2023年内蒙古工业职业学院高职单招(数学)试题库含答案解析_第1页
2023年内蒙古工业职业学院高职单招(数学)试题库含答案解析_第2页
2023年内蒙古工业职业学院高职单招(数学)试题库含答案解析_第3页
2023年内蒙古工业职业学院高职单招(数学)试题库含答案解析_第4页
2023年内蒙古工业职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年内蒙古工业职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的自然数有______.答案:由题意,一位数有:1,2,3;两位数有:12,21,23,32,13,31;三位数有:123,132,213,231,321,312故为:1,2,3,12,13,23,21,31,32,123,132,213,231,321,312.2.用反证法证明:“方程ax2+bx+c=0,且a,b,c都是奇数,则方程没有整数根”正确的假设是方程存在实数根x0为()

A.整数

B.奇数或偶数

C.正整数或负整数

D.自然数或负整数答案:A3.已知圆C的极坐标方程是ρ=2sinθ,那么该圆的直角坐标方程为

______,半径长是

______.答案:把极坐标方程是ρ=2sinθ的两边同时乘以ρ得:ρ2=2ρsinθ,∴x2+y2=2y,即x2+(y-1)2=1,表示以(0,1)为圆心,半径等于1的圆,故为:x2+(y-1)2=1;1.4.解不等式:2<|3x-1|≤3.答案:由原不等式得-3≤3x-1<-2或2<3x-1≤3,∴-2≤3x<-1或3<3x≤4,∴-23≤x<-13或1<x≤43,∴不等式的解集是{x|-23≤x<-13或1<x≤43}.5.若施化肥量x与小麦产量y之间的回归方程为y=250+4x(单位:kg),当施化肥量为50kg时,预计小麦产量为______kg.答案:根据回归方程为y=250+4x,当施化肥量为50kg,即x=50kg时,y=250+4x=250+200=450kg故为:4506.正方体AC1中,S,T分别是棱AA1,A1B1上的点,如果∠TSC=90°,那么∠TSB=______.答案:由题意,BC⊥平面A1B,∵S,T分别是棱AA1,A1B1上的点,∴BC⊥ST∵∠TSC=90°,∴ST⊥SC∵BC∩SC=C∴ST⊥平面SBC∴ST⊥SB∴∠TSB=90°,故为:90°7.(1+2x)7的展开式中第4项的系数是______

(用数字作答)答案:(1+2x)7的展开式的通项为Tr+1=Cr7?(2x)r∴(1+2x)7的展开式中第4项的系数是C37?23=280,故为:280.8.若A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则A∩B=()

A.{2,1}

B.{(2,1)}

C.{1,2}

D.{(1,2)}答案:D9.如图所示,以直角三角形ABC的直角边AC为直径作⊙O,交斜边AB于点D,过点D作⊙O的切线,交BC边于点E.则BEBC=______.答案:连接CD,∵AC是⊙O的直径,∴CD⊥AB.∵BC经过半径OC的端点C且BC⊥AC,∴BC是⊙O的切线,而DE是⊙O的切线,∴EC=ED.∴∠ECD=∠CDE,∴∠B=∠BDE,∴DE=BE.∴BE=CE=12BC.∴BEBC=12.故为12.10.平面向量a与b的夹角为,若a=(2,0),|b|=1,则|a+2b|=()

A.

B.2

C.4

D.12答案:B11.如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是()

A.

B.

C.

D.2答案:C12.P是直线3x+y+1=0上一点,P到点Q(0,2)距离的最小值是______.答案:过点Q作直线的垂线段,当P是垂足时,线段PQ最短,故最小距离是点Q(0,2)到直线3x+y+1=0的距离d,d=|0+2+1|3+1=32=1.5.∴P到点Q(0,2)距离的最小值是1.5;故为1.5.13.已知F1=i+2j+3k,F2=2i+3j-k,F3=3i-4j+5k,若F1,F2,F3共同作用于一物体上,使物体从点M(1,-2,1)移动到N(3,1,2),则合力所作的功是______.答案:由题意可得F1=(1,2,3)F2=(2,3,-1),F3=(3,-4,5),故合力F=F1+F2+F3=(6,1,7),位移S=MN=(3,1,2)-(1,-2,1)=(2,3,1),故合力所作的功W=F•S=6×2+1×3+7×1=22故为:2214.在△ABC中,∠ABC=60°,AB=2,BC=3,在BC上任取一点D,使△ABD为钝角三角形的概率为()A.16B.13C.12D.23答案:由题意知本题是一个等可能事件的概率,试验发生包含的事件对应的是长度为3的一条线段,满足条件的事件是组成钝角三角形,包括两种情况第一种∠ADB为钝角,这种情况的分界是∠ADB=90°的时候,此时BD=1∴这种情况下,满足要求的0<BD<1.第二种∠OAD为钝角,这种情况的分界是∠BAD=90°的时候,此时BD=4∴这种情况下,不可能综合两种情况,若△ABD为钝角三角形,则0<BD<1P=13故选B15.若方程sin2x+4sinx+m=0有实数解,则m的取值范围是(

A、R

B、(-∞,-5]∪[3,+∞)

C、(-5,3)

D、[-5,3]答案:D16.先后2次抛掷一枚骰子,将得到的点数分别记为a,b.

(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;

(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.答案:(1)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.∵直线ax+by+c=0与圆x2+y2=1相切的充要条件是5a2+b2=1即:a2+b2=25,由于a,b∈{1,2,3,4,5,6}∴满足条件的情况只有a=3,b=4,c=5;或a=4,b=3,c=5两种情况.∴直线ax+by+c=0与圆x2+y2=1相切的概率是236=118(2)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.∵三角形的一边长为5∴当a=1时,b=5,(1,5,5)1种当a=2时,b=5,(2,5,5)1种当a=3时,b=3,5,(3,3,5),(3,5,5)2种当a=4时,b=4,5,(4,4,5),(4,5,5)2种当a=5时,b=1,2,3,4,5,6,(5,1,5),(5,2,5),(5,3,5),(5,4,5),(5,5,5),(5,6,5)6种当a=6时,b=5,6,(6,5,5),(6,6,5)2种故满足条件的不同情况共有14种故三条线段能围成不同的等腰三角形的概率为1436=718.17.已知直线l:ax+by=1(ab>0)经过点P(1,4),则l在两坐标轴上的截距之和的最小值是______.答案:∵直线l:ax+by=1(ab>0)经过点P(1,4),∴a+4b=1,故a、b都是正数.故直线l:ax+by=1,此直线在x、y轴上的截距分别为1a、1b,则l在两坐标轴上的截距之和为1a+1b=a+4ba+a+4bb=5+4ba+ab≥5+24ba?ab=9,当且仅当4ba=ab时,取等号,故为9.18.已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是(

)。答案:40或60(不唯一)19.某一批花生种子,如果每1粒发芽的概率为,那么播下4粒种子恰有2粒发芽的概率是(

A.

B.

C.

D.答案:B20.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),满足条件(c-a)•(2b)=-2,则x=______.答案:c-a=(0,0,1-x),(c-a)•(2b)

=(2,4,2)•(0,0,1-x)=2(1-x)=-2,解得x=2,故为2.21.如图,曲线C1、C2、C3分别是函数y=ax、y=bx、y=cx的图象,则()

A.a<b<c

B.a<c<B

C.c<b<a

D.b<c<a

答案:C22.在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sinθ与ρcosθ=-1的交点的极坐标为

______.答案:两条曲线的普通方程分别为x2+y2=2y,x=-1.解得x=-1y=1.由x=ρcosθy=ρsinθ得点(-1,1),极坐标为(2,3π4).故填:(2,3π4).23.如图,PA,PB切⊙O于

A,B两点,AC⊥PB,且与⊙O相交于

D,若∠DBC=22°,则∠APB═______.答案:连接AB根据弦切角有∠DBC=∠DAB=22°

∠PAC=∠DBA因为垂直∠DCB=90°根据外角∠ADB=∠DBC+∠DCB=112°

∵∠DBC=∠DAB∴∠DBA=180°-∠ADB-∠DAB=46°∴∠PAC=∠DBA=46°∴∠P=180°-∠PAC-∠PCA=44°故为:44°24.如图给出了一个算法程序框图,该算法程序框图的功能是()A.求a,b,c三数的最大数B.求a,b,c三数的最小数C.将a,b,c按从小到大排列D.将a,b,c按从大到小排列答案:逐步分析框图中的各框语句的功能,第一个条件结构是比较a,b的大小,并将a,b中的较小值保存在变量a中,第二个条件结构是比较a,c的大小,并将a,c中的较小值保存在变量a中,故变量a的值最终为a,b,c中的最小值.由此程序的功能为求a,b,c三个数的最小数.故选B25.若直线的参数方程为(t为参数),则该直线的斜率为()

A.

B.2

C.1

D.-1答案:D26.因为样本是总体的一部分,是由某些个体所组成的,尽管对总体具有一定的代表性,但并不等于总体,为什么不把所有个体考查一遍,使样本就是总体?答案:如果样本就是总体,抽样调查就变成普查了,尽管这样确实反映了实际情况,但不是统计的基本思想,其操作性、可行性、人力、物力等方面,都会有制约因素存在,何况有些调查是破坏性的,如考查一批玻璃的抗碎能力,灯泡的使用寿命等,普查就全破坏了.27.过A(-2,3),B(2,1)两点的直线的斜率是()

A.

B.

C.-2

D.2答案:B28.函数f(x)=2,0<x<104,10≤x<155,15≤x<20,则函数的值域是()A.[2,5]B.{2,4,5}C.(0,20)D.N答案:∵f(x)=20<x<10410≤x<15515≤x<20∴函数的值域是{2,4,5}故选B29.已知x1、x2是关于x1的方程x2-(k-2)x+k2+3k+5=0的两个实根,那么x12+x22的最大值是[

]

A.19

B.17

C.

D.18答案:D30.直线y=2的倾斜角和斜率分别是()A.90°,斜率不存在B.90°,斜率为0C.180°,斜率为0D.0°,斜率为0答案:由题意,直线y=2的倾斜角是0°,斜率为0故选D.31.设a=log32,b=log23,c=,则()

A.c<b<a

B.a<c<b

C.c<a<b

D.b<c<a答案:C32.下列几种说法正确的个数是()

①相等的角在直观图中对应的角仍然相等;

②相等的线段在直观图中对应的线段仍然相等;

③平行的线段在直观图中对应的线段仍然平行;

④线段的中点在直观图中仍然是线段的中点.

A.1

B.2

C.3

D.4答案:B33.已知△A′B′C′是水平放置的边长为a的正三角形△ABC的斜二测平面直观图,那么△A′B′C′的面积为______.答案:正三角形ABC的边长为a,故面积为34a2,而原图和直观图面积之间的关系S直观图S原图=24,故直观图△A′B′C′的面积为6a216故为:6a216.34.在命题“若a>b,则ac2>bc2”及它的逆命题、否命题、逆否命题之中,其中真命题有()A.4个B.3个C.2个D.1个答案:命题“若a>b,则ac2>bc2”为假命题;其逆命题为“若ac2>bc2,则a>b”为真命题;其否命题为“若a≤b,则ac2≤bc2”为真命题;其逆否命题为“若ac2≤bc2,则a≤b”为假命题;故选C35.已知正方形ABCD的边长为1,=,=,=,则的模等于(

A.0

B.2+

C.

D.2答案:D36.长方体的长、宽、高之比是1:2:3,对角线长是214,则长方体的体积是

______.答案:长方体的长、宽、高之比是1:2:3,所以长方体的长、宽、高是x:2x:3x,对角线长是214,所以,x2+(2x)2+(3x)2=(214)2,x=2,长方体的长、宽、高是2,4,6;长方体的体积是:2×4×6=48故为:4837.下列命题中正确的是()

A.若,则

B.若,则

.若,则

D.若,则答案:C38.Rt△ABC中,AB=3,BC=4,AC=5,将三角形绕直角边AB旋转一周形成一个新的几何体,想象几何体的结构,画出它的三视图,求出它的表面积和体积.答案:以绕AB边旋转为例,其直观图、正(侧)视图、俯视图依次分别为:其表面是扇形的表面,所以其表面积为S=πRL=36π,V=13×π×BC2×AB=16π.39.已知:空间四边形ABCD,AB=AC,DB=DC,求证:BC⊥AD.答案:取BC的中点为E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.这样,BC就和平面ADE内的两条相交直线AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.40.某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为()A.12B.16C.24D.32答案:将空位插到三个人中间,三个人有两个中间位置和两个两边位置就是将空位分为四部分,五个空位四分只有1,1,1,2空位五差别,只需要空位2分别占在四个位置就可以有四种方法,另外三个人排列A33=6根据分步计数可得共有4×6=24故选C.41.在极坐标系中与圆ρ=4sinθ相切的一条直线的方程为()

A.ρcosθ=2

B.ρsinθ=2

C.ρ=4sin(θ+)

D.ρ=4sin(θ-)答案:A42.方程|x|-1=2y-y2表示的曲线为()A.两个半圆B.一个圆C.半个圆D.两个圆答案:两边平方整理得:(|x|-1)2=2y-y2,化简得(|x|-1)2+(y-1)2=1,由|x|-1≥0得x≥1或x≤-1,当x≥1时,方程为(x-1)2+(y-1)2=1,表示圆心为(1,1)且半径为1的圆的右半圆;当x≤1时,方程为(x+1)2+(y-1)2=1,表示圆心为(-1,1)且半径为1的圆的右半圆综上所述,得方程|x|-1=2y-y2表示的曲线为为两个半圆故选:A43.当a≠0时,y=ax+b和y=bax的图象只可能是()

A.

B.

C.

D.

答案:A44.某校在检查学生作业时,抽出每班学号尾数为4的学生作业进行检查,这里主要运用的抽样方法是()

A.分层抽样

B.抽签抽样

C.随机抽样

D.系统抽样答案:D45.若点M是△ABC的重心,则下列向量中与AB共线的是______.(填写序号)

(1)AB+BC+AC

(2)AM+MB+BC

(3)AM+BM+CM

(4)3AM+AC.答案:对于(1)AB+BC+AC=2AC不与AB共线对于(2)AM+MB+BC=AB+BC=AC不与AB对于(3)AM+BM+CM=13(AB+AC)+13(BA+BC)+13(CA+CB)=0与AB对于(4)3AM+AC=AB+AC+AC不与AB故为:(3)46.

在△ABC中,点D在线段BC的延长线上,且BC=3CD,点O在线段CD上(与点C、D不重合),若AO=xAB+(1-x)AC,则x的取值范围是()

A.

B.

C.

D.答案:D47.在同一平面直角坐标系中,直线变成直线的伸缩变换是()A.B.C.D.答案:A解析:解:设直线上任意一点(x′,y′),变换前的坐标为(x,y),则根据直线变成直线则伸缩变换是,选A48.已知A(1,2),B(-3,b)两点的距离等于42,则b=______.答案:∵A(1,2),B(-3,b)∴|AB|=(-3-1)2+(b-2)2=42,解之得b=6或-2故为:6或-249.已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为()

A.3

B.-2

C.2

D.不存在答案:B50.已知e1

e2是夹角为60°的两个单位向量,且向量a=e1+2e2,则|a|=______.答案:由题意可得e21=1,e22=1,e1?e2=12,所以a2=(e1+2e2)2=1+2+4=7,所以|a|=7,故为:7第2卷一.综合题(共50题)1.某水产试验厂实行某种鱼的人工孵化,10000个卵能孵化出7645尾鱼苗.根据概率的统计定义解答下列问题:

(1)求这种鱼卵的孵化概率(孵化率);

(2)30000个鱼卵大约能孵化多少尾鱼苗?

(3)要孵化5000尾鱼苗,大概得准备多少鱼卵?(精确到百位)答案:(1)这种鱼卵的孵化概率为:764510000=0.7645(2)由(1)知,30000个鱼卵大约能孵化:30000×0.7645=22935尾鱼苗(3)要孵化5000尾鱼苗,需准备50000.7645=6500个鱼卵.2.设随机变量X服从B(6,),则P(X=3)的值是()

A.

B.

C.

D.答案:B3.已知向量a=(3,4),b=(8,6),c=(2,k),其中k为常数,如果<a,c>=<b,c>,则k=______.答案:由题意可得cos<a,c>=cos<b,c>,∴a?c|a|?|c|=b?c|b|?|c|,∴6+4k54+k

2=16+6k104+k

2.解得k=2,故为2.4.若函数f(x)=x+1的值域为(2,3],则函数f(x)的定义域为______.答案:∵f(x)=x+1的值域为(2,3],∴2<x+1≤3∴1<x≤2故为:(1,2]5.如图,在复平面内,点A表示复数z的共轭复数,则复数z对应的点是()A.AB.BC.CD.D答案:两个复数是共轭复数,两个复数的实部相同,下部相反,对应的点关于x轴对称.所以点A表示复数z的共轭复数的点是B.故选B.6.在平行六面体ABCD-A′B′C′D′中,若AC′=xAB+2yBC-3zC′C,则x+y+z等于______.答案:根据向量的加法法则可得,AC′=AC+CC′=AB+BC+CC′∵AC′=xAB+2yBC-3zC′C∴x=1,2y=1,-3z=1∴x=1,y=12,z=-13∴x+y+z=1+12-13=76故为:767.某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是______.答案:由茎叶图可知样本数据共有8个,按照从小到大的顺序为:87,89,90,91,92,93,94,96.出现在中间两位的数据是91,92.所以样本的中位数是(91+92)÷2=91.5,故为:91.58.某超市推出如下优惠方案:

(1)一次性购物不超过100元不享受优惠;

(2)一次性购物超过100元但不超过300元的一律九折;

(3)一次性购物超过300元的一律八折,有人两次购物分别付款80元,252元.

如果他一次性购买与上两次相同的商品,则应付款______.答案:该人一次性购物付款80元,据条件(1)、(2)知他没有享受优惠,故实际购物款为80元;另一次购物付款252元,有两种可能,其一购物超过300元按八折计,则实际购物款为2520.8=315元.其二购物超过100元但不超过300元按九折计算,则实际购物款为2520.9=280元.故该人两次购物总价值为395元或360元,若一次性购买这些商品应付款316元或288元.故为316元或288元.9.如果输入2,那么执行图中算法的结果是()A.输出2B.输出3C.输出4D.程序出错,输不出任何结果答案:第一步:输入n=2第二步:n=2+1=3第三步:n=3+1=4第四步:输出4故为C.10.(本题满分12分)

已知:

求证:答案:.证明:…………2分由于=………………5分…………①………………6分由于………②……………8分同理:…………③……………10分①+②+③得:即原不等式成立………………12分解析:同答案11.设有三个命题:“①0<12<1.②函数f(x)=log

12x是减函数.③当0<a<1时,函数f(x)=logax是减函数”.当它们构成三段论时,其“小前提”是______(填序号).答案:三段话写成三段论是:大前提:当0<a<1时,函数f(x)=logax是减函数,小前提:0<12<1,结论:函数f(x)=log

12x是减函数.其“小前提”是①.故为:①.12.运行如图的程序,将自然数列0,1,2,…依次输入作为a的值,则输出结果x为______.

答案:当n=2时,x=5×6+0=30,当n=1时,x=30×6+1=181,当n=0时,x=181×6+2=1088,故为:108813.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是(

A.

B.

C.

D.答案:B14.乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同,那么甲以4比2获胜的概率为()

A.

B.

C.

D.答案:D15.如图程序运行后输出的结果为______.答案:由题意,列出如下表格s

0

5

9

12

n

5

4

3

2当n=12时,不满足“s<10”,则输出n的值2故为:216.如图所示,已知点P在正方体ABCD—A′B′C′D′的对角线

BD′上,∠PDA=60°.

(1)求DP与CC′所成角的大小;

(2)求DP与平面AA′D′D所成角的大小.答案:(1)DP与CC′所成的角为45°(2)DP与平面AA′D′D所成的角为30°解析:如图所示,以D为原点,DA为单位长度建立空间直角坐标系D—xyz.则=(1,0,0),=(0,0,1).连接BD,B′D′.在平面BB′D′D中,延长DP交B′D′于H.设="(m,m,1)"(m>0),由已知〈,〉=60°,由·=||||cos〈,〉,可得2m=.解得m=,所以=(,,1).(1)因为cos〈,〉==,所以〈,〉=45°,即DP与CC′所成的角为45°.(2)平面AA′D′D的一个法向量是=(0,1,0).因为cos〈,〉==,所以〈,〉=60°,可得DP与平面AA′D′D所成的角为30°.17.复数1+i(i为虚数单位)的模等于()A.2B.1C.22D.12答案:|1+i|=12+12=2.故选A.18.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A.B为焦点的椭圆”,那么()A.甲是乙成立的充分不必要条件B.甲是乙成立的必要不充分条件C.甲是乙成立的充要条件D.甲是乙成立的非充分非必要条件答案:命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A.B为焦点的椭圆∵当一个动点到两个顶点距离之和等于定值时,再加上这个和大于两个定点之间的距离,可以得到动点的轨迹是椭圆,没有加上的条件不一定推出,而点P的轨迹是以A.B为焦点的椭圆,一定能够推出|PA|+|PB|是定值,∴甲是乙成立的必要不充分条件故选B.19.某农科所种植的甲、乙两种水稻,连续六年在面积相等的两块稻田中作对比试验,试验得出平均产量==415㎏,方差是=794,=958,那么这两个水稻品种中产量比较稳定的是()

A.甲

B.乙

C.甲、乙一样稳定

D.无法确定答案:A20.已知x、y的取值如下表所示:

x0134y2.24.34.86.7若从散点图分析,y与x线性相关,且

y=0.95x+

a,则

a的值等于()A.2.6B.6.3C.2D.4.5答案:∵.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5,∴这组数据的样本中心点是(2,4.5)∵y与x线性相关,且y=0.95x+a,∴4.5=0.95×2+a,∴a=2.6,故选A.21.已知函数f(x)=|log2x-1|+|log2x-2|,解不等式f(x)>4.答案:f(x)=|log2x-1|+|log2x-2|,取绝对值得:f(x)=3-2log2x,0<x<21,2≤x≤42log2x-3,x>4所以f(x)>4等价于:0<x≤23-2log2x>4或x≥42log2x-3>4,解得:0<x<22或x>82.22.在平面直角坐标系xoy中,曲线C1的参数方程为x=4cosθy=2sinθ(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,得曲线C2的极坐标方程为ρ=2cosθ-4sinθ(ρ>0).

(Ⅰ)化曲线C1、C2的方程为普通方程,并说明它们分别表示什么曲线;

(Ⅱ)设曲线C1与x轴的一个交点的坐标为P(m,0)(m>0),经过点P作曲线C2的切线l,求切线l的方程.答案:(Ⅰ)曲线C1:x216+y24=1;曲线C2:(x-1)2+(y+2)2=5;(3分)曲线C1为中心是坐标原点,焦点在x轴上,长半轴长是4,短半轴长是2的椭圆;曲线C2为圆心为(1,-2),半径为5的圆(2分)(Ⅱ)曲线C1:x216+y24=1与x轴的交点坐标为(-4,0)和(4,0),因为m>0,所以点P的坐标为(4,0),(2分)显然切线l的斜率存在,设为k,则切线l的方程为y=k(x-4),由曲线C2为圆心为(1,-2),半径为5的圆得|k+2-4k|k2+1=5,解得k=3±102,所以切线l的方程为y=3±102(x-4)(3分)23.探照灯反射镜的纵断面是抛物线的一部分,光源在抛物线的焦点,已知灯口直径是60

cm,灯深40

cm,则光源到反射镜顶点的距离是

______cm.答案:设抛物线方程为y2=2px(p>0),点(40,30)在抛物线y2=2px上,∴900=2p×40.∴p=454.∴p2=458.因此,光源到反射镜顶点的距离为458cm.24.已知随机变量X的分布列是:(

)

X

4

a

9

10

P

0.3

0.1

b

0.2

且EX=7.5,则a的值为()

A.5

B.6

C.7

D.8答案:C25.气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22

(℃)”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):

①甲地:5个数据的中位数为24,众数为22;

②乙地:5个数据的中位数为27,总体均值为24;

③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8;

则肯定进入夏季的地区有()A.0个B.1个C.2个D.3个答案:①甲地:5个数据的中位数为24,众数为22,根据数据得出:甲地连续5天的日平均温度的记录数据可能为:22,22,24,25,26.其连续5天的日平均温度均不低于22.

②乙地:5个数据的中位数为27,总体均值为24.根据其总体均值为24可知其连续5天的日平均温度均不低于22.③丙地:5个数据中有一个数据是32,总体均值为26,根据其总体均值为24可知其连续5天的日平均温度均不低于22.则肯定进入夏季的地区有甲、乙、丙三地.故选D.26.数列{an}满足a1=1且an+1=(1+1n2+n)an+12n(n≥1).

(Ⅰ)用数学归纳法证明:an≥2(n≥2);

(Ⅱ)已知不等式ln(1+x)<x对x>0成立,证明:an<e2(n≥1),其中无理数e=2.71828….答案:(Ⅰ)证明:①当n=2时,a2=2≥2,不等式成立.②假设当n=k(k≥2)时不等式成立,即ak≥2(k≥2),那么ak+1=(1+1k(k+1))ak+12k≥2.这就是说,当n=k+1时不等式成立.根据(1)、(2)可知:ak≥2对所有n≥2成立.(Ⅱ)由递推公式及(Ⅰ)的结论有an+1=(1+1n2+n)an+12n≤(1+1n2+n+12n)an(n≥1)两边取对数并利用已知不等式得lnan+1≤ln(1+1n2+n+12n)+lnan≤lnan+1n2+n+12n故lnan+1-lnan≤1n(n+1)+12n(n≥1).上式从1到n-1求和可得lnan-lna1≤11×2+12×3+…+1(n-1)n+12+122+…+12n-1=1-12+(12-13)+…+1n-1-1n+12•1-12n1-12=1-1n+1-12n<2即lnan<2,故an<e2(n≥1).27.某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错得0分,假设这位同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响,则这名同学得300分的概率为

;这名同学至少得300分的概率为

.答案:0.228;0.564解析:得300分可能是答对第一、三题或第二、三题,其概率为0.8×0.3×0.6+0.2×0.7×0.6=0.228;答对4道题可得400分,其概率为0.8×0.7×0.6=0.336,所以至少得300分的概率为0.228+0.336=0.564。28.已知圆M的方程为:(x+3)2+y2=100及定点N(3,0),动点P在圆M上运动,线段PN的垂直平分线交圆M的半径MP于Q点,设点Q的轨迹为曲线C,则曲线C的方程是______.答案:连接QN,如图由已知,得|QN|=|QP|,所以|QM|+|QN|=|QM|+|QN|=|MP|=10又|MN|=6,10>6,根据椭圆的定义,点Q的轨迹是M,N为焦点,以10为长轴长的椭圆,所以2a=10,2c=6,所以b=4,所以,点Q的轨迹方程为:x225+y216=1故为:x225+y216=129.因为样本是总体的一部分,是由某些个体所组成的,尽管对总体具有一定的代表性,但并不等于总体,为什么不把所有个体考查一遍,使样本就是总体?答案:如果样本就是总体,抽样调查就变成普查了,尽管这样确实反映了实际情况,但不是统计的基本思想,其操作性、可行性、人力、物力等方面,都会有制约因素存在,何况有些调查是破坏性的,如考查一批玻璃的抗碎能力,灯泡的使用寿命等,普查就全破坏了.30.若x、y∈R+且x+2y≤ax+y恒成立,则a的最小值是()A.1B.2C.3D.1+22答案:由题意,根据柯西不等式得x+2y≤(1+2)(x+y)∴x+2y≤3(x+y)要使x+2y≤ax+y恒成立,∴a≥3∴a的最小值是3故选C.31.已知圆柱的轴截面周长为6,体积为V,则下列关系式总成立的是()A.V≥πB.V≤πC.V≥18πD.V≤18π答案:设圆柱的底面半径为r,高为h,由题意得:4r+2h=6,即2r+h=3,∴体积为V=πr2h≤π[13(r+r+h)]2=π×(33)2=π当且仅当r=h时取等号,由此可得V≤π恒成立故选:B32.设a,b,c为正数,利用排序不等式证明a3+b3+c3≥3abc.答案:证明:不妨设a≥b≥c>0,∴a2≥b2≥c2,由排序原理:顺序和≥反序和,得:a3+b3≥a2b+b2a,b3+c3≥b2c+c2b,c3+a3≥a2c+c2a三式相加得2(a3+b3+c3)≥a(b2+c2)+b(c2+a2)+c(a2+b2).又a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca.所以2(a3+b3+c3)≥6abc,∴a3+b3+c3≥3abc.当且仅当a=b=c时,等号成立.33.如果一个水平放置的图形的斜二测直观图是一个底面为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是()

A.2+

B.

C.

D.1+答案:A34.已知点P(3,m)在以点F为焦点的抛物线x=4t2y=4t(t为参数)上,则|PF|的长为______.答案:∵抛物线x=4t2y=4t(t为参数)上,∴y2=4x,∵点P(3,m)在以点F为焦点的抛物线x=4t2y=4t(t为参数)上,∴m2=4×3=12,∴P(3,23)∵F(1,0),∴|PF|=22+(23)2=4,故为4.35.下列函数图象中,正确的是()

A.

B.

C.

D.

答案:C36.设向量不共面,则下列集合可作为空间的一个基底的是(

A.{}

B.{}

C.{}

D.{}

答案:C37.在方程(θ为参数且θ∈R)表示的曲线上的一个点的坐标是()

A.(,)

B.(,)

C.(2,-7)

D.(1,0)答案:B38.设集合A={0,1,3},B={1,3,4},则A∩B=______.答案:∵集合A={0,1,3},B={1,3,4},A∩B={1,3}.故为:{1,3}.39.(理)已知函数f(x)=sinπxx∈[0,1]log2011xx∈(1,+∞)若满足f(a)=f(b)=f(c),(a、b、c互不相等),则a+b+c的取值范围是______.答案:作出函数的图象如图,直线y=y0交函数图象于如图,由正弦曲线的对称性,可得A(a,y0)与B(b,y0)关于直线x=12对称,因此a+b=1当直线线y=y0向上平移时,经过点(2011,1)时图象两个图象恰有两个公共点(A、B重合)所以0<y0<1时,两个图象有三个公共点,此时满足f(a)=f(b)=f(c),(a、b、c互不相等),说明1<c<2011,因此可得a+b+c∈(2,2012)故为(2,2012)40.已知,,那么P(B|A)等于()

A.

B.

C.

D.答案:B41.5本不同的书全部分给3个学生,每人至少一本,共有()种分法.

A.60

B.150

C.300

D.210答案:B42.一个口袋内有4个不同的红球,6个不同的白球,

(1)从中任取4个球,红球的个数不比白球少的取法有多少种?

(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?答案:解(1)由题意知本题是一个分类计数问题,将取出4个球分成三类情况取4个红球,没有白球,有C44种取3个红球1个白球,有C43C61种;取2个红球2个白球,有C42C62,∴C44+C43C61+C42C62=115种(2)设取x个红球,y个白球,则x+y=5(0≤x≤4)2x+y≥7(0≤y≤6)∴x=2y=3或x=3y=2或x=4y=1∴符合题意的取法种数有C42C63+C43C62+C44C61=186种43.已知指数函数f(x)=ax(a>0且a≠1)过点(3,8),求f(4)=______.答案:设指数函数为y=ax(a>0且a≠1)将(3,8)代入得8=a3解得a=2,所以y=2x,则f(4)=42=16故为16.44.已知|a|=3,|b|=2,a与b的夹角为300,则|a+b|等于()A.13B.15C.17D.19答案:∵|a|=3,|b|=2,a与b的夹角为300,∴a?b=|a||b|cos30°=2×3×32=3则|a+b|=a2+2a?b+b2=13故选A45.甲、乙两人共同投掷一枚硬币,规定硬币正面朝上甲得1分,否则乙得1分,先积3分者获胜,并结束游戏.

①求在前3次投掷中甲得2分,乙得1分的概率.

②设ξ表示到游戏结束时乙的得分,求ξ的分布列以及期望.答案:(1)由题意知本题是一个古典概型试验发生的事件是掷一枚硬币3次,出现的所有可能情况共有以下8种.(正正正)、(正正反)、(正反反)、(反反反)、(正反正)、(反正正)、(反反正)、(反正反)、其中甲得(2分),乙得(1分)的情况有以下3种,(正正反)、(正反正)、(反正正)∴所求概率P=38(2)ξ的所有可能值为:0、1、2、3P(ξ=0)=12×12×12=18P(ξ=1)=C13×12×(12)2×12=316,P(ξ=2)=C24(12)2(12)212=316P(ξ=3)=12×12×12+C1312(12)212+C24(12)2(12)212=12∴ξ的分布列为:∴Eξ=1×316+2×316+3×12=331646.已知x、y之间的一组数据如下:

x0123y8264则线性回归方程y=a+bx所表示的直线必经过点()A.(0,0)B.(2,6)C.(1.5,5)D.(1,5)答案:∵.x=0+1+2+34=1.5,.y=8+2+6+44=5∴线性回归方程y=a+bx所表示的直线必经过点(1.5,5)故选C47.把平面上一切单位向量归结到共同的起点,那么这些向量的终点所构成的图形是

______.答案:把平面上一切单位向量归结到共同的起点,那么这些向量的终点到起点的距离都等于1,所以,由圆的定义得,这些向量的终点所构成的图形是半径为1的圆.48.正多面体只有______种,分别为______.答案:正多面体只有5种,分别为正四面体、正六面体、正八面体、正十二面体、正二十面体.故为:5,正四面体、正六面体、正八面体、正十二面体、正二十面体.49.设O是坐标原点,F是抛物线y2=2px(p>0)的焦点,A是抛物线上的一点,FA与x轴正向的夹角为60°,则|OA|为______.答案:过A作AD⊥x轴于D,令FD=m,则FA=2m,p+m=2m,m=p.∴OA=(p2+p)2+(3p)2=212p.故为:212p50.用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是()

A.假设至少有一个钝角

B.假设没有一个钝角

C.假设至少有两个钝角

D.假设没有一个钝角或至少有两个钝角答案:C第3卷一.综合题(共50题)1.用数学归纳法证明不等式:1n+1n+1+1n+2+…+1n2>1(n∈N*且n.1).答案:证明:(1)当n=2时,左边=12+13+14=1312>1,∴n=2时成立(2分)(2)假设当n=k(k≥2)时成立,即1k+1k+1+1k+2+…+1k2>1那么当n=k+1时,左边=1k+1+1k+2+1k+3+…+1(k+1)2=1k+1k+1+1k+2+1k+3+…+1k2+2k+1(k+1)2-1k>1+1k2+1+1k2+2+…+1(k+1)2-1k>1+(2k+1)•1(k+1)2-1k>1+k2-k-1k2+2k+1>1∴n=k+1时也成立(7分)根据(1)(2)可得不等式对所有的n>1都成立(8分)2.以过椭圆+=1(a>b>0)的右焦点的弦为直径的圆与其右准线的位置关系是()

A.相交

B.相切

C.相离

D.不能确定答案:C3.运行如图的程序,将自然数列0,1,2,…依次输入作为a的值,则输出结果x为______.

答案:当n=2时,x=5×6+0=30,当n=1时,x=30×6+1=181,当n=0时,x=181×6+2=1088,故为:10884.直线m的倾斜角为30°,则此直线的斜率等于()A.12B.1C.33D.3答案:因为直线的斜率k和倾斜角θ的关系是:k=tanθ∴倾斜角为30°时,对应的斜率k=tan30°=33故选:C.5.已知随机变量ξ的数学期望Eξ=0.05且η=5ξ+1,则Eη等于()

A.1.15

B.1.25

C.0.75

D.2.5答案:B6.若a>b>0,则,,,从大到小是_____答案:>>>解析:,又ab>0,;即。故有:>>>7.某航空公司经营A,B,C,D这四个城市之间的客运业务,它们之间的直线距离的部分机票价格如下:AB为2000元;AC为1600元;AD为2500元;CD为900元;BC为1200元,若这家公司规定的机票价格与往返城市间的直线距离成正比,则BD间直线距离的票价为(设这四个城在同一水平面上)()

A.1500元

B.1400元

C.1200元

D.1000元答案:A8.关于x的不等式(k2-2k+)x(k2-2k+)1-x的解集是()

A.x>

B.x<

C.x>2

D.x<2答案:B9.(文)若抛物线y2=2px的焦点与椭圆x26+y22=1的右焦点重合,则实数p的值是______.答案:∵x26+y22=1

中a2=6,b2=2,∴c2=4,c=2∴右焦点坐标为(2,0)∵抛物线y2=2px的焦点与椭圆x26+y22=1的右焦点重合∴抛物线y2=2px中p=4故为410.将两粒均匀的骰子各抛掷一次,观察向上的点数,计算:

(1)共有多少种不同的结果?并试着列举出来.

(2)两粒骰子点数之和等于3的倍数的概率;

(3)两粒骰子点数之和为4或5的概率.答案:(1)每一粒均匀的骰子抛掷一次,都有6种结果,根据分步计数原理,所有可能结果共有6×6=36种.

…(4分)(2)两粒骰子点数之和等于3的倍数的有以下12种:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(5,4),(4,5),(6,6),共有12个结果,因此,两粒骰子点数之和等于3的倍数的概率是1236=13.

…(8分)(3)两粒骰子点数之和为4或5的有以下7种:(2,2),(1,3),(3,1),(2,3),(3,2),(1,4),(4,1),因此,两粒骰子点数之和为4或5的概率为736.

…(12分)11.已知α、β均为锐角,若p:sinα<sin(α+β),q:α+β<π2,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件答案:当sinα<sin(α+β)时,α+β<π2不一定成立故sinα<sin(α+β)?α+β<π2,为假命题;而若α+β<π2,则由正弦函数在(0,π2)单调递增,易得sinα<sin(α+β)成立即α+β<π2?sinα<sin(α+β)为真命题故p是q的必要而不充分条件故选B.12.已知f(x)=3mx2-2(m+n)x+n(m≠0)满足f(0)•f(1)>0,设x1,x2是方程f(x)=0的两根,则|x1-x2|的取值范围为()

A.[,)

B.[,)

C.[,)

D.[,)答案:A13.函数f(x)=x2+2的单调递增区间为

______.答案:如图所示:函数的递增区间是:[0,+∞)故为:[0,+∞)14.袋中有4个形状大小一样的球,编号分别为1,2,3,4,从中任取2个球,则这2个球的编号之和为偶数的概率为()A.16B.23C.12D.13答案:根据题意,从4个球中取出2个,其编号的情况有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种;其中编号之和为偶数的有(1,3),(2,4),共2种;则2个球的编号之和为偶数的概率P=26=13;故选D.15.一个正方体的展开图如图所示,A、B、C、D为原正方体的顶点,则在原来的正方体中()A.AB∥CDB.AB与CD相交C.AB⊥CDD.AB与CD所成的角为60°答案:将正方体的展开图,还原为正方体,AB,CD为相邻表面,且无公共顶点的两条面上的对角线∴AB与CD所成的角为60°故选D.16.已知圆C:x2+y2=12,直线l:4x+3y=25.

(1)圆C的圆心到直线l的距离为______;

(2)圆C上任意一点A到直线l的距离小于2的概率为______.答案:(1)由题意知圆x2+y2=12的圆心是(0,0),圆心到直线的距离是d=2532+42=5,(2)由题意知本题是一个几何概型,试验发生包含的事件是从这个圆上随机的取一个点,对应的圆上整个圆周的弧长,满足条件的事件是到直线l的距离小于2,过圆心做一条直线交直线l与一点,根据上一问可知圆心到直线的距离是5,在这条垂直于直线l的半径上找到圆心的距离为3的点做半径的垂线,根据弦心距,半径,弦长之间组成的直角三角形得到符合条件的弧长对应的圆心角是60°根据几何概型的概率公式得到P=60°360°=16故为:5;1617.若不等式(﹣1)na<2+对任意n∈N*恒成立,则实数a的取值范围是

[

]A.[﹣2,)

B.(﹣2,)

C.[﹣3,)

D.(﹣3,)答案:A18.已知直线l:kx-y+1+2k=0.

(1)证明l经过定点;

(2)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S,求S的最小值并求此时直线l的方程;

(3)若直线不经过第四象限,求k的取值范围.答案:(1)由kx-y+1+2k=0,得y-1=k(x+2),所以,直线l经过定点(-2,1).(2)由题意得A(2k+1-k,0),B(0,2k+1),且2k+1-k<01+2k>0,故k>0,△AOB的面积为S=12×2k+1k×(2k+1)=4k2+4k+12k=2k+2+12k≥4,当且仅当k=12时等号成立,此时面积取最小值4,k=12,直线的方程是:x-2y+4=0.(3)由直线过定点(-2,1),可得当斜率k>0或k=0时,直线不经过第四象限.故k的取值范围为[0,+∞).19.已知正三角形ABC的边长为a,求△ABC的直观图△A′B′C′的面积.答案:如图①、②所示的实际图形和直观图.由②可知,A′B′=AB=a,O′C′=12OC=34a,在图②中作C′D′⊥A′B′于D′,则C′D′=22O′C′=68a.∴S△A′B′C′=12A′B′?C′D′=12×a×68a=616a2.20.一个口袋内有4个不同的红球,6个不同的白球,

(1)从中任取4个球,红球的个数不比白球少的取法有多少种?

(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?答案:解(1)由题意知本题是一个分类计数问题,将取出4个球分成三类情况取4个红球,没有白球,有C44种取3个红球1个白球,有C43C61种;取2个红球2个白球,有C42C62,∴C44+C43C61+C42C62=115种(2)设取x个红球,y个白球,则x+y=5(0≤x≤4)2x+y≥7(0≤y≤6)∴x=2y=3或x=3y=2或x=4y=1∴符合题意的取法种数有C42C63+C43C62+C44C61=186种21.2008年9月25日下午4点30分,“神舟七号”载人飞船发射升空,其运行的轨道是以地球的中心F为一个焦点的椭圆,若这个椭圆的长轴长为2a,离心率为e,则“神舟七号”飞船到地球中心的最大距离为______.答案:如图,根据椭圆的几何性质可知,顶点B到椭圆的焦点F的距离最大.最大为a+c=a+ae.故为:a+ae.22.已知两直线a1x+b1y+1=0和a2x+b2y+1=0的交点为P(2,3),求过两点Q1(a1,b1)、Q2(a2,b2)(a1≠a2)的直线方程.答案:∵P(2,3)在已知直线上,2a1+3b1+1=0,2a2+3b2+1=0.∴2(a1-a2)+3(b1-b2)=0,即b1-b2a1-a2=-23.∴所求直线方程为y-b1=-23(x-a1).∴2x+3y-(2a1+3b1)=0,即2x+3y+1=0.23.直线L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1∥L2,则a的值为(

A.-3

B.2

C.-3或2

D.3或-2答案:A24.设函数f(x)是定义在[a,b]上的奇函数,则f(a+b)=______.答案:因为函数f(x)是定义在[a,b]上的奇函数,所以定义域关于原点对称,所以a+b=0,且f(0)=0.所以f(a+b)=f(0)=0.故为:0.25.(1)把参数方程(t为参数)x=secty=2tgt化为直角坐标方程;

(2)当0≤t<π2及π≤t<3π2时,各得到曲线的哪一部分?答案:(1)利用公式sec2t=1+tg2t,得x2=1+y24.∴曲线的直角坐标普通方程为x2-y24=1.(2)当0≤t≤π2时,x≥1,y≥0,得到的是曲线在第一象限的部分(包括(1,0)点);当0≤t≤3π2时,x≤-1,y≥0,得到的是曲线在第二象限的部分,(包括(-1,0)点).26.已知两直线的方程分别为l1:x+ay+b=0,l2:x+cy+d=0,它们在坐标系中的位置如图所示()

A.b>0,d<0,a<c

B.b>0,d<0,a>c

C.b<0,d>0,a<c

D.b<0,d>0,a>c

答案:D27.(文)对于任意的平面向量a=(x1,y1),b=(x2,y2),定义新运算⊕:a⊕b=(x1+x2,y1y2).若a,b,c为平面向量,k∈R,则下列运算性质一定成立的所有序号是______.

①a⊕b=b⊕a;

②(ka)⊕b=a⊕(kb);

③a⊕(b⊕c)=(a⊕b)⊕c;

④a⊕(b+c)=a⊕b+a⊕c.答案:①a⊕b=(x1+x2,y1y2)=(x2+x1,y2y1)=b⊕a,故正确;②∵(ka)⊕b=(kx1+x2,ky1y2),a⊕(kb)=(x1+kx2,y1ky2),∴(ka)⊕b≠a⊕(kb),故不正确;③设c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),(a⊕b)⊕c=(x1+x2,y1y2)⊕c=(x1+x2+x3,y1y2y3),∴a⊕(b⊕c)=(a⊕b)⊕c,故正确;④设c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),a⊕b+a⊕c=(x1+x2,y1y2)+(x1+x3,y1y3)=(2x1+x2+x3,y1(y2+y3)),∴a⊕(b⊕c)≠a⊕b+a⊕c,故不正确.综上可知:只有①③正确.故为①③.28.圆的极坐标方程为ρ=2cos(θ+π3),则该圆的圆心的极坐标是______.答案:∵ρ=2cos(θ+π3),展开得ρ=cosθ-3sinθ,∴ρ2=ρcosθ-3ρsinθ,∴x2+y2=x-3y,∴(x-12)2+(y+32)2=1.∴圆心(12,-32).∴ρ=(12)2+(-32)2=1,tanθ=-3212=-3,∴θ=-π3.故圆心的极坐标是(1,-π3).故为(1,-π3).29.一个正三棱锥的底面边长等于一个球的半径,该正三棱锥的高等于这个球的直径,则球的体积与正三棱锥体积的比值为()

A.

B.

C.

D.答案:A30.袋子里有大小相同的3个红球和4个黑球,今从袋子里随机取球.

(Ⅰ)若有放回地取3次,每次取1个球,求取出1个红球2个黑球的概率;

(Ⅱ)若无放回地取3次,每次取1个球,

①求在前2次都取出红球的条件下,第3次取出黑球的概率;

②求取出的红球数X

的分布列和数学期望.答案:(Ⅰ)记“取出1个红球2个黑球”为事件A,根据题意有P(A)=C13(37)×(47)2=144343;

所以取出1个红球2个黑球的概率是144343.(Ⅱ)①记“在前2次都取出红球”为事件B,“第3次取出黑球”为事件C,则P(B)=3×27×6=17,P(BC)=3×2×47×6×5=435,所以P(C|B)=P(BC)P(B)=43517=45.所以在前2次都取出红球的条件下,第3次取出黑球的概率是45.②随机变量X

的所有取值为0,1,2,3.P(X=0)=C34?A33A37=435,P(X=1)=C24C13?A33A37=1835,P(X=2)=C14C23?A33A37=1235,P(X=3)=C33?A33A37=135.所以X的分布列为:所以EX=0×435+1×1835+2×1235+3×135=4535=97.31.集合M={(x,y)|xy≤0,x,y∈R}的意义是()A.第二象限内的点集B.第四象限内的点集C.第二、四象限内的点集D.不在第一、三象限内的点的集合答案:∵xy≤0,∴xy<0或xy=0当xy<0时,则有x<0y>0或x>0y<0,点(x,y)在二、四象限,当xy=0时,则有x=0或y=0,点(x,y)在坐标轴上,故选D.32.(选做题)某制药企业为了对某种药用液体进行生物测定,需要优选培养温度,实验范围定为29℃~63℃,精确度要求±1℃,用分数法进行优选时,能保证找到最佳培养温度需要最少实验次数为(

)。答案:733.从装有2个红球和2个白球的口袋内,任取2个球,那么下面互斥而不对立的两个事件是()

A.恰有1个白球;恰有2个白球

B.至少有1个白球;都是白球

C.至少有1个白球;

至少有1个红球

D.至少有1个白球;

都是红球答案:A34.已知平面内一动点P到F(1,0)的距离比点P到y轴的距离大1.

(1)求动点P的轨迹C的方程;

(2)过点F的直线交轨迹C于A,B两点,交直线x=-1于M点,且MA=λ1AF,MB=λ2BF,求λ1+λ2的值.答案:(1)由题意知动点P到F(1,0)的距离与直线x=-1的距离相等,由抛物线定义知,动点P在以F(1,0)为焦点,以直线x=-1为准线的抛物线上,方程为y2=4x.(2)由题设知直线的斜线存在,设直线AB的方程为:y=k(x-1),设A(x1,y1),B(x2,y2),由y=k(x-1)y2=4x,得k2x2-2(k2+2)x+k2=0,∵x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得k2x2-2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论