学院高职单招(数学)试题库含答案解析_第1页
2023年天津广播影视职业学院高职单招(数学)试题库含答案解析_第2页
2023年天津广播影视职业学院高职单招(数学)试题库含答案解析_第3页
2023年天津广播影视职业学院高职单招(数学)试题库含答案解析_第4页
2023年天津广播影视职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年天津广播影视职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.抽样调查在抽取调查对象时()A.按一定的方法抽取B.随意抽取C.全部抽取D.根据个人的爱好抽取答案:一般地,抽样方法分为3种:简单随机抽样、分层抽样和系统抽样无论是哪种抽样方法,都遵循机会均等的原理,即在抽样过程中,各个体被抽到的概率是相等的.根据以上分析,可知只有A项符合题意.故选:A2.若a<b<c,x<y<z,则下列各式中值最大的一个是()

A.ax+cy+bz

B.bx+ay+cz

C.bx+cy+az

D.ax+by+cz答案:D3.大家知道,在数列{an}中,若an=n,则sn=1+2+3+…+n=12n2+12n,若an=n2,则

sn=12+22+32+…+n2=13n3+12n2+16n,于是,猜想:若an=n3,则sn=13+23+33+…+n3=an4+bn3+cn2+dn.

问:(1)这种猜想,你认为正确吗?

(2)不管猜想是否正确,这个结论是通过什么推理方法得到的?

(3)如果结论正确,请用数学归纳法给予证明.答案:(1)猜想正确;(2)这是一种类比推理的方法;(3)由类比可猜想,a=14,n=1时,a+b+c+d=1;n=2时,16a+8b+4c+d=9;n=3时,81a+27b+9c+d=36故解得a=14,b=12,c=14,∴sn=13+23+33+…+n3=14n4+12n3+14n2用数学归纳法证明:①n=1时,结论成立;②假设n=k时,结论成立,即13+23+33+…+k3=14k4+12k3+14k2=[k(k+1)2]2则n=k+1时,左边=13+23+33+…+k3+(k+1)3=14k4+12k3+14k2+(k+1)3=[k(k+1)2]2+(k+1)3=(k+12)2(k2+4k+4)=[(k+1)(k+2)2]2=右边,结论成立由①②可知,sn=13+23+33+…+n3=14n4+12n3+14n2,成立4.“因为指数函数y=ax是增函数(大前提),而y=(12)x是指数函数(小前提),所以函数y=(12)x是增函数(结论)”,上面推理的错误在于______(大前提、小前提、结论).答案:∵当a>1时,函数是一个增函数,当0<a<1时,指数函数是一个减函数∴y=ax是增函数这个大前提是错误的,从而导致结论错.故为:大前提.5.4个人各写一张贺年卡,集中后每人取一张别人的贺年卡,共有______种取法.答案:根据分类计数问题,可以列举出所有的结果,1甲乙互换,丙丁互换2甲丙互换,乙丁互换3甲丁互换,乙丙互换4甲要乙的乙要丙的丙要丁的丁要甲的5甲要乙的乙要丁的丙要甲的丁要丙的6甲要丙的丙要乙的乙要丁的丁要甲的7甲要丙的丙要丁的乙要丁的丁要甲的8甲要丁的丁要乙的乙要丙的丙要甲的9甲要丁的丁要丙的乙要甲的丙要乙的通过列举可以得到共有9种结果,故为:96.指数函数y=ax的图象经过点(2,16)则a的值是()A.14B.12C.2D.4答案:设指数函数为y=ax(a>0且a≠1)将(2,16)代入得16=a2解得a=4所以y=4x故选D.7.正方体ABCD-A1B1C1D1的棱长为2,MN是它的内切球的一条弦(把球面上任意两点之间的线段称为球的弦),P为正方体表面上的动点,当弦MN最长时.PM•PN的最大值为______.答案:设点O是此正方体的内切球的球心,半径R=1.∵PM•PN≤|PM|

|PN|,∴当点P,M,N三点共线时,PM•PN取得最大值.此时PM•PN≤(PO-MO)•(PO+ON),而MO=ON,∴PM•PN≤PO2-R2=PO2-1,当且仅当点P为正方体的一个顶点时上式取得最大值,∴(PM•PN)max=(232)2-1=2.故为2.8.一个多面体的三视图分别是正方形、等腰三角形和矩形,其尺寸如图,则该多面体的体积为()A.48cm3B.24cm3C.32cm3D.28cm3答案:由三视图可知该几何体是平放的直三棱柱,高为4,底面三角形一边长为6,此边上的高为4体积V=Sh=12×6×4×4=48cm3故选A9.如图所示,面积为S的平面凸四边形的第i条边的边长记为ai(i=1,2,3,4),此四边形内任一点P到第i条边的距离记为hi(i=1,2,3,4),若a11=a22=a33=a44=k,则4

i=1(ihi)=2Sk.类比以上性质,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为Hi(i=1,2,3,4),若S11=S22=S33=S44=K,则4

i=1(iHi)=()A.4VKB.3VKC.2VKD.VK答案:根据三棱锥的体积公式V=13Sh得:13S1H1+13S2H2+13S3H3+13S4H4=V,即S1H1+2S2H2+3S3H3+4S4H4=3V,∴H1+2H2+3H3+4H4=3VK,即4i=1(iHi)=3VK.故选B.10.赋值语句n=n+1的意思是()

A.n等于n+1

B.n+1等于n

C.将n的值赋给n+1

D.将n的值增加1,再赋给n,即n的值增加1答案:D11.定点F1,F2,且|F1F2|=8,动点P满足|PF1|+|PF2|=8,则点P的轨迹是()A.椭圆B.圆C.直线D.线段答案:∵|PF1|+|PF2|=8,且|F1F2|=8∴|PF1|+|PF2|=|F1F2|①当点P不在直线F1F2上时,根据三角形两边之和大于第三边,得|PF1|+|PF2|>|F1F2|,不符合题意;②当点P在直线F1F2上时,若点P在F1、F2两点之外时,可得|PF1|+|PF2|>8,得到|PF1|+|PF2|>|F1F2|,不符合题意;若点P在F1、F2两点之间(或与F1、F2重合)时,可得|PF1|+|PF2|=|F1F2|,符合题意.综上所述,得点P在直线F1F2上且在F1、F2两点之间或与F1、F2重合,故点P的轨迹是线段F1F2.故选:D12.若方程mx2+(m+1)x+m=0有两个不相等的实根,则实数m的取值范围是()

A.m>0

B.-<m<1

C.-<m<0或0<m<1

D.不确定答案:C13.到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是()

A.直线

B.椭圆

C.抛物线

D.双曲线答案:D14.已知抛物线y2=4x的焦点为F,准线与x轴的交点为M,N为抛物线上的一点,且|NF|=32|MN|,则∠NMF=()A.π6B.π4C.π3D.5π12答案:设N到准线的距离等于d,由抛物线的定义可得d=|NF|,

由题意得cos∠NMF=d|MN|=|NF||MN|=32,∴∠NMF=π6,故选A.15.已知200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速在[60,70]的汽车大约有()辆.A.90B.80C.70D.60答案:由已知可得样本容量为200,又∵数据落在区间[60,70]的频率为0.04×10=0.4∴时速在[60,70]的汽车大约有200×0.4=80故选B.16.一只蚂蚁在三边边长分别为3,4,5的三角形的边上爬行,某时刻该蚂蚁距离三角形的三个顶点的距离均超过1的概率为______.答案:如下图所示,当蚂蚁位于图中红色线段上时,距离三角形的三个顶点的距离均超过1,由已知易得:红色线段的长度和为:6三角形的周长为:12故P=612=12故为:1217.已知F1(-8,3),F2(2,3),动点P满足PF1-PF2=10,则点P的轨迹是______.答案:由于两点间的距离|F1F2|=10,所以满足条件|PF1|-|PF2|=10的点P的轨迹应是一条射线.故为一条射线.18.点(1,2)到原点的距离为()

A.1

B.5

C.

D.2答案:C19.已知双曲线的焦点在y轴,实轴长为8,离心率e=2,过双曲线的弦AB被点P(4,2)平分;

(1)求双曲线的标准方程;

(2)求弦AB所在直线方程;

(3)求直线AB与渐近线所围成三角形的面积.答案:(1)∵双曲线的焦点在y轴,∴设双曲线的标准方程为y2a2-x2b2=1;∵实轴长为8,离心率e=2,∴a=4,c=42,∴b2=c2-a2=16.或∵实轴长为8,离心率e=2,∴双曲线为等轴双曲线,a=b=4.∴双曲线的标准方程为y216-x216=1.(2)设弦AB所在直线方程为y-2=k(x-4),A,B的坐标为A(x1,y1),B(x2,y2).∴k=y1-y2x1-x2,x1+x22=4,y1+y22=2;∴y1216-x1216=1

y2216-x2216=1⇒y12-y2216-x12-x2216=0⇒(y1-y2)(y1+y2)16-(x1-x2)(x1+x2)16=0代入x1+x2=8,y1+y2=4,得(y1-y2)×416-(x1-x2)×816=0,∴y1-y2x1-x2×14-12=0,∴14k-12=0,∴k=2;所以弦AB所在直线方程为y-2=2(x-4),即2x-y-6=0.(3)等轴双曲线y216-x216=1的渐近线方程为y=±x.∴直线AB与渐近线所围成三角形为直角三角形.又渐近线与弦AB所在直线的交点坐标分别为(6,6),(2,-2),∴直角三角形两条直角边的长度分别为62、22;∴直线AB与渐近线所围成三角形的面积S=12×62×22=12.20.下列说法正确的是()

A.向量

与向量是共线向量,则A、B、C、D必在同一直线上

B.向量与平行,则与的方向相同或相反

C.向量的长度与向量的长度相等

D.单位向量都相等答案:C21.若圆O1方程为(x+1)2+(y+1)2=4,圆O2方程为(x-3)2+(y-2)2=1,则方程(x+1)2+(y+1)2-4=(x-3)2+(y-2)2-1表示的轨迹是()

A.经过两点O1,O2的直线

B.线段O1O2的中垂线

C.两圆公共弦所在的直线

D.一条直线且该直线上的点到两圆的切线长相等答案:D22.曲线与坐标轴的交点是(

)A.B.C.D.答案:B解析:当时,,而,即,得与轴的交点为;当时,,而,即,得与轴的交点为23.已知二项分布满足X~B(6,23),则P(X=2)=______,EX=______.答案:∵X服从二项分布X~B(6,23)∴P(X=2)=C26(13)4(23)2=20243∵随机变量ξ服从二项分布ξ~B(6,23),∴期望Eξ=np=6×23=4故为:20243;424.如图,一个正方体内接于一个球,过球心作一个截面,则截面的可能图形为(

A.①③

B.②④

C.①②③

D.②③④答案:C25.方程y=ax+b和a2x2+y2=b2(a>b>1)在同一坐标系中的图形可能是()A.

B.

C.

D.

答案:∵a>b>1,∴方程y=ax+b的图象与y轴交于y轴的正半轴,且函数是增函数,由此排除选项B和D,∵a>b>1,a2x2+y2=b2?x2(ba)2+y2b2=1,∴椭圆焦点在y轴,由此排除A.故选C.26.据上海中心气象台发布的天气预报,一月上旬某天上海下雨的概率是70%至80%.写出下列解释中正确的序号______.

①上海地区面积的70%至80%将降雨;

②上海地区下雨的时间在16.8小时至19.2%小时之间;

③上海地区在相似的气候条件下有70%至80%的日子是下雨的;

④上海地区在相似的气候条件下有20%至30%的日子是晴,或多云,或阴.答案:据上海中心气象台发布的天气预报,一月上旬某天上海下雨的概率是70%至80%.表示上海地区在相似的气候条件下下雨的可能性很大,是有70%至80%的日子是下雨的.是但不一定下,也不是的70%至80%的时间与地区.故解释中正确的序号③故为:③27.已知P是以F1,F2为焦点的椭圆(a>b>0)上的一点,若PF1⊥PF2,tan∠PF1F2=,则此椭圆的离心率为()

A.

B.

C.

D.答案:D28.过抛物线y=ax2(a>0)的焦点F作一直线交抛物线交于P、Q两点,若线段PF、FQ的长分别为p、q,则1p+1q=______.答案:设PQ的斜率k=0,因抛物线焦点坐标为(0,14a),把直线方程y=14a

代入抛物线方程得x=±12a,∴PF=FQ=12a,从而

1p+1q=2a+2a=4a,故为:4a.29.已知=(2,-1,3),=(-1,4,-2),=(7,5,λ),若、、三向量共面,则实数λ等于()

A.

B.

C.

D.答案:D30.根据如图所示的伪代码,可知输出的结果a为______.答案:由题设循环体要执行3次,图知第一次循环结束后c=a+b=2,a=1.b=2,第二次循环结束后c=a+b=3,a=2.b=3,第三次循环结束后c=a+b=5,a=3.b=5,第四次循环结束后不满足循环的条件是b<4,程序输出的结果为3故为:3.31.已知向量a=(8,x,x).b=(x,1,2),其中x>0.若a∥b,则x的值为()

A.8

B.4

C.2

D.0答案:B32.已知点G是△ABC的重心,O是空间任一点,若OA+OB+OC=λOG,则实数λ=______.答案:由于G是三角形ABC的重心,则有GA+GB+GC=0,OA-OG+OB-OG+OC-OG=0故OA+OB+OC=3OG又由已知OA+OB+OC=λOG故可得λ=3故为:333.在平面直角坐标系中,横坐标、纵坐标均为有理数的点称为有理点.试根据这一定义,证明下列命题:若直线y=kx+b(k≠0)经过点M(2,1),则此直线不能经过两个有理点.答案:证明:假设此直线上有两个有理点A(x1,y1),B(x2,y2),其中x1、y1、x2、y2均为有理数,则有y1=kx1+b,y2=kx2+b,两式相减,得y1-y2=k(x1-x2).∵斜率k存在,∴x1≠x2,得k=y1-y2x1-x2.而有理数经过四则运算后还是有理数,故k为有理数.又由y1=kx1+b知,b也是有理数.又∵点M(2,1)在此直线上,∴1=2k+b,于是有2=1-bk(k≠0).此式左端为无理数,右端为有理数,显然矛盾,故此直线不能经过两个有理点.34.电子手表厂生产某批电子手表正品率为,次品率为,现对该批电子手表进行测试,设第X次首次测到正品,则P(1≤X≤2013)等于()

A.1-()2012

B.1-()2013

C.1-()2012

D.1-()2013答案:B35.设b是a的相反向量,则下列说法错误的是()

A.a与b的长度必相等

B.a与b的模一定相等

C.a与b一定不相等

D.a是b的相反向量答案:C36.某制药厂为了缩短培养时间,决定优选培养温度,试验范围定为29℃至50℃,现用分数法确定最佳温度,设第1,2,3次试验的温度分别为x1,x2,x3,若第2个试点比第1个试点好,则x3的值为(

)。答案:34℃或45℃37.抛物线y2=4x的焦点坐标为()

A.(0,1)

B.(1,0)

C.(0,2)

D.(2,0)答案:B38.(1)已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;

(2)已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1,以下结论正确的是()

A.(1)的假设错误,(2)的假设正确

B.(1)与(2)的假设都正确

C.(1)的假设正确,(2)的假设错误

D.(1)与(2)的假设都错误答案:A39.若向量a,b,c满足a∥b且a⊥c,则c(a+2b)=______.答案:∵a∥b∴存在λ使b=λa∵a⊥c∴a?c=0∴c?(a+2b)=c?a+2c?b=2c?λa=0故为:0.40.抛物线y=4x2的焦点坐标是()

A.(0,1)

B.(0,)

C.(1,0)

D.(,0)答案:B41.已知a、b、c为某一直角三角形的三条边长,c为斜边.若点(m,n)在直线ax+by+2c=0上,则m2+n2的最小值是______.答案:根据题意可知:当(m,n)运动到原点与已知直线作垂线的垂足位置时,m2+n2的值最小,由三角形为直角三角形,且c为斜边,根据勾股定理得:c2=a2+b2,所以原点(0,0)到直线ax+by+2c=0的距离d=|0+0+2c|a2+b2=2,则m2+n2的最小值为4.故为:4.42.不等式的解集是(

A.(-3,2)

B.(2,+∞)

C.(-∞,-3)∪(2,+∞)

D.(-∞,-3)∪(3,+∞)答案:C43.在直角坐标系xOy中,直线l的参数方程为x=3-22ty=5+22t(t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=25sinθ.

(I)求圆C的参数方程;

(II)设圆C与直线l交于点A,B,求弦长|AB|答案:(Ⅰ)∵ρ=25sinθ,∴ρ2=25ρsinθ…(1分)所以,圆C的直角坐标方程为x2+y2-25y=0,即x2+(y-5)2=5…(3分)所以,圆C的参数方程为x=5cosθy=5+5sinθ(θ为参数)

…(4分)(Ⅱ)将直线l的参数方程代入圆C的直角坐标方程,得(3-22t)2+(22t)2=5即t2-32t+4=0…(5分)设两交点A,B所对应的参数分别为t1,t2,则t1+t2=32t1t2=4…(7分)∴|AB|=|t1-t2|=(t1+t2)2-4t1t2=18-16=2…(8分)44.在空间直角坐标系中,已知A,B两点的坐标分别是A(2,3,5),B(3,1,4),则这两点间的距离|AB|=______.答案:∵A,B两点的坐标分别是A(2,3,5),B(3,1,4),∴|AB|=(3-2)2+(1-3)2+(4-5)2,=1+4+1=6,故为:6.45.用三段论的形式写出下列演绎推理.

(1)若两角是对顶角,则该两角相等,所以若两角不相等,则该两角不是对顶角;

(2)矩形的对角线相等,正方形是矩形,所以,正方形的对角线相等.答案:(1)两个角是对顶角则两角相等,大前提∠1和∠2不相等,小前提∠1和∠2不是对顶角.结论(2)每一个矩形的对角线相等,大前提正方形是矩形,小前提正方形的对角线相等.结论46.(坐标系与参数方程选做题)在极坐标系中,点M(ρ,θ)关于极点的对称点的极坐标是______.答案:由点的极坐标的意义可得,点M(ρ,θ)关于极点的对称点到极点的距离等于ρ,极角为π+θ,故点M(ρ,θ)关于极点的对称点的极坐标是(ρ,π+θ),故为(ρ,π+θ).47.若a=(1,1),则|a|=______.答案:由题意知,a=(1,1),则|a|=1+1=2,故为:2.48.若点(2,-2)在圆(x-a)2+(y-a)2=16的内部,则实数a的取值范围是()

A.-2<a<2

B.0<a<2

C.a<-2或a>2

D.a=±2答案:A49.设,求证:。答案:证明略解析:证明:因为,所以有。又,故有。…………10分于是有得证。

…………20分50.“sinx=siny”是“x=y”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案:∵“sinx=siny”不能推出“x=y”,例如sin30°=sin390°,但30°≠390°,即充分性不成立;反过来,若“x=y”,一定有“sinx=siny”,即必要性成立;∴“sinx=siny”是“x=y”的必要不充分条件.故选C.第2卷一.综合题(共50题)1.若复数z=a+bi(a、b∈R)是虚数,则a、b应满足的条件是()A.a=0,b≠0B.a≠0,b≠0C.a≠0,b∈RD.b≠0,a∈R答案:∵复数z=a+bi(a、b∈R)是虚数,∴根据虚数的定义得b≠0,a∈R,故选D.2.已知曲线C的参数方程为x=4t2y=t(t为参数),若点P(m,2)在曲线C上,则m=______.答案:因为曲线C的参数方程为x=4t2y=t(t为参数),消去参数t得:x=4y2;∵点P(m,2)在曲线C上,所以m=4×4=16.故为:16.3.曲线y=log2x在M=0110作用下变换的结果是曲线方程______.答案:设P(x,y)是曲线y=log2x上的任一点,P1(x′,y′)是P(x,y)在矩阵M=0110对应变换作用下新曲线上的对应点,则x′y′=0110xy=yx(3分)即x′=yy′=x,所以x=y′y=x′,(6分)将x=y′y=x′代入曲线y=log2x,得x′=log2y′,(8分)即y′=2x′曲线y=log2x在M=0110作用下变换的结果是曲线方程y=2x故为:y=2x4.如图,圆O上一点C在直径AB上的射影为D.AD=2,AC=25,则AB=______.答案:∵AB是直径,∴△ABC是直角三角形,∵C在直径AB上的射影为D,∴CD⊥AB,∴AC2=AD?AB,∴AB=AC2AD=202=10,故为:105.设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素2n+n,则在映射f下,象20的原象是()A.2B.3C.4D.5答案:由2n+n=20求n,用代入法可知选C.故选C6.已知向量=(1,1,-2),=(2,1,),若≥0,则实数x的取值范围为()

A.(0,)

B.(0,]

C.(-∞,0)∪[,+∞)

D.(-∞,0]∪[,+∞)答案:C7.在平面直角坐标系xOy中,双曲线x24-y212=1上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是______答案:MFd=e=2,d为点M到右准线x=1的距离,则d=2,∴MF=4.故为48.复数1+i(i为虚数单位)的模等于()A.2B.1C.22D.12答案:|1+i|=12+12=2.故选A.9.已知正方形的边长为2,AB=a,BC=b,AC=c,则|a+b+c|=()A.0B.2C.2D.4答案:由题意可得:AB+BC=AC,所以c=a+b,所以|a+b+c|=2|c|.因为正方形的边长为2,所以|AC|=|c|=2,所以|a+b+c|=2|c|=4.故选D.10.定义平面向量之间的一种运算“⊙”如下:对任意的=(m,n),=(p,q)

,令⊙=mq-np,下面说法错误的序号是()

①若若a与共线,则⊙=0

②⊙=⊙a

③对任意的λ∈R,有(λ)⊙=λ(⊙)

④(⊙)2+(a)2=||2||2

A.②

B.①②

C.②④

D.③④答案:A11.已知G是△ABC的重心,O是平面ABC外的一点,若λOG=OA+OB+OC,则λ=______.答案:如图,正方体中,OA+OB+OC=OD=3OG,∴λ=3.故为3.12.在甲、乙两个盒子里分别装有标号为1、2、3、4的四个小球,现从甲、乙两个盒子里各取出1个小球,每个小球被取出的可能性相等.

(1)求取出的两个小球上标号为相邻整数的概率;

(2)求取出的两个小球上标号之和能被3整除的概率;

(3)求取出的两个小球上标号之和大于5整除的概率.答案:甲、乙两个盒子里各取出1个小球计为(X,Y)则基本事件共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)总数为16种.(1)其中取出的两个小球上标号为相邻整数的基本事件有:(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6种故取出的两个小球上标号为相邻整数的概率P=38;(2)其中取出的两个小球上标号之和能被3整除的基本事件有:(1,2),(2,1),(2,4),(3,3),(4,2)共5种故取出的两个小球上标号之和能被3整除的概率为516;(3)其中取出的两个小球上标号之和大于5的基本事件有:(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6种故取出的两个小球上标号之和大于5的概率P=3813.有这样一段“三段论”推理,对于可导函数f(x),大前提:如果f’(x0)=0,那么x=x0是函数f(x)的极值点;小前提:因为函数f(x)=x3在x=0处的导数值f’(0)=0,结论:所以x=0是函数f(x)=x3的极值点.以上推理中错误的原因是______错误(填大前提、小前提、结论).答案:∵大前提是:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不是真命题,因为对于可导函数f(x),如果f'(x0)=0,且满足当x>x0时和当x<x0时的导函数值异号时,那么x=x0是函数f(x)的极值点,∴大前提错误,故为:大前提.14.双曲线x29-y216=1的两个焦点为F1、F2,点P在双曲线上,若PF1⊥PF2,则点P到x轴的距离为______.答案:设点P(x,y),∵F1(-5,0)、F2(5,0),PF1⊥PF2,∴y-0x+5•y-0x-5=-1,∴x2+y2=25

①,又x29-y216=1,∴25-y29-y216=1,∴y2=16225,∴|y|=165,∴P到x轴的距离是165.15.用数学归纳法证明1+2+3+…+n2=,则当n=k+1时左端应在n=k的基础上加上()

A.k2+1

B.(k+1)2

C.

D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2答案:D16.某射手射击所得环数X的分布列为:

ξ

4

5

6

7

8

9

10

P

0.02

0.04

0.06

0.09

0.28

0.29

0.22

则此射手“射击一次命中环数大于7”的概率为()

A.0.28

B.0.88

C.0.79

D.0.51答案:C17.从甲、乙两人手工制作的圆形产品中,各自随机抽取6件,测得其直径如下(单位:cm):

甲:9.00,9.20,9.00,8.50,9.10,9.20

乙:8.90,9.60,9.50,8.54,8.60,8.90

据以上数据估计两人的技术稳定性,结论是()

A.甲优于乙

B.乙优于甲

C.两人没区别

D.无法判断答案:A18.在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1).设k为非零实数,矩阵M=.k001.,N=.0110.,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,

(1)求k的值.

(2)判断变换MN是否可逆,如果可逆,求矩阵MN的逆矩阵;如不可逆,说明理由.答案:(1)由题设得MN=k0010110=01k0,由01k000-20-21=000-2k-2,可知A1(0,0)、B1(0,-2)、C1(k,-2).计算得△ABC面积的面积是1,△A1B1C1的面积是|k|,则由题设知:|k|=2×1=2.所以k的值为2或-2.(2)令MN=A,设B=abcd是A的逆矩阵,则AB=0k10abcd=1001⇒ckdkab=1001⇒ck=1dk=0a=0b=1①当k≠0时,上式⇒a=0b=1c=1kd=0,MN可逆,(8分)所以MN的逆矩阵是B=011k0.(10分)②当k≠0时,上式不可能成立,MN不可逆,(11分).19.已知直线方程l1:2x-4y+7=0,l2:x-2y+5=0,则l1与l2的关系()

A.平行

B.重合

C.相交

D.以上答案都不对答案:A20.在半径为1的圆内任取一点,以该点为中点作弦,则所做弦的长度超过3的概率是()A.15B.14C.13D.12答案:如图,C是弦AB的中点,在直角三角形AOC中,AC=12AB=32,OA=1,∴OC=12.∴符合条件的点必须在半径为12圆内,则所做弦的长度超过3的概率是P=S小圆S大圆=(12)2ππ=14.故选B.21.甲、乙两人共同投掷一枚硬币,规定硬币正面朝上甲得1分,否则乙得1分,先积3分者获胜,并结束游戏.

①求在前3次投掷中甲得2分,乙得1分的概率.

②设ξ表示到游戏结束时乙的得分,求ξ的分布列以及期望.答案:(1)由题意知本题是一个古典概型试验发生的事件是掷一枚硬币3次,出现的所有可能情况共有以下8种.(正正正)、(正正反)、(正反反)、(反反反)、(正反正)、(反正正)、(反反正)、(反正反)、其中甲得(2分),乙得(1分)的情况有以下3种,(正正反)、(正反正)、(反正正)∴所求概率P=38(2)ξ的所有可能值为:0、1、2、3P(ξ=0)=12×12×12=18P(ξ=1)=C13×12×(12)2×12=316,P(ξ=2)=C24(12)2(12)212=316P(ξ=3)=12×12×12+C1312(12)212+C24(12)2(12)212=12∴ξ的分布列为:∴Eξ=1×316+2×316+3×12=331622.极点到直线ρ(cosθ+sinθ)=3的距离是

______.答案:将原极坐标方程ρ(cosθ+sinθ)=3化为:直角坐标方程为:x+y=3,原点到该直线的距离是:d=|3|2=62.∴所求的距离是:62.故填:62.23.用0、1、2、3、4、5这6个数字,可以组成无重复数字的五位偶数的个数为______(用数字作答).答案:末尾是0时,有A55=120种;末尾不是0时,有2种选择,首位有4种选择,中间有A44,故有2×4×A44=192种故共有120+192=312种.故为:31224.已知两圆x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0.

(1)m取何值时两圆外切?

(2)m取何值时两圆内切?

(3)当m=45时,求两圆的公共弦所在直线的方程和公共弦的长.答案:(1)由已知可得两个圆的方程分别为(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=61-m,两圆的圆心距d=(5-1)2+(6-3)2=5,两圆的半径之和为11+61-m,由两圆的半径之和为11+61-m=5,可得m=25+1011.(2)由两圆的圆心距d=(5-1)2+(6-3)2=5等于两圆的半径之差为|11-61-m|,即|11-61-m|=5,可得

11-61-m=5(舍去),或

11-61-m=-5,解得m=25-1011.(3)当m=45时,两圆的方程分别为(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=16,把两个圆的方程相减,可得公共弦所在的直线方程为4x+3y-23=0.第一个圆的圆心(1,3)到公共弦所在的直线的距离为d=|4+9-23|5=2,可得弦长为211-4=27.25.已知复数z0=1-mi(m>0),z=x+yi和,其中x,y,x',y'均为实数,i为虚数单位,且对于任意复数z,有w=.z0•.z,|w|=2|z|.

(Ⅰ)试求m的值,并分别写出x'和y'用x、y表示的关系式:

(Ⅱ)将(x、y)用为点P的坐标,(x'、y')作为点Q的坐标,上述关系式可以看作是坐标平面上点的一个变换:它将平面上的点P变到这一平面上的点Q.已知点P经该变换后得到的点Q的坐标为(3,2),试求点P的坐标;

(Ⅲ)若直线y=kx上的任一点经上述变换后得到的点仍在该直线上,试求k的值.答案:(I)由题设得,|w|=|.z0•.z|=|z0||z|=2|z|,∴|z0|=2,由1+m2=4,且m>0,得m=3,∴z0=1-3i,∵w=.z0•.z,∴x′+y′i=.(1-3i)•.(x+yi))=(1+3i)(x-yi)=x+3y+(3x-y)i,由复数相等得,x′=x+3yy′=3x-y,(Ⅱ)由(I)和题意得,x+3y=33x-y=2,解得x=343y=14

,即P点的坐标为(343,14).

(Ⅲ)∵直线y=kx上的任意点P(x,y),其经变换后的点Q(x+3y,3x-y)仍在该直线上,∴3x-y=k(x+3y),即(3k+1)y=(3-k)x∵当k=0时,y=0,y=3x不是同一条直线,∴k≠0,于是3k+11=3-kk,即3k2+2k-3=0,解得k=33或k=-326.已知正方形ABCD的边长为a,则|AC+AD|等于______.答案:∵正方形ABCD的边长为a,∴AC=2a,AC与AD的夹角为45°|AC+AD|2=|AC

|2+2AC?AD+|AD|2=2a2+2×2a×a×22+a2=5a2∴|AC+AD|=5a故为:5a27.计算机的程序设计语言很多,但各种程序语言都包含下列基本的算法语句:______,______,______,______,______.答案:计算机的程序设计语言很多,但各种程序语言都包含下列基本的算法语句:输入语句,输出语句,赋值语句,条件语句,循环语句.故为:输入语句,输出语句,赋值语句,条件语句,循环语句.28.若函数y=f(x)是函数y=ax(a>0且a≠1)的反函数,且y=f(x)的图象过点(2,1),则f(x)=______.答案:因为函数y=f(x)是函数y=ax(a>0且a≠1)的反函数,且y=f(x)的图象过点(2,1),所以函数y=ax经过(1,2),所以a=2,所以函数y=f(x)=log2x.故为:log2x.29.若图中的直线l1、l2、l3的斜率分别为k1、k2、k3,则()A.k1<k2<k3B.k2<k1<k3C.k3<k2<k1D.k1<k3<k2答案:因为直线的斜率是其倾斜角的正切值,当倾斜角大于90°小于180°时,斜率为负值,当倾斜角大于0°小于90°时斜率为正值,且正切函数在(0°,90°)上为增函数,由图象三条直线的倾斜角可知,k2<k1<k3.故选C.30.已知、分别是的外接圆和内切圆;证明:过上的任意一点,都可作一个三角形,使得、分别是的外接圆和内切圆.答案:略解析:证:如图,设,分别是的外接圆和内切圆半径,延长交于,则,,延长交于;则,即;过分别作的切线,在上,连,则平分,只要证,也与相切;设,则是的中点,连,则,,,所以,由于在角的平分线上,因此点是的内心,(这是由于,,而,所以,点是的内心).即弦与相切.31.设a、b∈R+且a+b=3,求证1+a+1+b≤10.答案:证明:证法一:(综合法)∵(1+a+1+b)2=2+a+b+2(1+a)?(1+b)≤5+(1+a+1+b)=10∴1+a+1+b≤10证法二:(分析法)∵a、b∈R+且a+b=3,∴欲证1+a+1+b≤10只需证(1+a+1+b)2≤10即证2+a+b+2(1+a)?(1+b)≤10即证2(1+a)?(1+b)≤5只需证4(1+a)?(1+b)≤25只需证4(1+a)?(1+b)≤25即证4(1+a+b+ab)≤25只需证4ab≤9即证ab≤94∵ab≤(a+b2)2=(32)2=94成立∴1+a+1+b≤10成立32.一个十二面体共有8个顶点,其中2个顶点处各有6条棱,其它顶点处都有相同的棱,则其它顶点处的棱数为______.答案:此十二面体如右图,数形结合可得则其它顶点处的棱数为4故为433.已知a=log132,b=(13)12,c=(23)12,则a,b,c大小关系为______.答案:∵a=log132<log131=0,又∵函数y=x12在(0,+∞)是增函数,∴(23)12>(13)12>0.所以,c>b>a.故为c>b>a.34.(文)不等式的解集是(

)A.B.C.D.答案:D解析:【思路分析】:原不等式可化为,得,故选D.【命题分析】考查不等式的解法,要求同解变形.35.点M(2,-3,1)关于坐标原点对称的点是()

A.(-2,3,-1)

B.(-2,-3,-1)

C.(2,-3,-1)

D.(-2,3,1)答案:A36.一射手对靶射击,直到第一次命中为止每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目ξ的期望为()

A.2.44

B.3.376

C.2.376

D.2.4答案:C37.解关于x的不等式(k≥0,k≠1).答案:不等式的解集为{x|x2}解析:原不等式即,1°若k=0,原不等式的解集为空集;2°若1-k>0,即0,所以原不等式的解集为{x|x2}.</k<1,由原不等式的解集为{x|2<x<</k<1时,原不等式等价于38.设随机变量X~B(10,0.8),则D(2X+1)等于()

A.1.6

B.3.2

C.6.4

D.12.8答案:C39.已知实数x,y满足2x+y+5=0,那么x2+y2的最小值为______.答案:x2+y2

表示直线2x+y+5=0上的点与原点的距离,其最小值就是原点到直线2x+y+5=0的距离|0+0+5|4+1=5,故为:5.40.点P(1,3,5)关于平面xoz对称的点是Q,则向量=()

A.(2,0,10)

B.(0,-6,0)

C.(0,6,0)

D.(-2,0,-10)答案:B41.△ABC中,,若,则m+n=()

A.

B.

C.

D.1答案:B42.如图,点O是平行六面体ABCD-A1B1C1D1的对角线BD1与A1C的交点,=,=,=,则=()

A.++

B.++

C.--+

D.+-

答案:C43.对于一组数据的两个函数模型,其残差平方和分别为153.4

和200,若从中选取一个拟合程度较好的函数模型,应选残差平方和为______的那个.答案:残差的平方和是用来描述n个点与相应回归直线在整体上的接近程度残差的平方和越小,拟合效果越好,由于153.4<200,故拟合效果较好的是残差平方和是153.4的那个模型.故为:153.4.44.在极坐标系中,点A的极坐标为(2,0),直线l的极坐标方程为ρ(cosθ+sinθ)+2=0,则点A到直线l的距离为______.答案:由题意得点A(2,0),直线l为

ρ(cosθ+sinθ)+2=0,即

x+y+2=0,∴点A到直线l的距离为

|2+0+2|2=22,故为22.45.铁路托运行李,从甲地到乙地,按规定每张客票托运行李不超过50kg时,每千克0.2元,超过50kg时,超过部分按每千克0.25元计算,画出计算行李价格的算法框图.答案:程序框图:46.=(2,1),=(3,4),则向量在向量方向上的投影为()

A.

B.

C.2

D.10答案:C47.由圆C:x=2+cosθy=3+sinθ(θ为参数)求圆的标准方程.答案:圆的参数方程x=2+cosθy=3+sinθ变形为:cosθ=2-xsinθ=3-y,根据同角的三角函数关系式cos2θ+sin2θ=1,可得到标准方程:(x-2)2+(y-3)2=1.所以为(x-2)2+(y-3)2=1.48.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,这个两位数大于40的概率()A.15B.25C.35D.45答案:由题意知本题是一个古典概型,试验发生包含的事件是从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,共有A52=20种结果,满足条件的事件可以列举出有,41,41,43,45,54,53,52,51共有8个,根据古典概型概率公式得到P=820=25,故选B.49.已知在△ABC中,A(2,-5,3),AB=(4,1,2),BC=(3,-2,5),则C点坐标为

______.答案:设C(x,y,z),则:

AC=AB+BC即:(x-2,y+5,z-3)=(4,1,2)+(3,-2,5)=(7,-1,7)所以得:x-2=7y+5=-1z-3=7,即x=9y=-6z=10故为:(9,-6,10)50.

点M分有向线段的比为λ,已知点M1(1,5),M2(2,3),λ=-2,则点M的坐标为()

A.(3,8)

B.(1,3)

C.(3,1)

D.(-3,-1)答案:C第3卷一.综合题(共50题)1.某次我市高三教学质量检测中,甲、乙、丙三科考试成绩的直方图如如图所示(由于人数众多,成绩分布的直方图可视为正态分布),则由如图曲线可得下列说法中正确的一项是()

A.甲科总体的标准差最小

B.丙科总体的平均数最小

C.乙科总体的标准差及平均数都居中

D.甲、乙、丙的总体的平均数不相同

答案:A2.用冒泡法对43,34,22,23,54从小到大排序,需要(

)趟排序。

A.2

B.3

C.4

D.5答案:A3.与原数据单位不一样的是()

A.众数

B.平均数

C.标准差

D.方差答案:D4.下列图象中不能作为函数图象的是()A.

B.

C.

D.

答案:根据函数的概念:如果在一个变化过程中,有两个变量x、y,对于x的每一个值,y都有唯一确定的值与之对应,这时称y是x的函数.结合选项可知,只有选项B中是一个x对应1或2个y故选B.5.已知平面向量=(3,1),=(x,3),且⊥,则实数x的值为()

A.9

B.1

C.-1

D.-9答案:C6.a=(2,1),b=(3,4),则向量a在向量b方向上的投影为______.答案:根据向量在另一个向量上投影的定义向量a在向量b方向上的投影为a?b|b|∵a=(2,1),b=(3,4),∴a?b=10,|b|=5∴a?b|b|=2故为:27.若直线y=x+b与圆x2+y2=2相切,则b的值为

______.答案:由题意知,直线y=x+b与圆x2+y2=2相切,∴2=|b|2,解得b=±2.故为:±2.8.是x1,x2,…,x100的平均数,a是x1,x2,…,x40的平均数,b是x41,x42,…,x100的平均数,则下列各式正确的是()

A.=

B=

C.=a+b

D.答案:A9.用反证法证明:已知x,y∈R,且x+y>2,则x,y中至少有一个大于1.答案:证明:用反证法,假设x,y均不大于1,即x≤1且y≤1,则x+y≤2,这与已知条件x+y>2矛盾,∴x,y中至少有一个大于1,即原命题得证.10.已知点P(3,m)在以点F为焦点的抛物线x=4t2y=4t(t为参数)上,则|PF|的长为______.答案:∵抛物线x=4t2y=4t(t为参数)上,∴y2=4x,∵点P(3,m)在以点F为焦点的抛物线x=4t2y=4t(t为参数)上,∴m2=4×3=12,∴P(3,23)∵F(1,0),∴|PF|=22+(23)2=4,故为4.11.直线kx-y=k-1与直线ky=x+2k的交点在第二象限内,则k的取值范围是

______.答案:联立两直线方程得kx-y=k-1①ky=x+2k②,由②得y=x+2kk③,把③代入①得:kx-x+2kk=k-1,当k+1≠0即k≠-1时,解得x=kk-1,把x=kk-1代入③得到y=2k-1k-1,所以交点坐标为(kk-1,2k-1k-1)因为直线kx-y=k-1与直线ky=x+2k的交点在第二象限内,得kk-1<02k-1k-1>

0解得0<k<1,k>1或k<12,所以不等式组的解集为0<k<12则k的取值范围是0<k<12故为:0<k<1212.在极坐标系中,点(2,)到圆ρ=2cosθ的圆心的距离为()

A.2

B.

C.

D.答案:D13.已知直线l的方程为x=2-4

ty=1+3

t,则直线l的斜率为______.答案:直线x=2-4

ty=1+3

t,所以直线的普通方程为:(y-1)=-34(x-2);所以直线的斜率为:-34;故为:-34.14.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)满足()

A.是圆心

B.在圆上

C.在圆内

D.在圆外答案:C15.设圆M的方程为(x-3)2+(y-2)2=2,直线L的方程为x+y-3=0,点P的坐标为(2,1),那么()

A.点P在直线L上,但不在圆M上

B.点P在圆M上,但不在直线L上

C.点P既在圆M上,又在直线L上

D.点P既不在直线L上,也不在圆M上答案:C16.过抛物线y2=4x的焦点作直线l交抛物线于A、B两点,若线段AB中点的横坐标为3,则|AB|等于()A.2B.4C.6D.8答案:由题设知知线段AB的中点到准线的距离为4,设A,B两点到准线的距离分别为d1,d2,由抛物线的定义知:|AB|=|AF|+|BF|=d1+d2=2×4=8.故选D.17.如图,在△ABC中,,,则实数λ的值为()

A.

B.

C.

D.

答案:D18.若3π2<α<2π,则直线xcosα+ysinα=1必不经过()A.第一象限B.第二象限C.第三象限D.第四象限答案:令x=0,得y=sinα<0,令y=0,得x=cosα>0,直线过(0,sinα),(cosα,0)两点,因而直线不过第二象限.故选B19.如图,l1,l2,l3是同一平面内的三条平行直线,l1与l2间的距离是1,l3与l2间的距离是2,正△ABC的三顶点分别在l1,l2,l3上,则△ABC的边长是______.答案:如图,过A,C作AE,CF垂直于L2,点E,F是垂足,将Rt△BCF绕点B逆时针旋转60°至Rt△BAD处,延长DA交L2于点G.由作图可知:∠DBG=60°,AD=CF=2.在Rt△BDG中,∠BGD=30°.在Rt△AEG中,∠EAG=60°,AE=1,AG=2,DG=4.∴BD=433在Rt△ABD中,AB=BD2+AD2=2213故为:221320.已知向量a与向量b的夹角为120°,若向量c=a+b,且a⊥c,则|a||b|的值为______.答案:由题意可知,∵a⊥c,∴a?c=a?(a+b)=a2+a?b=0即|a|2+|a||b|cos120°=0,故|a|2=12|a||b|,故|a||b|=12.故为:1221.已知A(1,0,0)、B(0,1,0)、C(0,0,1)三点,n=(1,1,1),则以n为方向向量的直线l与平面ABC的关系是()A.垂直B.不垂直C.平行D.以上都有可能答案:由题意,AB=(-1,1,0),BC=(0,-1,1)∵n•AB=0,n•BC=0∴以n为方向向量的直线l与平面ABC垂直故选A.22.若直线l经过点M(1,5),且倾斜角为2π3,则直线l的参数方程为______.答案:由于过点(a,b)倾斜角为α的直线的参数方程为x=a+t•cosαy=b+t•sinα(t是参数),∵直线l经过点M(1,5),且倾斜角为2π3,故直线的参数方程是x=1+t•cos2π3y=5+t•sin2π3即x=1-12ty=5+32t(t为参数).故为:x=1-12ty=5+32t(t为参数).23.已知点A(-3,8),B(2,4),若y轴上的点P满足PA的斜率是PB斜率的2倍,则P点的坐标为______.答案:设P(0,y),则∵点P满足PA的斜率是PB斜率的2倍,∴y-80+3=2•y-40-2∴y=5∴P(0,5)故为:(0,5)24.某学校高一、高二、高三共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()

A.8

B.11

C.16

D.10答案:A25.学校成员、教师、后勤人员、理科教师、文科教师的结构图正确的是()

A.

B.

C.

D.

答案:A26.下列特殊命题中假命题的个数是()

①有的实数是无限不循环小数;

②有些三角形不是等腰三角形;

③有的菱形是正方形.

A.0

B.1

C.2

D.3答案:B27.平面内有n条直线,其中无任何两条平行,也无任何三条共点,求证:这n条直线把平面分割成12(n2+n+2)块.答案:证明:(1)当n=1时,1条直线把平面分成2块,又12(12+1+2)=2,命题成立.(2)假设n=k时,k≥1命题成立,即k条满足题设的直线把平面分成12(k2+k+2)块,那么当n=k+1时,第k+1条直线被k条直线分成k+1段,每段把它们所在的平面块又分成了2块,因此,增加了k+1个平面块.所以k+1条直线把平面分成了12(k2+k+2)+k+1=12[(k+1)2+(k+1)+2]块,这说明当n=k+1时,命题也成立.由(1)(2)知,对一切n∈N*,命题都成立.28.在极坐标系中,极点到直线ρcosθ=2的距离为______.答案:直线ρcosθ=2即x=2,极点的直角坐标为(0,0),故极点到直线ρcosθ=2的距离为2,故为2.29.若平面向量a与b的夹角为120°,a=(2,0),|b|=1,则|a+2b|=______.答案:∵|a+2b|=(a+2b)2=a

2+4a?b+4

b2=|a|2+4|a||b|cos<a,b>+4|b|2=22+4×2×1cos120°+4×1=2.故为:230.从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是()A.59B.49C.1121D.1021答案:基本事件总数为C93,设抽取3个数,和为偶数为事件A,则A事件数包括两类:抽取3个数全为偶数,或抽取3数中2个奇数1个偶数,前者C43,后者C41C52.∴A中基本事件数为C43+C41C52.∴符合要求的概率为C34+C14C25C39=1121.31.若椭圆x2+4(y-a)2=4与抛物线x2=2y有公共点,则实数a的取值范围是______.答案:椭圆x2+4(y-a)2=4与抛物线x2=2y联立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵椭圆x2+4(y-a)2=4与抛物线x2=2y有公共点,∴方程2y2-(4a-1)y+2a2-2=0至少有一个非负根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵两根皆负时,由韦达定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一个非负根时,-1≤a≤178故为:-1≤a≤17832.底面直径和高都是4cm的圆柱的侧面积为______cm2.答案:∵圆柱的底面直径和高都是4cm,∴圆柱的底面圆的周长是2π×2=4π∴圆柱的侧面积是4π×4=16π,故为:16π.33.如右图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,求不同着色方法共有多少种?(以数字作答).答案:本题是一个分类和分步综合的题目,根据题意可分类求第一类用三种颜色着色,由乘法原理C14C41

C12=24种方法;第二类,用四种颜色着色,由乘法原理有2C14C41

C12

C11=48种方法.从而再由加法原理得24+48=72种方法.即共有72种不同的着色方法.34.若向量、、满足++=,=3,=1,=4,则等于(

A.-11

B.-12

C.-13

D.-14答案:C35.设向量a,b,c满足a+b+c=0,a⊥b,且a,b的模分别为s,t,其中s=a1=1,t=a3,an+1=nan,则c的模为______.答案:∵向量a,b,c满足a+b+c=0,a⊥b,∴向量a,b,c构成一个直角三角形,如图∵s=a1=1,t=a3,an+1=nan,∴a21=1,即a2=1,∴a31=2,t=a3=2.∴|c|=1+4=5.故为:5.36.给定椭圆C:x2a2+y2b2=1(a>b>0),称圆心在原点O、半径是a2+b2的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(2,0),其短轴的一个端点到点F的距离为3.

(1)求椭圆C和其“准圆”的方程;

(2)过椭圆C的“准圆”与y轴正半轴的交点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,求l1,l2的方程;

(3)若点A是椭圆C的“准圆”与x轴正半轴的交点,B,D是椭圆C上的两相异点,且BD⊥x轴,求AB•AD的取值范围.答案:(1)由题意可得:a=3,c=2,b=1,∴r=(3)2+12=2.∴椭圆C的方程为x23+y2=1,其“准圆”的方程为x2+y2=4;(2)由“准圆”的方程为x2+y2=4,令y=0,解得x=±2,取P(2,0),设过点P且与椭圆相切的直线l的方程为my=x-2,联立my=x-2x23+y2=1,消去x得到关于y的一元二次方程(3+m2)x2+4m+1=0,∴△=16m2-4(3+m2)=0,解得m=±1,故直线l1、l2的方程分别为:y=x-2,y=-x+2.(3)由“准圆”的方程为x2+y2=4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论