2023年嘉兴南洋职业技术学院高职单招(数学)试题库含答案解析_第1页
2023年嘉兴南洋职业技术学院高职单招(数学)试题库含答案解析_第2页
2023年嘉兴南洋职业技术学院高职单招(数学)试题库含答案解析_第3页
2023年嘉兴南洋职业技术学院高职单招(数学)试题库含答案解析_第4页
2023年嘉兴南洋职业技术学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年嘉兴南洋职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.用反证法证明命题:“若a,b∈N,ab能被3整除,那么a,b中至少有一个能被3整除”时,假设应为()

A.b都能被3整除

B.b都不能被3整除

C.b不都能被3整除

D.a不能被3整除答案:B2.不等式0.52x>0.5x-1的解集为______.答案:由于函数y=0.5x

是R上的减函数,故由0.52x>0.5x-1可得2x<x-1,解得x<-1.故不等式0.52x>0.5x-1的解集为(-∞,-1),故为(-∞,-1).3.已知两定点F1(5,0),F2(-5,0),曲线C上的点P到F1、F2的距离之差的绝对值是8,则曲线C的方程为()A.x29-y216=1B.x216-y29=1C.x225-y236=1D.y225-x236=1答案:据双曲线的定义知:P的轨迹是以F1(5,0),F2(-5,0)为焦点,以实轴长为8的双曲线.所以c=5,a=4,b2=c2-a2=9,所以双曲线的方程为:x216-y29=1故选B4.某校欲在一块长、短半轴长分别为10米与8米的椭圆形土地中规划一个矩形区域搞绿化,则在此椭圆形土地中可绿化的最大面积为()平方米.

A.80

B.160

C.320

D.160答案:B5.已知e1

e2是夹角为60°的两个单位向量,且向量a=e1+2e2,则|a|=______.答案:由题意可得e21=1,e22=1,e1?e2=12,所以a2=(e1+2e2)2=1+2+4=7,所以|a|=7,故为:76.某校选修乒乓球课程的学生中,高一年级有40名,高二年级有50名,现用分层抽样的方法在这90名学生中抽取一个样本,已知在高一年级的学生中抽取了8名,则在高二年级的学生中应抽取的人数为______.答案:∵高一年级有40名学生,在高一年级的学生中抽取了8名,∴每个个体被抽到的概率是

840=15∵高二年级有50名学生,∴要抽取50×15=10名学生,故为:10.7.已知曲线x2a+y2b=1和直线ax+by+1=0(a,b为非零实数),在同一坐标系中,它们的图形可能是()A.

B.

C.

D.

答案:A选项中,直线的斜率大于0,故系数a,b的符号相反,此时曲线应是双曲线,故不对;B选项中直线的斜率小于0,故系数a,b的符号相同且都为负,此时曲线不存在,故不对;C选项中,直线斜率为正,故系数a,b的符号相反,且a正,b负,此时曲线应是焦点在x轴上的双曲线,图形符合结论,可选;D选项中不正确,由C选项的判断可知D不正确.故选D8.若图中直线l1,l2,l3的斜率分别为k1,k2,k3,则()A.k2<k1<k3B.k3<k2<k1C.k2<k3<k1D.k1<k3<k2答案:∵直线l2的倾斜角为钝角,∴k2<0.直线l1,l3的倾斜角为锐角,且直线l1的倾斜角小于l3的倾斜角,∴0<k1<k3.故选A.9.对变量x、y有观测数据(xi,yi)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图2.由这两个散点图可以判断()

A.变量x与y正相关,u与v正相关

B.变量x与y正相关,u与v负相关

C.变量x与y负相关,u与v正相关

D.变量x与y负相关,u与v负相关答案:C10.双曲线x29-y216=1的两个焦点为F1、F2,点P在双曲线上,若PF1⊥PF2,则点P到x轴的距离为______.答案:设点P(x,y),∵F1(-5,0)、F2(5,0),PF1⊥PF2,∴y-0x+5•y-0x-5=-1,∴x2+y2=25

①,又x29-y216=1,∴25-y29-y216=1,∴y2=16225,∴|y|=165,∴P到x轴的距离是165.11.把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是()

A.一条线段

B.一段圆弧

C.圆上一群孤立点

D.一个单位圆答案:D12.将一枚均匀硬币

随机掷20次,则恰好出现10次正面向上的概率为()

A.

B.

C.

D.答案:D13.双曲线的渐进线方程是3x±4y=0,则双曲线的离心率等于______.答案:由题意可得,当焦点在x轴上时,ba=34,∴ca=a2+b2a=a2+(3a4)2a=54.当焦点在y轴上时,ab=34,∴ca=a2+b2a=a2+(4a3)2a=53,故为:53

或54.14.设a,b,c都是正数,求证:bca+cab+abc≥a+b+c.答案:证明:∵2(bca+acb+abc)=(bca+acb)+(bca+abc)+(acb+abc)≥2abc2ab+2acb2ac+2bca2bc=2c+2b+2a,∴bca+acb+abc≥a+b+c当且仅当a=b=c时,等号成立.15.知x、y、z均为实数,

(1)若x+y+z=1,求证:++≤3;

(2)若x+2y+3z=6,求x2+y2+z2的最小值.答案:(1)证明略(2)x2+y2+z2的最小值为解析:(1)证明

因为(++)2≤(12+12+12)(3x+1+3y+2+3z+3)=27.所以++≤3.

7分(2)解

因为(12+22+32)(x2+y2+z2)≥(x+2y+3z)2=36,即14(x2+y2+z2)≥36,所以x2+y2+z2的最小值为.

14分16.如果输入2,那么执行图中算法的结果是()A.输出2B.输出3C.输出4D.程序出错,输不出任何结果答案:第一步:输入n=2第二步:n=2+1=3第三步:n=3+1=4第四步:输出4故为C.17.在平面直角坐标系中,点A(4,-2)按向量a=(-1,3)平移,得点A′的坐标是()A.(5,-5)B.(3,1)C.(5,1)D.(3,-5)答案:设A′的坐标为(x′,y′),则x′=4-1=3y′=-2+3=1,∴A′(3,1).故选B.18.设D为△ABC的边AB上一点,P为△ABC内一点,且满足AD=23AB,AP=AD+14BC,则S△APDS△ABC=()A.29B.16C.754D.427答案:由题意,AP=AD+DP,AP=AD+14BC∴DP=14BC∴三角形ADP的高三角形ABC=ADAB=23∴S△APDS△ABC=23×14=16故选B.19.某种产品的广告费支出x与销售额y(单位:万元)之间有如下一组数据:

x24568y3040605070若y与x之间的关系符合回归直线方程y=6.5x+a,则a的值是()A.17.5B.27.5C.17D.14答案:由表格得.x=5,.y=50.

∵y关于x的线性回归方程为y=6.5x+a,∴50=6.5×5+a,∴a=17.5.故选A.20.在repeat语句的一般形式中有“until

A”,其中A是

(

)A.循环变量B.循环体C.终止条件D.终止条件为真答案:D解析:此题考查程序语句解:Until标志着直到型循环,直到终止条件为止,因此until后跟的是终止条件为真的语句.答案:D.21.己知集合A={sinα,cosα},则α的取值范围是______.答案:由元素的互异性可得sinα≠cosα,∴α≠kπ+π4,k∈z.故α的取值范围是{α|α≠kπ+π4,k∈z},故为{α|α≠kπ+π4,k∈z}.22.在平面直角坐标系xOy中,若抛物线C:x2=2py(p>0)的焦点为F(q,1),则p+q=______.答案:抛物线C:x2=2py(p>0)的焦点坐标为(0,p2),又已知焦点为为F(q,1),∴q=0,p2=1,故p+q=2,故为2.23.设集合A={1,3},集合B={1,2,4,5},则集合A∪B=()A.{1,3,1,2,4,5}B.{1}C.{1,2,3,4,5}D.{2,3,4,5}答案:∵集合A={1,3},集合B={1,2,4,5},∴集合A∪B={1,2,3,4,5}.故选C.24.证明不等式1+12+13+…+1n<2n(n∈N*)答案:证法一:(1)当n=1时,不等式左端=1,右端=2,所以不等式成立;(2)假设n=k(k≥1)时,不等式成立,即1+12+13+…+1k<2k,则1+12+13+…+1k+1<2k+1k+1=2k(k+1)+1k+1<k+(k+1)+1k+1=2k+1,∴当n=k+1时,不等式也成立.综合(1)、(2)得:当n∈N*时,都有1+12+13+…+1n<2n.证法二:设f(n)=2n-(1+12+13+…+1n),那么对任意k∈N*

都有:f(k+1)-f(k)=2(k+1-k)-1k+1=1k+1[2(k+1)-2k(k+1)-1]=1k+1•[(k+1)-2k(k+1)+k]=(k+1-k)2k+1>0∴f(k+1)>f(k)因此,对任意n∈N*

都有f(n)>f(n-1)>…>f(1)=1>0,∴1+12+13+…+1n<2n.25.已知向量a=(1,1)与b=(2,3),用坐标表示2a+b为______.答案:根据题意,a=(1,1)与b=(2,3),则2a+b=2(1,1)+(2,3)=(4,5);故为(4,5).26.某次乒乓球比赛的决赛在甲乙两名选手之间举行,比赛采用五局三胜制,按以往比赛经验,甲胜乙的概率为23.

(1)求比赛三局甲获胜的概率;

(2)求甲获胜的概率;

(3)设甲比赛的次数为X,求X的数学期望.答案:记甲n局获胜的概率为Pn,n=3,4,5,(1)比赛三局甲获胜的概率是:P3=C33(23)3=827;(2)比赛四局甲获胜的概率是:P4=C23(23)3

(13)=827;比赛五局甲获胜的概率是:P5=C24(13)2(23)3=1681;甲获胜的概率是:P3+P4+P5=6481.(3)记乙n局获胜的概率为Pn′,n=3,4,5.P3′=C33(13)3=127,P4′=C23(13)3

(23)=227;P5′=C24(13)3(23)2=881;故甲比赛次数的分布列为:X345P(X)P3+P3′P4+P4′P5+P5′所以甲比赛次数的数学期望是:EX=3(127+827)+4(827+227)+5(1681+881

)=10727.27.不等式的解集是(

A.(-∞,-1)∪(-1,2]

B.[-1,2]

C.(-∞,-1)∪[2,+∞)

D.(-1,2]答案:D28.已知空间向量a=(1,2,3),点A(0,1,0),若AB=-2a,则点B的坐标是()A.(-2,-4,-6)B.(2,4,6)C.(2,3,6)D.(-2,-3,-6)答案:设B=(x,y,z),因为AB=-2a,所以(x,y-1,z)=-2(1,2,3),所以:x=-2,y-1=-4,z=-6,即x=-2,y=-3,z=-6.B(-2,-3,-6).故选D.29.下列赋值语句中正确的是()

A.m+n=3

B.3=i

C.i=i2+1

D.i=j=3答案:C30.若对n个向量a1,a2,…,an,存在n个不全为零的实数k1,k2…,kn,使得k1a1+k2a2+…+knan=0成立,则称向量a1,a2,…,an为“线性相关”.依此规定,请你求出一组实数k1,k2,k3的值,它能说明a1=(1,0),a2=(1,-1),a3=(2,2)“线性相关”.k1,k2,k3的值分别是______(写出一组即可).答案:设a1=(1,0),a2=(1,-1),a3=(2,2)“线性相关”.则存在实数,k1,k2,k3,使k1a1+k2a2+k3a3=0∵a1=(1,0),a2=(1,-1),a3=(2,2)∴k1+k2+2k3=0,且-k2+2k3=0令k3=1,则k2=2,k1=-4故为:-4,2,131.设f(n)=nn+1,g(n)=(n+1)n,n∈N*.

(1)当n=1,2,3,4时,比较f(n)与g(n)的大小.

(2)根据(1)的结果猜测一个一般性结论,并加以证明.答案:(1)当n=1时,nn+1=1,(n+1)n=2,此时,nn+1<(n+1)n,当n=2时,nn+1=8,(n+1)n=9,此时,nn+1<(n+1)n,当n=3时,nn+1=81,(n+1)n=64,此时,nn+1>(n+1)n,当n=4时,nn+1=1024,(n+1)n=625,此时,nn+1>(n+1)n,(2)根据上述结论,我们猜想:当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.①当n=3时,nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假设当n=k时,kk+1>(k+1)k成立,即:kk+1(k+1)k>1则当n=k+1时,(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即当n=k+1时也成立,∴当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.32.函数f(x)=2|log2x|的图象大致是()

A.

B.

C.

D.

答案:C33.O是正六边形ABCDE的中心,且OA=a,OB=b,AB=c,在以A,B,C,D,E,O为端点的向量中:

(1)与a相等的向量有

______;

(2)与b相等的向量有

______;

(3)与c相等的向量有

______.答案:如图,在O是正六边形ABCDE的中心,以A,B,C,D,E,O为端点的向量中(1)与a相等的向量有EF,DO,CB;(2)与b相等的向量有DC,EO,FA;(3)与c相等的向量有FO,OC,ED.故三个空依次应填EF,DO,CB;DC,EO,FA;FO,OC,ED.34.某市为研究市区居民的月收入调查了10000人,并根据所得数据绘制了样本的频率分布直方图(如图).

(Ⅰ)求月收入在[3000,3500)内的被调查人数;

(Ⅱ)估计被调查者月收入的平均数(同一组中的数据用该组区间的中点值作代表).

答案:(I)10000×0.0003×500=1500(人)∴月收入在[3000,3500)内的被调查人数1500人(II).x=1250×0.1+1750×0.2+2250×0.25+2750×0.25+3250×0.15+3750×0.05=2400∴估计被调查者月收入的平均数为240035.已知△ABC的三个顶点为A(1,-2,5),B(-1,0,1),C(3,-4,5),则边BC上的中线长为______.答案:∵A(1,-2,5),B(-1,0,1),C(3,-4,5),∴BC的中点为D(1,-2,3),∴|AD|=(1-1)2+(-2+2)2+(5-3)2=2.故为:2.36.直线y=2x与直线x+y=3的交点坐标是

______.答案:联立两直线方程得y=2xx+y=3,解得x=1y=2所以直线y=2x与直线x+y=3的交点坐标是(1,2)故为(1,2).37.把4名男生和4名女生排成一排,女生要排在一起,不同排法的种数为()

A.A88

B.A55A44

C.A44A44

D.A85答案:B38.已知α、β均为锐角,若p:sinα<sin(α+β),q:α+β<π2,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件答案:当sinα<sin(α+β)时,α+β<π2不一定成立故sinα<sin(α+β)?α+β<π2,为假命题;而若α+β<π2,则由正弦函数在(0,π2)单调递增,易得sinα<sin(α+β)成立即α+β<π2?sinα<sin(α+β)为真命题故p是q的必要而不充分条件故选B.39.如图所示的程序框图,运行相应的程序,若输出S的值为254,则判断框①中应填入的条件是()A.n≤5B.n≤6C.n≤7D.n≤8答案:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出满足条件S=2+22+23+…+2n=126时S的值∵2+22+23+…+27=254,故最后一次进行循环时n的值为7,故判断框中的条件应为n≤7.故选C.40.曲线x=sin2ty=sint(t为参数)的普通方程为______.答案:因为曲线x=sin2ty=sint(t为参数)∴sint=y,代入x=sin2t,可得x=y2,其中-1≤y≤1.故为:x=y2,(-1≤y≤1).41.下面哪个不是算法的特征()A.抽象性B.精确性C.有穷性D.唯一性答案:根据算法的概念,可知算法具有抽象性、精确性、有穷性等,同一问题,可以有不同的算法,故选D.42.已知实数a,b满足等式2a=3b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;

⑤a=b.其中可能成立的关系式有()

A.①②③

B.①②⑤

C.①③⑤

D.③④⑤答案:B43.命题“有的三角形的三个内角成等差数列”的否定是______.答案:根据特称命题的否定为全称命题可知,“有的三角形的三个内角成等差数列”的否定为“任意三角形的三个内角不成等差数列”,故为:任意三角形的三个内角不成等差数列44.已知指数函数f(x)=ax(a>0且a≠1)过点(3,8),求f(4)=______.答案:设指数函数为y=ax(a>0且a≠1)将(3,8)代入得8=a3解得a=2,所以y=2x,则f(4)=42=16故为16.45.如图:一个力F作用于小车G,使小车G发生了40米的位移,F的大小为50牛,且与小车的位移方向的夹角为60°,则F在小车位移方向上的正射影的数量为______,力F做的功为______牛米.答案:如图,∵|F|=50,且F与小车的位移方向的夹角为60°,∴F在小车位移方向上的正射影的数量为:|F|cos60°=50×12=25(牛).∵力F作用于小车G,使小车G发生了40米的位移,∴力F做的功w=25×40=1000(牛米).故为:25牛,1000.46.已知球的表面积等于16π,圆台上、下底面圆周都在球面上,且下底面过球心,圆台的轴截面的底角为π3,则圆台的轴截面的面积是()A.9πB.332C.33D.6答案:设球的半径为R,由题意4πR2=16,R=2,圆台的轴截面的底角为π3,可得圆台母线长为2,上底面半径为1,圆台的高为3,所以圆台的轴截面的面积S=12(2+4)×3=33故选C47.如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E.求∠DAC的度数与线段AE的长.答案:如图,连接OC,因BC=OB=OC=3,因此∠CBO=60°,由于∠DCA=∠CBO,所以∠DCA=60°,又AD⊥DC得∠DAC=30°;(5分)又因为∠ACB=90°,得∠CAB=30°,那么∠EAB=60°,从而∠ABE=30°,于是AE=12AB=3.(10分)48.已知边长为1的正方形ABCD,则|AB+BC+CD|=______.答案:利用向量加法的几何性质,得AB+BC=AC∴AB+BC+CD=AD因为正方形的边长等于1所以|AB+BC+CD|=|AD|

=1故为:149.已知集合A={0,2,a2},B={1,a},若A∪B={0,1,2,4},则实数a的值为______.答案:根据题意,集合A={0,2,a2},B={1,a},且A∪B={0,1,2,4},则有a=4,或a=4,a=4时,A={0,2,16},B={1,4},A∪B={0,1,2,4,16},不合题意,舍去;a=2时,A={0,2,4},B={1,2},A∪B={0,1,2,4},符合;故a=2.50.已知x1>0,x1≠1,且xn+1=xn(x2n+3)3x2n+1,(n=1,2,…).试证:数列{xn}或者对任意自然数n都满足xn<xn+1,或者对任意自然数n都满足xn>xn+1.答案:证:首先,xn+1-xn=xn(x2n+3)3x2n+1-xn=2xn(1-x2n)3x2n+1,由于x1>0,由数列{xn}的定义可知xn>0,(n=1,2,…)所以,xn+1-xn与1-xn2的符号相同.①假定x1<1,我们用数学归纳法证明1-xn2>0(n∈N)显然,n=1时,1-x12>0设n=k时1-xk2>0,那么当n=k+1时1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2>0,因此,对一切自然数n都有1-xn2>0,从而对一切自然数n都有xn<xn+1②若x1>1,当n=1时,1-x12<0;设n=k时1-xk2<0,那么当n=k+1时1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2<0,因此,对一切自然数n都有1-xn2<0,从而对一切自然数n都有xn>xn+1第2卷一.综合题(共50题)1.根据给出的程序语言,画出程序框图,并计算程序运行后的结果.

答案:程序框图:模拟程序运行:当j=1时,n=1,当j=2时,n=1,当j=3时,n=1,当j=4时,n=2,…当j=8时,n=2,…当j=11时,n=2,当j=12时,此时不满足循环条件,退出循环程序运行后的结果是:2.2.已知双曲线的a=5,c=7,则该双曲线的标准方程为()

A.-=1

B.-=1

C.-=1或-=1

D.-=0或-=0答案:C3.实数变量m,n满足m2+n2=1,则坐标(m+n,mn)表示的点的轨迹是()

A.抛物线

B.椭圆

C.双曲线的一支

D.抛物线的一部分答案:A4.如图:在平行六面体ABCD-A1B1C1D1中,M为A1C1与B1D1的交点.若则下列向量中与相等的向量是()

A.

B.

C.

D.

答案:A5.设a、b为单位向量,它们的夹角为90°,那么|a+3b|等于()A.7B.10C.13D.4答案:∵a,b它们的夹角为90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10,|a+3b|=10.故选B.6.用行列式讨论关于x,y

的二元一次方程组mx+y=m+1x+my=2m解的情况并求解.答案:D=.m11m.=m2-1=(m+1)(m-1),Dx=.m+112mm.=m2-m=m(m-1),Dy=.mm+112m.=2m2-m-1=(2m+1)(m-1),…(各(1分)共3分)(1)当m≠-1,m≠1时,D≠0,方程组有唯一解,解为(4)x=mm+1(5)y=2m+1m+1(6)…((2分),其中解1分)(2)当m=-1时,D=0,Dx≠0,方程组无解;…(2分)(3)当m=1时,D=Dx=Dy=0,方程组有无穷多组解,此时方程组化为x+y=2x+y=2,令x=t(t∈R),原方程组的解为x=ty=2-t(t∈R).…((2分),没写出解扣1分)7.已知直线l过点P(2,1)且与x轴、y轴的正半轴分别交于A、B两点,O为坐标原点,则三角形OAB面积的最小值为______.答案:设A(a,0)、B(0,b),a>0,b>0,AB方程为xa+

yb=1,点P(2,1)代入得2a+1b=1≥22ab,∴ab≥8

(当且仅当a=4,b=2时,等号成立),故三角形OAB面积S=12

ab≥4,故为4.8.山东鲁洁棉业公司的科研人员在7块并排、形状大小相同的试验田上对某棉花新品种进行施化肥量x对产量y影响的试验,得到如下表所示的一组数据(单位:kg).

施化肥量x15202530354045棉花产量y330345365405445450455(1)画出散点图;

(2)判断是否具有相关关系.答案:(1)根据已知表格中的数据可得施化肥量x和产量y的散点图如下所示:(2)根据(1)中散点图可知,各组数据对应点大致分布在一个条形区域内(一条直线附近)故施化肥量x和产量y具有线性相关关系.9.函数f(x)为偶函数,其图象与x轴有四个交点,则该函数的所有零点之和为()A.4B.2C.1D.0答案:因为函数f(x)为偶函数,所以函数图象关于y轴对称.又其图象与x轴有四个交点,所以四个交点关于y轴对称,不妨设四个交点的横坐标为x1,x2,x3,x4,则根据对称性可知x1+x2+x3+x4=0.故选D.10.在极坐标系中,过点p(3,)且垂直于极轴的直线方程为()

A.Pcosθ=

B.Psinθ=

C.P=cosθ

D.P=sinθ答案:A11.“a=18”是“对任意的正数x,2x+ax≥1的”()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:当“a=18”时,由基本不等式可得:“对任意的正数x,2x+ax≥1”一定成立,即“a=18”?“对任意的正数x,2x+ax≥1”为真命题;而“对任意的正数x,2x+ax≥1的”时,可得“a≥18”即“对任意的正数x,2x+ax≥1”?“a=18”为假命题;故“a=18”是“对任意的正数x,2x+ax≥1的”充分不必要条件故选A12.如图所示,O点在△ABC内部,D、E分别是AC,BC边的中点,且有OA+2OB+3OC=O,则△AEC的面积与△AOC的面积的比为()

A.2

B.

C.3

D.

答案:B13.已知x+2y+3z=1,则x2+y2+z2取最小值时,x+y+z的值为______.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+32)故x2+y2+z2≥114,当且仅当x1=y2=z3取等号,此时y=2x,z=3x,x+2y+3z=14x=1,∴x=114,y=214,x=314,x+y+z=614=37.故为:37.14.如图程序输出的结果是()

A.3,4

B.4,4

C.3,3

D.4,3

答案:B15.将正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,E是CD中点,则∠AED的大小为()

A.45°

B.30°

C.60°

D.90°答案:D16.对于空间四点A、B、C、D,命题p:AB=xAC+yAD,且x+y=1;命题q:A、B、C、D四点共面,则命题p是命题q的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:根据命题p:AB=xAC+yAD,且x+y=1,可得AB

、AC

、AD

共面,从而可得命题q:A、B、C、D四点共面成立,故命题p是命题q的充分条件.根据命题q:A、B、C、D四点共面,可得A、B、C、D四点有可能在同一条直线上,若AB=xAC+yAD,则x+y不一定等于1,故命题p不是命题q的必要条件.综上,可得命题p是命题q的充分不必要条件.故选:A.17.以过椭圆+=1(a>b>0)的右焦点的弦为直径的圆与其右准线的位置关系是()

A.相交

B.相切

C.相离

D.不能确定答案:C18.已知二次函数f(x)=x2+bx+c,f(0)<0,则该函数零点的个数为()

A.1

B.2

C.3

D.0答案:B19.已知P(4,-9),Q(-2,3)且Y轴与线段PQ交于M,则Q分的比为()

A.-2

B.-

C.

D.3答案:B20.在空间直角坐标系中,已知点P(a,0,0),Q(4,1,2),且|PQ|=,则a=()

A.1

B.-1

C.-1或9

D.1或9答案:C21.如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线答案:本题其实就是一个平面斜截一个圆柱表面的问题,因为三角形面积为定值,以AB为底,则底边长一定,从而可得P到直线AB的距离为定值,分析可得,点P的轨迹为一以AB为轴线的圆柱面,与平面α的交线,且α与圆柱的轴线斜交,由平面与圆柱面的截面的性质判断,可得P的轨迹为椭圆.22.设p,q是简单命题,则“p且q为真”是“p或q为真”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件答案:若“p且q为真”成立,则p,q全真,所以“p或q为真”成立若“p或q为真”则p,q全真或真q假或p假q真,所以“p且q为真”不一定成立∴“p且q为真”是“p或q为真”的充分不必要条件故选B23.将两枚质地均匀透明且各面分别标有1,2,3,4的正四面体玩具各掷一次,设事件A={两个玩具底面点数不相同},B={两个玩具底面点数至少出现一个2点},则P(B|A)=______.答案:设事件A={两个玩具底面点数不相同},包括以下12个基本事件:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).事件B={两个玩具底面点数至少出现一个2点},则包括以下6个基本事件:(1,2),(2,1),(2,3),(2,4),(3,2),(4,2).故P(B|A)=612=12.故为12.24.半径为5,圆心在y轴上,且与直线y=6相切的圆的方程为______.答案:如图所示,因为半径为5,圆心在y轴上,且与直线y=6相切,所以可知有两个圆,上圆圆心为(0,11),下圆圆心为(0,1),所以圆的方程为x2+(y-1)2=25或x2+(y-11)2=25.25.某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费用之和最小,则x=______吨.答案:某公司一年购买某种货物400吨,每次都购买x吨,则需要购买400x次,运费为4万元/次,一年的总存储费用为4x万元,一年的总运费与总存储费用之和为400x?4+4x万元,400x?4+4x≥2(400x×4)×4x=160,当且仅当1600x=4x即x=20吨时,等号成立即每次购买20吨时,一年的总运费与总存储费用之和最小.故为:20.26.等于()

A.a16

B.a8

C.a4

D.a2答案:C27.直三棱柱ABC-A1B1C1

中,若CA=a,CB=b,CC1=c,则A1B=______.答案:向量加法的三角形法则,得到A1B=A1C+CB=A1C1+C1C+CB=-CA-CC1+CB=-a-c+b.故为:-a-c+b.28.“a=2”是“直线ax+2y=0平行于直线x+y=1”的()

A.充分而不必要条件

B.必要而不充分条件

C.充分必要条件

D.既不充分也不必要条件答案:C29.设集合A={x|x<1,x∈R},B={x|1x>1,x∈R},则下列图形能表示A与B关系的是()A.

B.

C.

D.

答案:B={x|1x>1}={x|0<x<1},所以B?A.所以对应的关系选A.故选A.30.(1)把二进制数化为十进制数;(2)把化为二进制数.答案:(1)45,(2)解析:(1)先把二进制数写成不同位上数字与2的幂的乘积之和的形式,再按照十进制的运算规则计算出结果;(2)根据二进制数“满二进一”的原则,可以用连续去除或所得商,然后取余数.(1)(2),,,,.所以..这种算法叫做除2余法,还可以用下面的除法算式表示;把上式中各步所得的余数从下到上排列,得到【名师指引】直接插入排序和冒泡排序是两种常用的排序方法,通过该例,我们对比可以发现,直接插入排序比冒泡排序更有效一些,执行的操作步骤更少一些..31.已知圆O:x2+y2=5和点A(1,2),则过A且与圆O相切的直线与两坐标轴围成的三角形的面积=______.答案:由题意知,点A在圆上,切线斜率为-1KOA=-121=-12,用点斜式可直接求出切线方程为:y-2=-12(x-1),即x+2y-5=0,从而求出在两坐标轴上的截距分别是5和52,所以,所求面积为12×52×5=254.32.引入复数后,数系的结构图为()

A.

B.

C.

D.

答案:A33.如图,正方体ABCD-A1B1C1D1中,点E是棱BC的中点,点F

是棱CD上的动点.

(Ⅰ)试确定点F的位置,使得D1E⊥平面AB1F;

(Ⅱ)当D1E⊥平面AB1F时,求二面角C1-EF-A的余弦值以及BA1与面C1EF所成的角的大小.答案:(I)由题意可得:以A为原点,分别以直线AB、AD、AA1为x轴、y轴、z轴建立空间直角坐标系,不妨设正方体的棱长为1,且DF=x,则A1(0,0,1),A(0,0,0),B(1,0,0),D(0,1,0),B1(1,0,1),D1(0,1,1),E(1,12,0),F(x,1,0)所以D1E=(1,-12,-1),AB1=(1,0,1),AF=(x,1,0)由D1E⊥面AB1F⇔D1E⊥AB1且D1E⊥AF,所以D1E•AB1=0D1E•AF=0,可解得x=12所以当点F是CD的中点时,D1E⊥平面AB1F.(II)当D1E⊥平面AB1F时,F是CD的中点,F(12,1,0)由正方体的结构特征可得:平面AEF的一个法向量为m=(0,0,1),设平面C1EF的一个法向量为n=(x,y,z),在平面C1EF中,EC1=(0,12,1),EF=(-12,12,0),所以EC1•n=0EF•n

=0,即y=-2zx=y,所以取平面C1EF的一个法向量为n=(2,2,-1),所以cos<m,n>=-13,所以<m,n>=π-arccos13,又因为当把m,n都移向这个二面角内一点时,m背向平面AEF,而n指向平面C1EF,所以二面角C1-EF-A的大小为π-arccos13又因为BA1=(-1,0,1),所以cos<BA1,n>=-22,所以<BA1,n>=135∘,∴BA1与平面C1EF所成的角的大小为45°.34.已知A(-1,2),B(2,-2),则直线AB的斜率是()

A.

B.

C.

D.答案:A35.三棱柱ABC-A1B1C1中,M、N分别是BB1、AC的中点,设,,=,则等于()

A.

B.

C.

D.答案:A36.已知方程x2-(k2-9)x+k2-5k+6=0的一根小于1,另一根大于2,求实数k的取值范围.答案:令f(x)=x2-(k2-9)x+k2-5k+6,则∵方程x2-(k2-9)x+k2-5k+6=0的一根小于1,另一根大于2,∴f(1)<0

且f(2)<0,∴12-(k2-9)+k2-5k+6<0且22-2(k2-9)+k2-5k+6<0,即16-5k<0且k2+5k-28>0,解得k>137-52.37.若f(x)是定义在R上的函数,满足对任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,且f(2)=3,则f(8)=______.答案:由题意可知:对任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,所以x=y=2,可知f(4)=f(2+2)=f(2)?f(2),所以f(4)=9;令x=y=4,可知f(8)=f(4+4)=f(4)?f(4)=92=81.故为:81.38.“因为指数函数y=ax是增函数(大前提),而y=(12)x是指数函数(小前提),所以函数y=(12)x是增函数(结论)”,上面推理的错误在于______(大前提、小前提、结论).答案:∵当a>1时,函数是一个增函数,当0<a<1时,指数函数是一个减函数∴y=ax是增函数这个大前提是错误的,从而导致结论错.故为:大前提.39.△ABC中,若有一个内角不小于120°,求证:最长边与最短边之比不小于3.答案:设最大角为∠A,最小角为∠C,则最大边为a,最小边为c因为A≥120°,所以B+C≤60°,且C≤B,所以2C≤B+C≤60°,C≤30°.所以ac=sinAsinC=sin(B+C)sinC≥sin2CsinC=2cosC≥3.40.从一批羽毛球产品中任取一个,质量小于4.8

g的概率是0.3,质量不小于4.85

g的概率是0.32,那么质量在[4.8,4.85)g范围内的概率是()

A.0.62

B.0.38

C.0.7

D.0.68答案:B41.①学校为了了解高一学生的情况,从每班抽2人进行座谈;②一次数学竞赛中,某班有10人在110分以上,40人在90~100分,12人低于90分.现在从中抽取12人了解有关情况;③运动会服务人员为参加400m决赛的6名同学安排跑道.就这三件事,合适的抽样方法为()A.分层抽样,分层抽样,简单随机抽样B.系统抽样,系统抽样,简单随机抽样C.分层抽样,简单随机抽样,简单随机抽样D.系统抽样,分层抽样,简单随机抽样答案:①是从较多的一个总体中抽取样本,且总体之间没有差异,故用系统抽样,②是从不同分数的总体中抽取样本,总体之间的差异比较大,故用分层抽样,③是六名运动员选跑道,用简单随机抽样,故选D.42.a=0是复数a+bi(a,b∈R)为纯虚数的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案:当a=0时,复数a+bi=bi,当b=0是不是纯虚数即“a=0”成立推不出“复数a+bi(a,b∈R)为纯虚数”反之,当复数a+bi(a,b∈R)为纯虚数,则有a=0且b≠0即“复数a+bi(a,b∈R)为纯虚数”成立能推出“a=0“成立故a=0是复数a+bi(a,b∈R)为纯虚数的必要不充分条件故选B43.下列图形中不一定是平面图形的是()

A.三角形

B.四边相等的四边形

C.梯形

D.平行四边形答案:B44.已知向量,,则“,λ∈R”成立的必要不充分条件是()

A.

B与方向相同

C.

D.答案:D45.一部记录影片在4个单位轮映,每一单位放映一场,则不同的轮映方法数有()A.16B.44C.A44D.43答案:本题可以看做把4个单位看成四个位置,在四个位置进行全排列,故有A44种结果,故选C.46.平面向量的夹角为,则等于(

A.

B.3

C.7

D.79答案:A47.若与垂直,则k的值是()

A.2

B.1

C.0

D.答案:D48.已知集合{2x,x+y}={7,4},则整数x=______,y=______.答案:∵{2x,x+y}={7,4},∴2x=4x+y=7或2x=7x+y=4解得x=2y=5或x=3.5y=0.5不是整数,舍去故为:2,549.若直线l过抛物线y=ax2(a>0)的焦点,并且与y轴垂直,若l被抛物线截得的线段长为4,则a=______.答案:抛物线方程整理得x2=1ay,焦点(0,14a)l被抛物线截得的线段长即为通径长1a,故1a=4,a=14;故为14.50.函数y=ax的反函数的图象过点(9,2),则a的值为______.答案:依题意,点(9,2)在函数y=ax的反函数的图象上,则点(2,9)在函数y=ax的图象上将x=2,y=9,代入y=ax中,得9=a2解得a=3故为:3.第3卷一.综合题(共50题)1.在画两个变量的散点图时,下面哪个叙述是正确的()

A.预报变量x轴上,解释变量y轴上

B.解释变量x轴上,预报变量y轴上

C.可以选择两个变量中任意一个变量x轴上

D.可以选择两个变量中任意一个变量y轴上答案:B2.设等比数列{an}的首项为a1,公比为q,则“a1<0且0<q<1”是“对于任意n∈N*都有an+1>an”的

()

A.充分不必要条件

B.必要不充分条件

C.充分必要条件

D.既不充分又不必要条件答案:A3.已知曲线x2a+y2b=1和直线ax+by+1=0(a,b为非零实数),在同一坐标系中,它们的图形可能是()A.

B.

C.

D.

答案:A选项中,直线的斜率大于0,故系数a,b的符号相反,此时曲线应是双曲线,故不对;B选项中直线的斜率小于0,故系数a,b的符号相同且都为负,此时曲线不存在,故不对;C选项中,直线斜率为正,故系数a,b的符号相反,且a正,b负,此时曲线应是焦点在x轴上的双曲线,图形符合结论,可选;D选项中不正确,由C选项的判断可知D不正确.故选D4.已知:|.a|=1,|.b|=2,<a,b>=60°,则|a+b|=______.答案:由题意|a+b|2=(a+b)2=a2+2b?a+b2=1+4+2×2×1×cos<a,b>=5+2=7∴|a+b|=7故为75.从直径AB的延长线上取一点C,过点C作该圆的切线,切点为D,若∠ACD的平分线交AD于点E,则∠CED的度数是()

A.30°

B.45°

C.60°

D.随点C的变化而变化答案:B6.若复数z=(m2-1)+(m+1)i为纯虚数,则实数m的值等于______.答案:复数z=(m2-1)+(m+1)i当z是纯虚数时,必有:m2-1=0且m+1≠0解得,m=1.故为1.7.△ABC中,∠A外角的平分线与此三角形外接圆相交于P,求证:BP=CP.

答案:证明:∠CBP=∠CAP=∠PAD又∠1=∠2由∠CAD=∠ACB+∠CBA=∠ACB+∠CBP+∠2=∠ACB+∠1+∠CBP=∠BCP+∠CBP∴∠BCP=∠CBP,∴BP=CP.8.某射手射击所得环数X的分布列为:

ξ

4

5

6

7

8

9

10

P

0.02

0.04

0.06

0.09

0.28

0.29

0.22

则此射手“射击一次命中环数大于7”的概率为()

A.0.28

B.0.88

C.0.79

D.0.51答案:C9.一次函数y=3x+2的斜率和截距分别是()A.2、3B.2、2C.3、2D.3、3答案:根据一次函数的定义和直线的斜截式方程知,此一次函数的斜率为3、截距为2故选C10.在极坐标系中,直线l经过圆ρ=2cosθ的圆心且与直线ρcosθ=3平行,则直线l与极轴的交点的极坐标为______.答案:由ρ=2cosθ可知此圆的圆心为(1,0),直线ρcosθ=3是与极轴垂直的直线,所以所求直线的极坐标方程为ρcosθ=1,所以直线l与极轴的交点的极坐标为(1,0).故为:(1,0).11.已知双曲线x2-y22=1,经过点M(1,1)能否作一条直线l,使直线l与双曲线交于A、B,且M是线段AB的中点,若存在这样的直线l,求出它的方程;若不存在,说明理由.答案:设过点M(1,1)的直线方程为y=k(x-1)+1或x=1(1)当k存在时有y=k(x-1)+1x2

-y22=1得(2-k2)x2+(2k2-2k)x-k2+2k-3=0

(1)当直线与双曲线相交于两个不同点,则必有△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,k<32

又方程(1)的两个不同的根是两交点A、B的横坐标∴x1+x2=2(k-k2)2-k2

又M(1,1)为线段AB的中点∴x1+x22=1

即k-k22-k2=1

k=2

∴k=2,使2-k2≠0但使△<0因此当k=2时,方程(1)无实数解故过点m(1,1)与双曲线交于两点A、B且M为线段AB中点的直线不存在.(2)当x=1时,直线经过点M但不满足条件,综上,符合条件的直线l不存在12.若向量e1,e2不共线,且ke1+e2与e1+ke2可以作为平面内的一组基底,则实数k的取值范围为______.答案:∵当(ke1+e2)∥(e1+ke2),∴ke1+e2=λ(e1+ke2),∴ke1+e2=λe1+λke2,∴k=λ,1=λk,∴k2=1,k=±1,故ke1+e2与e1+ke2可以作为平面内的一组基底,则实数k的取值范围为k≠±1.故为:k≠±1.13.设O是坐标原点,F是抛物线y2=2px(p>0)的焦点,A是抛物线上的一点,FA与x轴正向的夹角为60°,则|OA|为______.答案:过A作AD⊥x轴于D,令FD=m,则FA=2m,p+m=2m,m=p.∴OA=(p2+p)2+(3p)2=212p.故为:212p14.某学校为了了解学生的日平均睡眠时间(单位:h),随机选择了n名同学进行调查,下表是这n名同学的日平均睡眠时间的频率分布表:

序号(i)分组(睡眠时间)频数(人数)频率1[4,5)40.082[5,6)x0.203[6,7)ay4[7,8)bz5[8,9]m0.O8(1)求n的值;若a=20,试确定x、y、z、m的值;

(2)统计方法中,同一组数据常用该组区间的中点值(例如[4,5)的中点值4.5)作为代表.若据此计算的这n名学生的日平均睡眠时间的平均值为6.68.求a、b的值.答案:(1)样本容量n=40.08=50,∴x=0.20×50=10,y=0.4,z=0.24,m=4(5分)(2)n=50,P(i=3)=a50,P(i=4)=b50平均时间为:4.5×0.08+5.5×0.2+6.5×a50+7.5×b50+8.5×0.08=6.68,即13a+15b=454

①(9分)又4+10+a+b+4=50,即a+b=32

②由①,②解得:a=13,b=1.(12分)15.向量a、b满足|a|=1,|b|=2,且a与b的夹角为π3,则|a+2b|=______.答案:∵|a|=1,|b|=2,且a与b的夹角为π3,∴a?b=|a|?|b|?cosπ3=1因此,(a+2b)2=|a|2+4a?b+4|b|2=12+4×1+4|b|2=21∴|a+2b|=21故为:2116.双曲线x29-y216=1的两个焦点为F1、F2,点P在双曲线上,若PF1⊥PF2,则点P到x轴的距离为______.答案:设点P(x,y),∵F1(-5,0)、F2(5,0),PF1⊥PF2,∴y-0x+5•y-0x-5=-1,∴x2+y2=25

①,又x29-y216=1,∴25-y29-y216=1,∴y2=16225,∴|y|=165,∴P到x轴的距离是165.17.一张纸上画有一个半径为R的圆O和圆内一个定点A,且OA=a,折叠纸片,使圆周上某一点A′刚好与点A重合.这样的每一种折法,都留下一条折痕.当A′取遍圆周上所有点时,求所有折痕所在直线上点的集合.答案:对于⊙O上任意一点A′,连AA′,作AA′的垂直平分线MN,连OA′,交MN于点P,则OP+PA=OA′=R.由于点A在⊙O内,故OA=a<R.从而当点A′取遍圆周上所有点时,点P的轨迹是以O、A为焦点,OA=a为焦距,R(R>a)为长轴的椭圆C.而MN上任一异于P的点Q,都有OQ+QA=OQ+QA′>OA′,故点Q在椭圆C外,即折痕上所有的点都在椭圆C上及C外.反之,对于椭圆C上或外的一点S,以S为圆心,SA为半径作圆,交⊙O于A′,则S在AA′的垂直平分线上,从而S在某条折痕上.最后证明所作⊙S与⊙O必相交.1°

当S在⊙O外时,由于A在⊙O内,故⊙S与⊙O必相交;2°

当S在⊙O内时(例如在⊙O内,但在椭圆C外或其上的点S′),取过S′的半径OD,则由点S′在椭圆C外,故OS′+S′A≥R(椭圆的长轴).即S′A≥S′D.于是D在⊙S′内或上,即⊙S′与⊙O必有交点.于是上述证明成立.综上可知,折痕上的点的集合为椭圆C上及C外的所有点的集合.18.椭圆的两个焦点坐标是()

A.(-3,5),(-3,-3)

B.(3,3),(3,-5)

C.(1,1),(-7,1)

D.(7,-1),(-1,-1)答案:B19.一圆锥侧面展开图为半圆,平面α与圆锥的轴成45°角,则平面α与该圆锥侧面相交的交线为()A.圆B.抛物线C.双曲线D.椭圆答案:设圆锥的母线长为R,底面半径为r,则:πR=2πr,∴R=2r,∴母线与高的夹角的正弦值=rR=12,∴母线与高的夹角是30°.由于平面α与圆锥的轴成45°>30°;则平面α与该圆锥侧面相交的交线为椭圆.故选D.20.不等式3≤|5-2x|<9的解集为()

A.[-2,1)∪[4,7)

B.(-2,1]∪(4,7]

C.(-2,-1]∪[4,7)

D.(-2,1]∪[4,7)答案:D21.某超市推出如下优惠方案:

(1)一次性购物不超过100元不享受优惠;

(2)一次性购物超过100元但不超过300元的一律九折;

(3)一次性购物超过300元的一律八折,有人两次购物分别付款80元,252元.

如果他一次性购买与上两次相同的商品,则应付款______.答案:该人一次性购物付款80元,据条件(1)、(2)知他没有享受优惠,故实际购物款为80元;另一次购物付款252元,有两种可能,其一购物超过300元按八折计,则实际购物款为2520.8=315元.其二购物超过100元但不超过300元按九折计算,则实际购物款为2520.9=280元.故该人两次购物总价值为395元或360元,若一次性购买这些商品应付款316元或288元.故为316元或288元.22.已知方程x2-6x+a=0的两个不等实根均大于2,则实数a的取值范围为()

A.[4,9)

B.(4,9]

C.(4,9)

D.(8,9)答案:D23.直线kx-y=k-1与直线ky=x+2k的交点在第二象限内,则k的取值范围是

______.答案:联立两直线方程得kx-y=k-1①ky=x+2k②,由②得y=x+2kk③,把③代入①得:kx-x+2kk=k-1,当k+1≠0即k≠-1时,解得x=kk-1,把x=kk-1代入③得到y=2k-1k-1,所以交点坐标为(kk-1,2k-1k-1)因为直线kx-y=k-1与直线ky=x+2k的交点在第二象限内,得kk-1<02k-1k-1>

0解得0<k<1,k>1或k<12,所以不等式组的解集为0<k<12则k的取值范围是0<k<12故为:0<k<1224.书架上有5本数学书,4本物理书,5本化学书,从中任取一本,不同的取法有()A.14B.25C.100D.40答案:由题意,∵书架上有5本数学书,4本物理书,5本化学书,∴从中任取一本,不同的取法有5+4+5=14种故选A.25.(选做题)参数方程中当t为参数时,化为普通方程为(

)。答案:x2-y2=126.过点(2,4)作直线与抛物线y2=8x只有一个公共点,这样的直线有()

A.1条

B.2条

C.3条

D.4条答案:B27.已知△ABC的顶点B、C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()

A.2

B.6

C.4

D.12答案:C28.直线y=3x的倾斜角为______.答案:∵直线y=3x的斜率是3,∴直线的倾斜角的正切值是3,∵α∈[0°,180°],∴α=60°,故为:60°29.在极坐标系中,曲线ρ=4sinθ和ρcosθ=1相交于点A、B,则|AB|=______.答案:将其化为直角坐标方程为x2+y2-4y=0,和x=1,代入得:y2-4y+1=0,则|AB|=|y1-y2|=(y1+y2)2-4y1y1=(4)2-4=23.故为:23.30.在残差分析中,残差图的纵坐标为______.答案:有残差图的定义知道,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重的估计值,这样做出的图形称为残差图.故为:残差.31.如图是2010年青年歌手大奖赛中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m为数字0~9中的

一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1,a2,则一定有()A.a1>a2B.a2>a1C.a1=a2D.a1,a2的大小与m的值有关答案:由题意知去掉一个最高分和一个最低分以后,两组数据都有五个数据,代入数据可以求得甲和乙的平均分a1=1+4+5×35+80=84,a2=4×3+6+75+80=85,∴a2>a1故选B32.用随机数表法进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字,这些步骤的先后顺序应为()A.①②③B.③②①C.①③②D.③①②答案:∵随机数表法进行抽样,包含这样的步骤,①将总体中的个体编号;②选定开始的数字,按照一定的方向读数;③获取样本号码,∴把题目条件中所给的三项排序为:①③②,故选C.33.下列图象中不能作为函数图象的是()A.

B.

C.

D.

答案:根据函数的概念:如果在一个变化过程中,有两个变量x、y,对于x的每一个值,y都有唯一确定的值与之对应,这时称y是x的函数.结合选项可知,只有选项B中是一个x对应1或2个y故选B.34.正方形ABCD的边长为1,=,=,则|+|=(

A.0

B.2

C.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论