版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年云南文化艺术职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.圆心在原点且圆周被直线3x+4y+15=0分成1:2两部分的圆的方程为
______.答案:如图,因为圆周被直线3x+4y+15=0分成1:2两部分,所以∠AOB=120°.而圆心到直线3x+4y+15=0的距离d=1532+42=3,在△AOB中,可求得OA=6.所以所求圆的方程为x2+y2=36.故为:x2+y2=362.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A.{3,5}B.{3,6}C.{3,7}D.{3,9}答案:因为A∩B={1,3,5,7,9}∩{0,3,6,9,12}={3,9}故选D3.已知圆C的极坐标方程是ρ=2sinθ,那么该圆的直角坐标方程为
______,半径长是
______.答案:把极坐标方程是ρ=2sinθ的两边同时乘以ρ得:ρ2=2ρsinθ,∴x2+y2=2y,即x2+(y-1)2=1,表示以(0,1)为圆心,半径等于1的圆,故为:x2+(y-1)2=1;1.4.不等式log2(x+1)<1的解集为()
A.{x|0<x<1}
B.{x|-1<x≤0}
C.{x|-1<x<1}
D.{x|x>-1}答案:C5.用反证法证明命题:“三角形的内角至多有一个钝角”,正确的假设是()
A.三角形的内角至少有一个钝角
B.三角形的内角至少有两个钝角
C.三角形的内角没有一个钝角
D.三角形的内角没有一个钝角或至少有两个钝角答案:B6.A、B为球面上相异两点,则通过A、B两点可作球的大圆有()A.一个B.无穷多个C.零个D.一个或无穷多个答案:如果A,B两点为球面上的两极点(即球直径的两端点)则通过A、B两点可作球的无数个大圆如果A,B两点不是球面上的两极点(即球直径的两端点)则通过A、B两点可作球的一个大圆故选:D7.已知向量OC=(2,2),CA=(2cosa,2sina),则向量.OA的模的最大值是()A.3B.32C.2D.18答案:∵OA=OC+CA=(2+2cosa,2+2sina)|OA|=(2+2cosa)2+(2+2sina)2=10+8sin(a+π4)∴|OA|≤18=32故选B.8.4个人各写一张贺年卡,集中后每人取一张别人的贺年卡,共有______种取法.答案:根据分类计数问题,可以列举出所有的结果,1甲乙互换,丙丁互换2甲丙互换,乙丁互换3甲丁互换,乙丙互换4甲要乙的乙要丙的丙要丁的丁要甲的5甲要乙的乙要丁的丙要甲的丁要丙的6甲要丙的丙要乙的乙要丁的丁要甲的7甲要丙的丙要丁的乙要丁的丁要甲的8甲要丁的丁要乙的乙要丙的丙要甲的9甲要丁的丁要丙的乙要甲的丙要乙的通过列举可以得到共有9种结果,故为:99.命题:“方程X2-2=0的解是X=±2”中使用逻辑联系词的情况是()A.没有使用逻辑连接词B.使用了逻辑连接词“且”C.使用了逻辑连接词“或”D.使用了逻辑连接词“非”答案:命题:“方程X2-2=0的解是X=±2”可以化为:“方程X2-2=0的解是X=2,或X=-2”故命题:“方程X2-2=0的解是X=±2”中使用逻辑联系词为:或故选C10.已知点P1的球坐标是P1(4,,),P2的柱坐标是P2(2,,1),则|P1P2|=()
A.
B.
C.
D.4答案:A11.我们称正整数n为“好数”,如果n的二进制表示中1的个数多于0的个数.如6=(110):为好数,1984=(11111000000);不为好数,则:
(1)二进制表示中恰有5位数码的好数共有______个;
(2)不超过2012的好数共有______个.答案:(1)二进制表示中恰有5位数码的二进制数分别为:10000,10001,10010,10011,10100,10101,10110,10111,11000,11001,11010,11011,11100,11101,11110,11111,共十六个数,再结合好数的定义,得到其中好数有11个;(2)整数2012的二进制数为:11111011100,它是一个十一位的二进制数.其中一位的二进制数是:1,共有C11个;其中二位的二进制数是:11,共有C22个;
其中三位的二进制数是:101,110,111,共有C12+C22个;
其中四位的二进制数是:1011,1101,1110,1111,共有C23+C33个;
其中五位的二进制数是:10011,10101,10110,11001,11010,11100,10111,11011,11101,11110,11111,共有C24+C34+C44个;
以此类推,其中十位的二进制数是:共有C49+C59+C69+C79+C89+C99个;其中十一位的小于2012二进制数是:共有24+4个;一共不超过2012的好数共有1164个.故1065个12.已知点D是△ABC的边BC的中点,若记AB=a,AC=b,则用a,b表示AD为______.答案:以AB,AC为临边作平行四边形ACEB,连接其对角线AE、BC交与点D,易知D是△ABC的边BC的中点,且D是AE的中点,如图:由向量的平行四边形法则可得AB+AC=a+b=AE=2AD,解得AD=12(a+b),故为:AD=12(a+b)13.已知a=(2,3),b=(1,2),(a+λb)⊥(a-b),则λ=______.答案:∵a=(2,3),b=(1,2),∴a2=(2,3)•(2,3)=4+9=13,b2=(1,2)•(1,2)=1+4=5∵(a+λb)⊥(a-b)∴(a+λb)•(a-b)=a2-λb2=13-5λ=0∴λ=135故为:13514.若椭圆长轴长与短轴长之比为2,它的一个焦点是(215,0),则椭圆的标准方程是______.答案:由题设条件知a=2b,c=215,∴4b2=b2+60,∴b2=20,a2=80,∴椭圆的标准方程是x280+y220=1.故为:x280+y220=1.15.顶点在原点,焦点是(0,5)的抛物线方程是()
A.x2=20y
B.y2=20x
C.y2=x
D.x2=y答案:A16.下列语句不属于基本算法语句的是()
A.赋值语句
B.运算语句
C.条件语句
D.循环语句答案:B17.已知矩阵A=12-14,向量a=74.
(1)求矩阵A的特征值λ1、λ2和特征向量α1、α2;
(2)求A5α的值.答案:(1)矩阵A的特征多项式为f(λ)=.λ-1-21λ-4.=λ2-5λ+6,令f(λ)=0,得λ1=2,λ2=3,当λ1=2时,得α1=21,当λ2=3时,得α2=11.(7分)(2)由α=mα1+nα2得2m+n=7m+n=4,得m=3,n=1.∴A5α=A5(3α1+α2)=3(A5α1)+A5α2=3(λ51α1)+λ52α2=3×2521+3511=435339.(15分)18.为了调查上海市中学生的身体状况,在甲、乙两所学校中各随意抽取了
100名学生,测试引体向上,结果如下表所示:
(1)甲乙两校被测学生引体向上的平均数分别是:甲校______个,乙校______个.
(2)若5个以下(不含5个)为不合格,则甲乙两校的合格率分别为甲校______
乙校______
(3)若15个以上(含15个)为优秀,则甲乙两校中优秀率______校较高(填“甲”或“乙”)
(4)用你所学的统计知识对两所学校学生的身体状况作一个比较.你的结论是______.答案:(1)甲校被测学生引体向上的平均数是=6×3+15×5+44×8+20×11+9×5+6×20100=8.3,乙校被测学生引体向上的平均数是=6×3+11×5+51×8+18×11+8×15+6×20100=9.19;(2)甲校的合格率=15+44+20+9+6100×100%=94%,乙校的合格率=11+51+18+8+6100×100%=94%;(3)甲校中优秀率=9+6100×100%=15%,乙校中优秀率=8+6100×100%=14%,所以甲校较高;(4)虽然合格率相等,但是乙校平均数更高一些,所以乙校更好一些.故为:8.3,9.19,94%,94%,乙校更好一些19.随机变量ξ的分布列为
ξ01xP15p310且Eξ=1.1,则p=______;x=______.答案:由15+p+310=1,得p=12.由Eξ=0×15+1×12+310x=1.1,得x=2.故为12;2.20.给定两个长度为1且互相垂直的平面向量OA和OB,点C在以O为圆心的圆弧AB上变动.若OC=2xOA+yOB,其中x,y∈R,则x+y的最大值是______.答案:由题意|OC|=1,即4x2+y2=1,令x=12cosθ,y=sinθ则x+y=12cosθ+sinθ=(12)2+1sin(θ+φ)≤52故x+y的最大值是52故为:5221.椭圆=1的焦点为F1,点P在椭圆上,如果线段PF1的中点M在y轴上,那么点M的纵坐标是()
A.±
B.±
C.±
D.±答案:A22.若直线y=x+b与圆x2+y2=2相切,则b的值为
______.答案:由题意知,直线y=x+b与圆x2+y2=2相切,∴2=|b|2,解得b=±2.故为:±2.23.一射手对靶射击,直到第一次命中为止每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目ξ的期望为()
A.2.44
B.3.376
C.2.376
D.2.4答案:C24.请写出所给三视图表示的简单组合体由哪些几何体组成.______.答案:由已知中的三视图我们可以判断出该几何体是由一个底面面积相等的圆锥和圆柱组合而成故为:圆柱体,圆锥体25.如图是一个几何体的三视图(单位:cm),则这个几何体的表面积是()A.(7+2)
cm2B.(4+22)cm2C.(6+2)cm2D.(6+22)cm2答案:图中的几何体可看成是一个底面为直角梯形的直棱柱.直角梯形的上底为1,下底为2,高为1;棱柱的高为1.可求得直角梯形的四条边的长度为1,1,2,2.所以此几何体的表面积S表面=2S底+S侧面=12(1+2)×1×2+(1+1+2+2)×1=7+2(cm2).故选A.26.P是△ABC所在平面上的一点,且满足,若△ABC的面积为1,则△PAB的面积为()
A.
B.
C.
D.答案:B27.如图是一个空间几何体的三视图,试用斜二测画法画出它的直观图.(尺寸不作严格要求,但是凡是未用铅笔作图不得分,随手画图也不得分)答案:由题可知题目所述几何体是正六棱台,画法如下:画法:(1)、画轴画x轴、y轴、z轴,使∠x′O′y′=45°,∠x′O′z′=90°
(图1)(2)、画底面以O′为中心,在XOY坐标系内画正六棱台下底面正方形的直观图ABCDEF.在z′轴上取线段O′O1等于正六棱台的高;过O1
画O1M、O1N分别平行O’x′、O′y′,再以O1为中心,画正六棱台上底面正方形的直观图A′B′C′E′F′(3)、成图连接AA′、BB′、CC′、DD′、EE′、FF′,并且加以整理,就得到正六棱台的直观图
(如图2).28.若向量e1,e2不共线,且ke1+e2与e1+ke2可以作为平面内的一组基底,则实数k的取值范围为______.答案:∵当(ke1+e2)∥(e1+ke2),∴ke1+e2=λ(e1+ke2),∴ke1+e2=λe1+λke2,∴k=λ,1=λk,∴k2=1,k=±1,故ke1+e2与e1+ke2可以作为平面内的一组基底,则实数k的取值范围为k≠±1.故为:k≠±1.29.直线上与点的距离等于的点的坐标是_______。答案:,或30.已知R为实数集,Q为有理数集.设函数f(x)=0,(x∈CRQ)1,(x∈Q),则()A.函数y=f(x)的图象是两条平行直线B.limx→∞f(x)=0或limx→∞f(x)=1C.函数f[f(x)]恒等于0D.函数f[f(x)]的导函数恒等于0答案:函数y=f(x)的图象是两条平行直线上的一些孤立的点,故A不正确;函数f(x)的极限只有唯一的值,左右极限不等,则该函数不存在极限,故B不正确;若x是无理数,则f(x)=0,f[f(x)]=f(0)=1,故C不正确;∵f[f(x)]=1,∴函数f[f(x)]的导函数恒等于0,故D正确;故选D.31.已知双曲线x2-y22=1,经过点M(1,1)能否作一条直线l,使直线l与双曲线交于A、B,且M是线段AB的中点,若存在这样的直线l,求出它的方程;若不存在,说明理由.答案:设过点M(1,1)的直线方程为y=k(x-1)+1或x=1(1)当k存在时有y=k(x-1)+1x2
-y22=1得(2-k2)x2+(2k2-2k)x-k2+2k-3=0
(1)当直线与双曲线相交于两个不同点,则必有△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,k<32
又方程(1)的两个不同的根是两交点A、B的横坐标∴x1+x2=2(k-k2)2-k2
又M(1,1)为线段AB的中点∴x1+x22=1
即k-k22-k2=1
k=2
∴k=2,使2-k2≠0但使△<0因此当k=2时,方程(1)无实数解故过点m(1,1)与双曲线交于两点A、B且M为线段AB中点的直线不存在.(2)当x=1时,直线经过点M但不满足条件,综上,符合条件的直线l不存在32.一个箱中原来装有大小相同的
5
个球,其中
3
个红球,2
个白球.规定:进行一次操
作是指“从箱中随机取出一个球,如果取出的是红球,则把它放回箱中;如果取出的是白
球,则该球不放回,并另补一个红球放到箱中.”
(1)求进行第二次操作后,箱中红球个数为
4
的概率;
(2)求进行第二次操作后,箱中红球个数的分布列和数学期望.答案:(1)设A1表示事件“第一次操作从箱中取出的是红球”,B1表示事件“第一次操作从箱中取出的是白球”,A2表示事件“第二次操作从箱中取出的是红球”,B2表示事件“第二次操作从箱中取出的是白球”.则A1B2表示事件“第一次操作从箱中取出的是红球,第二次操作从箱中取出的是白球”.由条件概率计算公式得P(A1B2)=P(A1)P(B2|A1)=35×25=625.B1A2表示事件“第一次操作从箱中取出的是白球,第二次操作从箱中取出的是红球”.由条件概率计算公式得P(B1A2)=P(B1)P(A2|B1)=25×45=825.A1B2+B1A2表示“进行第二次操作后,箱中红球个数为
4”,又A1B2与B1A2是互斥事件.∴P(A1B2+B1A2)=P(A1B2)+P(B1A2)=625+825=1425.(2)设进行第二次操作后,箱中红球个数为X,则X=3,4,5.P(X=3)35×35=925,P(X=4)=1425,P(X=5)=25×15=225.进行第二次操作后,箱中红球个数X的分布列为:进行第二次操作后,箱中红球个数X的数学期望EX=3×925+4×1425+5×225=9325.33.若点(a,9)在函数y=3x的图象上,则tanaπ6=______.答案:将(a,9)代入到y=3x中,得3a=9,解得a=2.∴tanaπ6=tanπ3=3故为:334.在△ABC中,AB=2,BC=3,∠ABC=60°,AD为BC边上的高,O为AD的中点,若
=λ+μ,则λ+μ=()
A.1
B.
C.
D.答案:D35.椭圆的短轴长是2,一个焦点是(3,0),则椭圆的标准方程是______.答案:∵椭圆的一个焦点是(3,0),∴c=3,又∵短轴长是2,∴2b=2.b=1,∴a2=4∵焦点在x轴上,∴椭圆的标准方程是x24+y2=1故为x24+y2=136.下图是由A、B、C、D中的哪个平面图旋转而得到的(
)答案:A37.直线被圆x2+y2=9截得的弦长为(
)
A.
B.
C.
D.答案:B38.设ABC是坐标平面上的一个三角形,P为平面上一点且AP=15AB+25AC,则△ABP的面积△ABC的面积=()A.12B.15C.25D.23答案:连接CP并延长交AB于D,∵P、C、D三点共线,∴AP=λAD+μAC且λ+μ=1设AB=kAD,结合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面积与△ABC有相同的底边AB高的比等于|PD|与|CD|之比∴△ABP的面积与△ABC面积之比为25故选:C39.将4封不同的信随机地投入到3个信箱里,记有信的信箱个数为ξ,试求ξ的分布列.答案:由题意知变量ξ的可能取值是1,2,3,P(ξ=1)=C1334=127,P(ξ=2)=C23(2C14+C24)34=1427,P(ξ=3)=C24A3334=1227,∴ξ的分布列是40.直线(a+1)x-(2a+5)y-6=0必过一定点,定点的坐标为(
)。答案:(-4,-2)41.从单词“equation”选取5个不同的字母排成一排,含有“qu”(其中“qu”相连且顺序不变)的不同排列共有()A.120个B.480个C.720个D.840个答案:要选取5个字母时首先从其它6个字母中选3个有C63种结果,再与“qu“组成的一个元素进行全排列共有C63A44=480,故选B.42.(文)将图所示的一个直角三角形ABC(∠C=90°)绕斜边AB旋转一周,所得到的几何体的正视图是下面四个图形中的(
)
A.
B.
C.
D.
答案:B43.欲对某商场作一简要审计,通过检查发票及销售记录的2%来快速估计每月的销售总额.现采用如下方法:从某本50张的发票存根中随机抽一张,如15号,然后按序往后将65号,115号,165号,…发票上的销售额组成一个调查样本.这种抽取样本的方法是()A.简单随机抽样B.系统抽样C.分层抽样D.其它方式的抽样答案:∵总体的个体比较多,抽样时某本50张的发票存根中随机抽一张,如15号,这是系统抽样中的分组,然后按序往后将65号,115号,165号,…发票上的销售额组成一个调查样本.故选B.44.如图,过点P作⊙O的割线PAB与切线PE,E为切点,连接AE、BE,∠APE的平分线分别与AE、BE相交于点C、D,若∠AEB=30°,则∠PCE=______.答案:如图,PE是圆的切线,∴∠PEB=∠PAC,∵AE是∠APE的平分线,∴∠EPC=∠APC,根据三角形的外角与内角关系有:∠EDC=∠PEB+∠EPC;∠ECD=∠PAC+∠APC,∴∠EDC=∠ECD,∴△EDC为等腰三角形,又∠AEB=30°,∴∠EDC=∠ECD=75°,即∠PCE=75°,故为:75°.45.对于实数x、y,若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为______.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值为5,故为5.46.例3.设a>0,b>0,解关于x的不等式:|ax-2|≥bx.答案:原不等式|ax-2|≥bx可化为ax-2≥bx或ax-2≤-bx,(1)对于不等式ax-2≤-bx,即(a+b)x≤2
因为a>0,b>0即:x≤2a+b.(2)对于不等式ax-2≥bx,即(a-b)x≥2①当a>b>0时,由①得x≥2a-b,∴此时,原不等式解为:x≥2a-b或x≤2a+b;当a=b>0时,由①得x∈ϕ,∴此时,原不等式解为:x≤2a+b;当0<a<b时,由①得x≤2a-b,∴此时,原不等式解为:x≤2a+b.综上可得,当a>b>0时,原不等式解集为(-∞,2a+b]∪[2a-b,+∞),当0<a≤b时,原不等式解集为(-∞,2a+b].47.已知:关于x的方程2x2+kx-1=0
(1)求证:方程有两个不相等的实数根;
(2)若方程的一个根是-1,求另一个根及k值.答案:(1)证明:2x2+kx-1=0,△=k2-4×2×(-1)=k2+8,无论k取何值,k2≥0,所以k2+8>0,即△>0,∴方程2x2+kx-1=0有两个不相等的实数根.(2)设2x2+kx-1=0的另一个根为x,则x-1=-k2,(-1)•x=-12,解得:x=12,k=1,∴2x2+kx-1=0的另一个根为12,k的值为1.48.如图所示,有两个独立的转盘(A)、(B),其中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘玩游戏,规则是:依次随机转动两个转盘再随机停下(指针固定不动,当指针恰好落在分界线时,则这次转动无效,重新开始)为一次游戏,记转盘(A)指针所对的数为X转盘(B)指针对的数为Y设X+Yξ,每次游戏得到的奖励分为ξ分.
(1)求X<2且Y>1时的概率
(2)某人玩12次游戏,求他平均可以得到多少奖励分?答案:(1)由几何概型知P(x=1)=16,P(x=2)=13,P(x=3)=12;
P(y=1)=13,P(y=2)=12,P(y=3)=16.则P(x<2)=P(x=1)=16,P(y>1)=p(y=2)+P(y=3)=23,P(x<2且y>1)=P(x<2)?P(y>1)=19.(2)ξ的取值范围为2,3,4,6.P(ξ=2)=P(x=1)?P(y=1)=16×13=118;P(ξ=3)=P(x=1)?P(y=2)+P(x=2)?P(y=1)=16×12+13×13=736;P(ξ=4)=P(x=1)?P(y=3)+P(x=2)?P(y=2)+P(x=3)?P(y=1)=16×16+13×12+12×13=1336;P(ξ=5)=P(x=2)P(y=3)+P(x=3)P(y=2)=13×16+12×12=1136;P(ξ=6)=P(x=3)?P(y=3)=12×16=112.其分布为:ξ23456P11873613361136112他平均每次可得到的奖励分为Eξ=2×118+3×736+4×1336+5×1136+6×112=256,所以,他玩12次平均可以得到的奖励分为12×Eξ=50.49.函数y=()|x|的图象是()
A.
B.
C.
D.
答案:B50.直线y=3的一个单位法向量是______.答案:直线y=3的方向向量是(a,0)(a≠0),不妨取(1,0)设直线y=3的法向量为n=(x,y)∴(x,y)?(1,0)=0∴x=0∴直线y=3的一个单位法向量是(0,1)故为:(0,1)第2卷一.综合题(共50题)1.如图,圆心角∠AOB=120°,P是AB上任一点(不与A,B重合),点C在AP的延长线上,则∠BPC等于______.
答案:解:设点E是优弧AB(不与A、B重合)上的一点,∵∠AOB=120°,∴∠AEB=60°,∵∠BPA=180°-∠AEB=180°-∠BPC,∴∠BPC=∠AEB.∴∠BPC=60°.故为60°.2.在平面直角坐标系xOy中,已知抛物线关于x轴对称,顶点在原点O,且过点P(2,4),则该抛物线的方程是______.答案:设所求抛物线方程为y2=ax,依题意42=2a∴a=8,故所求为y2=8x.故为:y2=8x3.如图是一个空间几何体的三视图,试用斜二测画法画出它的直观图.(尺寸不作严格要求,但是凡是未用铅笔作图不得分,随手画图也不得分)答案:由题可知题目所述几何体是正六棱台,画法如下:画法:(1)、画轴画x轴、y轴、z轴,使∠x′O′y′=45°,∠x′O′z′=90°
(图1)(2)、画底面以O′为中心,在XOY坐标系内画正六棱台下底面正方形的直观图ABCDEF.在z′轴上取线段O′O1等于正六棱台的高;过O1
画O1M、O1N分别平行O’x′、O′y′,再以O1为中心,画正六棱台上底面正方形的直观图A′B′C′E′F′(3)、成图连接AA′、BB′、CC′、DD′、EE′、FF′,并且加以整理,就得到正六棱台的直观图
(如图2).4.在下列图象中,二次函数y=ax2+bx+c与函数(的图象可能是()
A.
B.
C.
D.
答案:A5.如图,⊙O与⊙O′交于
A,B,⊙O的弦AC与⊙O′相切于点A,⊙O′的弦AD与⊙O相切于A点,则下列结论中正确的是()
A.∠1>∠2
B.∠1=∠2
C.∠1<∠2
D.无法确定
答案:B6.直线(3+4)x+(4-6)y-14-2=0(∈R)恒过定点A,则点A的坐标为(
)。答案:(2,-1)7.设过点A(p,0)(p>0)的直线l交抛物线y2=2px(p>0)于B、C两点,
(1)设直线l的倾斜角为α,写出直线l的参数方程;
(2)设P是BC的中点,当α变化时,求P点轨迹的参数方程,并化为普通方程.答案:(1)l的参数方程为x=p+tcosαy=tsinα(t为参数)其中α≠0(2)将直线的参数方程代入抛物线方程中有:t2sin2α-2ptcosα-2p2=0设B、C两点对应的参数为t1,t2,其中点P的坐标为(x,y),则点P所对应的参数为t1+t22,由t1+t2=2pcosαsin2αt1t2=-2p2sin2α,当α≠90°时,应有x=p+t1+t22cosα=p+ptan2αy=t1+t22sinα=ptanα(α为参数)消去参数得:y2=px-p2当α=90°时,P与A重合,这时P点的坐标为(p,0),也是方程的解综上,P点的轨迹方程为y2=px-p28.选修4-1:几何证明选讲
如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2-14x+mn=0的两个根.
(Ⅰ)证明:C,B,D,E四点共圆;
(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.
答案:(I)连接DE,根据题意在△ADE和△ACB中,AD×AB=mn=AE×AC,即ADAC=AEAB又∠DAE=∠CAB,从而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四点共圆.(Ⅱ)m=4,n=6时,方程x2-14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.∵C,B,D,E四点共圆,∴C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=12(12-2)=5.故C,B,D,E四点所在圆的半径为529.两直线3x+y-3=0与6x+my+1=0平行,则它们之间的距离为()
A.4
B.
C.
D.答案:D10.甲、乙两人投篮,投中的概率分别为0.6,0.7,若两人各投2次,则两人都投中1次的概率为______.答案:两人都投中1次的概率为C210.6×0.4×C210.7×0.3=0.2016故为:0.201611.i是虚数单位,a,b∈R,若ia+bi=1+i,则a+b=______.答案:∵ia+bi=1+i,a,b∈R,∴i(a-bi)(a+bi)(a-bi)=1+i,∴b+aia2+b2=1+i,化为b+ai=(a2+b2)+(a2+b2)i,根据复数相等的定义可得b=a2+b2a=a2+b2,a2+b2≠0解得a=b=12.∴a+b=1.故为1.12.右图程序运行后输出的结果为()
A.3456
B.4567
C.5678
D.6789
答案:A13.如图,过点P作⊙O的割线PAB与切线PE,E为切点,连接AE、BE,∠APE的平分线分别与AE、BE相交于点C、D,若∠AEB=30°,则∠PCE=______.答案:如图,PE是圆的切线,∴∠PEB=∠PAC,∵AE是∠APE的平分线,∴∠EPC=∠APC,根据三角形的外角与内角关系有:∠EDC=∠PEB+∠EPC;∠ECD=∠PAC+∠APC,∴∠EDC=∠ECD,∴△EDC为等腰三角形,又∠AEB=30°,∴∠EDC=∠ECD=75°,即∠PCE=75°,故为:75°.14.在极坐标系中,曲线ρ=4cosθ围成的图形面积为()
A.π
B.4
C.4π
D.16答案:C15.如图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,中间的数字表示得分的十位数,下列对乙运动员的判断错误的是()A.乙运动员得分的中位数是28B.乙运动员得分的众数为31C.乙运动员的场均得分高于甲运动员D.乙运动员的最低得分为0分答案:根据题意,可得甲的得分数据:8,14,16,13,23,26,28,30,30,39可得甲得分的平均数是22.7乙的得分数据:12,15,25,24,21,31,36,31,37,44可得乙得分的平均数是27.6,31出现了两次,可得乙得分的众数是1将乙得分数据按从小到大的顺序排列,位于中间的两个数是25和31,故中位数是12(25+31)=28由以上的数据,可得:乙运动员得分的中位数是28,A项是正确的;乙运动员得分的众数为31,B项是正确的;乙运动员的场均得分高于甲运动员,C各项是正确的.而D项因为乙运动员的得分没有0分,故D项错误故选:D16.已知x,y之间的一组数据:
x0123y1357则y与x的回归方程必经过()A.(2,2)B.(1,3)C.(1.5,4)D.(2,5)答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4∴这组数据的样本中心点是(1.5,4)根据线性回归方程一定过样本中心点,∴线性回归方程y=a+bx所表示的直线必经过点(1.5,4)故选C17.如图,AB是半圆O的直径,C、D是半圆上的两点,半圆O的切线PC交AB的延长线于点P,∠PCB=25°,则∠ADC为()
A.105°
B.115°
C.120°
D.125°
答案:B18.用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2(n∈N*)答案:证明:①n=1时,左边=2,右边=2,等式成立;②假设n=k时,结论成立,即:(k+1)+(k+2)+…+(k+k)=k(3k+1)2则n=k+1时,等式左边=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1)=k(3k+1)2+3k+2=(k+1)(3k+4)2故n=k+1时,等式成立由①②可知:(n+1)+(n+2)+…+(n+n)=n(3n+1)2(n∈N*)成立19.下列函数f(x)与g(x)表示同一函数的是
()A.f(x)=x0与g(x)=1B.f(x)=2lgx与g(x)=lgx2C.f(x)=|x|与g(x)=(x)2D.f(x)=x与g(x)=3x3答案:A、∵f(x)=x0,其定义域为{x|x≠0},而g(x)的定义域为R,故A错误;B、∵f(x)=2lgx,的定义域为{x|x>0},而g(x)=lgx2的定义域为R,故B错误;C、∵f(x)=|x|与g(x)=(x)2=x,其中f(x)的定义域为R,g(x)的定义域为{x|x≥0},故C错误;D、∵f(x)=x与g(x)=3x3=x,其中f(x)与g(x)的定义域为R,故D正确.故选D.20.已知函数f(x)=x2+(a2-1)x+(a-2)的一个零点比1大,一个零点比1小,则实数a的取值范围______.答案:∵函数f(x)=x2+(a2-1)x+(a-2)的一个零点比1大,一个零点比1小∴f(1)<0∴1+a2-1+a-2<0∴a2+a-2<0∴-2<a<1∴实数a的取值范围为(-2,1)故为:(-2,1)21.如果方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有实数解,求a的值.答案:设方程的实根为x0,则方程(1+i)x2-2(a+i)x+5-3i=0可化为(x20-2ax0+5)+(x20-2x0-3)i=0由复数相等的充要条件可得x20-2ax0+5=0①x20-2x0-3=0
②由②得x0=3或-1,代入①得a=73或-3∴a=73或-322.解不等式:2<|3x-1|≤3.答案:由原不等式得-3≤3x-1<-2或2<3x-1≤3,∴-2≤3x<-1或3<3x≤4,∴-23≤x<-13或1<x≤43,∴不等式的解集是{x|-23≤x<-13或1<x≤43}.23.设a1,a2,…,an为正数,求证:a21a2+a22a3+…+a2n-1an+a2na1≥a1+a2+…+an.答案:证明:不妨设a1>a2>…>an>0,则a12>a22>…>an2,1a1<1a2<…1an由排序原理:乱序和≥反序和,可得:a21a2+a22a3+…+a2n-1an+a2na1≥a12a1+a22a2+…+an2an=a1+a2+…+an.24.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为X,则“X>4”表示试验的结果为()
A.第一枚为5点,第二枚为1点
B.第一枚大于4点,第二枚也大于4点
C.第一枚为6点,第二枚为1点
D.第一枚为4点,第二枚为1点答案:C25.(选做题)已知矩阵.122x.的一个特征值为3,求另一个特征值及其对应的一个特征向量.答案:矩阵M的特征多项式为.λ-1-2-2λ-x.=(λ-1)(λ-x)-4…(1分)因为λ1=3方程f(λ)=0的一根,所以x=1…(3分)由(λ-1)(λ-1)-4=0得λ2=-1,…(5分)设λ2=-1对应的一个特征向量为α=xy,则-2x-2y=0-2x-2y=0得x=-y…(8分)令x=1则y=-1,所以矩阵M的另一个特征值为-1,对应的一个特征向量为α=1-1…(10分)26.下列命题中正确的是()
A.若,则
B.若,则
.若,则
D.若,则答案:C27.正方体的全面积为18cm2,则它的体积是()A.4cm3B.8cm3C.11272cm3D.33cm3答案:设正方体边长是acm,根据题意得6a2=18,解得a=3,∴正方体的体积是33cm3.故选D.28.在调试某设备的线路设计中,要选一个电阻,调试者手中只有阻值分别为0.7KΩ,1.1KΩ,1.9KΩ,2.0KΩ,3.5KΩ,4.5KΩ,5.5KΩ七种阻值不等的定值电阻,他用分数法进行优法进行优选试验时,依次将电阻值从小到大安排序号,则第1个试点的电阻的阻值是(
).答案:3.5kΩ29.附加题(必做题)
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4.
(1)设AD=λAB,异面直线AC1与CD所成角的余弦值为925,求λ的值;
(2)若点D是AB的中点,求二面角D-CB1-B的余弦值.答案:(1)以CA,CB,CC1分别为x,y,z轴建立如图所示空间直角坐标,因为AC=3,BC=4,AA1=4,所以A(3,0,0),B(0,4,0),C(0,0,0),C1=(0,0,4),所以AC1=(-3,0,4),因为AD=λAB,所以点D(-3λ+3,4λ,0),所以CD=(-3λ+3,4λ,0),因为异面直线AC1与CD所成角的余弦值为925,所以|cos<AC1,CD>|=|9λ-9|5(3-3λ)2+16λ2=925,解得λ=12.…(4分)(2)由(1)得B1(0,4,4),因为
D是AB的中点,所以D(32,2,0),所以CD=(32,2,0),CB1=(0,4,4),平面CBB1C1的法向量
n1=(1,0,0),设平面DB1C的一个法向量n2=(x0,y0,z0),则n1,n2的夹角(或其补角)的大小就是二面角D-CB1-B的大小,由n2•CD=0n2•CB
1=0得32x0+2y0=04y0+4z0=0令x0=4,则y0=-3,z0=3,所以n2=(4,-3,3),∴cos<n1,n2>=n1•n2|n1|•|n2|=434=23417.所以二面角D-B1C-B的余弦值为23417.
…(10分)30.如图所示,已知P是平行四边形ABCD所在平面外一点,连结PA、PB、PC、PD,点E、F、G、H分别为△PAB、△PBC、△PCD、△PDA的重心,求证:E、F、G、H四点共面答案:证明:分别延长P、PF、PG、PH交对边于M、N、Q、R.∵E、F、G、H分别是所在三角形的重心,∴M、N、Q、R为所在边的中点,顺次连结MNQR所得四边形为平行四边形,且有∵MNQR为平行四边形,∴由共面向量定理得E、F、G、H四点共面.31.已知f(x)=,若f(x0)>1,则x0的取值范围是()
A.(0,1)
B.(-∞,0)∪(0,+∞)
C.(-∞,0)∪(1,+∞)
D.(1,+∞)答案:C32.某学校为了解高一男生的百米成绩,随机抽取了50人进行调查,如图是这50名学生百米成绩的频率分布直方图.根据该图可以估计出全校高一男生中百米成绩在[13,14]内的人数大约是140人,则高一共有男生______人.
答案:第三和第四个小矩形面积之和为(0.72+0.68)×0.5=0.7,即百米成绩在[13,14]内的频率为:0.7,因为根据该图可以估计出全校高一男生中百米成绩在[13,14]内的人数大约是140人,则高一共有男生1400.7=200人.故为:200.33.(几何证明选讲选做题)如图,梯形,,是对角线和的交点,,则
。
答案:1:6解析:,
,,∵,,而∴。34.如图,平行四边形ABCD中,AE:EB=1:2,若△AEF的面积为6,则△ABC的面积为()A.18B.54C.64D.72答案:∵ABCD为平行四边形∴AB平行于CD∴△AEF∽△CDF∵AE:EB=1:2∴AE:CD=AE:AB=1:3∴S△CDF=32×S△AEF=9×6=54∵AF:CF=AE:CD=1:3∴S△ADF=S△CDF÷3=54÷3=18∴S△ABC=S△ACD=S△CDF+S△ADF=54+18=72故选D35.将参数方程化为普通方程为(
)
A.y=x-2
B.y=x+2
C.y=x-2(2≤x≤3)
D.y=x+2(0≤y≤1)答案:C36.如图:在长方体ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F分别是线段AB,BC上的点,且EB=FB=1.
(1)求二面角C-DE-C1的大小;
(2)求异面直线EC1与FD1所成角的大小;
(3)求异面直线EC1与FD1之间的距离.答案:(1)以A为原点AB,AD,AA1分别为x轴、y轴、z轴的正向建立空间直角坐标系,则有D(0,3,0),D1(0,3,2),E(3,0,0),F(4,1,0),C1(4,3,2).(1分)于是DE=(3,-3,0),EC1=(1,3,2),FD1=(-4,2,2)(3分)设向量n=(x,y,z)与平面C1DE垂直,则有n⊥DEn⊥EC1⇒3x-3y=0x+3y+2z=0⇒x=y=-12z.∴n=(-z2,-z2,z)=z2(-1,-1,2),其中z>0.取n0=(-1,-1,2),则n0是一个与平面C1DE垂直的向量,(5分)∵向量AA1=(0,0,2)与平面CDE垂直,∴n0与AA1所成的角θ为二面角C-DE-C1的平面角.(6分)∴cosθ=n0•AA1|n0||AA1|=-1×0-1×0+2×21+1+4×0+0+4=63.(7分)故二面角C-DE-C1的大小为arccos63.(8分)(2)设EC1与FD1所成角为β,(1分)则cosβ=EC1•FD1|EC1||FD1|=1×(-4)+3×2+2×21+1+4×0+0+4=2114(10分)故异面直线EC1与FD1所成角的大小为arccos2114(11分)(3)设m=(x,y,z)m⊥EC1m⊥FD1⇒m=(17,-57,1)又取D1C1=(4,0,0)$}}\overm}=(\frac{1}{7},-\frac{5}{7},1)$$}}\overC}_1}=(4,0,0)$(13分)设所求距离为d,则d=|m⋅D1C1||m|=4315$}}\overC}}_1}|}}{|\vecm|}=\frac{{4\sqrt{3}}}{15}$(14分).37.算法的有穷性是指()A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确答案:一个算法必须在有限步内结束,简单的说就是没有死循环即算法的步骤必须有限故选C.38.x=5
y=6
x+y=11
END
上面程序运行时输出的结果是()
A.x+y=11
B.11
C.x+y
D.出错信息答案:B39.在平面几何中,四边形的分类关系可用以下框图描述:
则在①中应填入______;在②中应填入______.答案:由题意知①对应的四边形是一个有一组邻边相等的平行四边形,∴这里是一个菱形,②处的图形是一个有一条腰和底边垂直的梯形,∴②处是一个直角梯形,故为:菱形;直角梯形.40.关于生活中的圆锥曲线,有下面几个结论:
(1)标准田径运动场的内道是一个椭圆;
(2)接受卫星转播的电视信号的天线设备,其轴截面与天线设备的交线是抛物线;
(3)大型热电厂的冷却通风塔,其轴截面与通风塔的交线是双曲线;
(4)地球围绕太阳运行的轨迹可以近似地看成一个椭圆.
其中正确命题的序号是______(把你认为正确命题的序号都填上).答案:(1)标准田径运动场的内道是有直道和弯道部分是半圆组成,不是椭圆.故错误(2)接受卫星转播的电视信号的天线设备,其轴截面与天线设备的交线是抛物线.故正确.(3)大型热电厂的冷却通风塔,其轴截面与通风塔的交线是双曲线.故正确.(4)地球围绕太阳运行的轨迹可以近似地看成一个椭圆.故正确.故为:(2)(3)(4)41.以抛物线y2=2px(p>0)的焦半径|PF|为直径的圆与y轴位置关系是______.答案:根据抛物线定义可知|PF|=p2,而圆的半径为p2,圆心为(p2,0),|PF|正好等于所求圆的半径,进而可推断圆与y轴位置关系是相切.42.如图,正方体ABCD-A1B1C1D1的棱长为3,点M在AB上,且AM=13AB,点P在平面ABCD上,且动点P到直线A1D1的距离与P到点M的距离相等,在平面直角坐标系xAy中,动点P的轨迹方程是______.答案:作PN⊥AD,则PN⊥面A1D1DA,作NH⊥A1D1,N,H为垂足,由三垂线定理可得PH⊥A1D1.以AD,AB,AA1为x轴,y轴,z轴,建立空间坐标系,设P(x,y,0),由题意可得M(0,1,0),H(x,0,3),|PM|=|pH|,∴x2+(y-1)2=y2+9,整理,得x2=2y+8.故为:x2=2y+8.43.规定符号“△”表示一种运算,即a△b=ab+a+b,其中a、b∈R+;若1△k=3,则函数f(x)=k△x的值域______.答案:1△k=k+1+k=3,解得k=1,∴k=1∴f(x)=k△x=kx+k+x=x+x+1对于x需x≥0,∴对于f(x)=x+x+1=(x+12)2+34≥1故函数f(x)的值域为[1,+∞)故为:[1,+∞)44.试比较nn+1与(n+1)n(n∈N*)的大小.
当n=1时,有nn+1______(n+1)n(填>、=或<);
当n=2时,有nn+1______(n+1)n(填>、=或<);
当n=3时,有nn+1______(n+1)n(填>、=或<);
当n=4时,有nn+1______(n+1)n(填>、=或<);
猜想一个一般性的结论,并加以证明.答案:当n=1时,nn+1=1,(n+1)n=2,此时,nn+1<(n+1)n,当n=2时,nn+1=8,(n+1)n=9,此时,nn+1<(n+1)n,当n=3时,nn+1=81,(n+1)n=64,此时,nn+1>(n+1)n,当n=4时,nn+1=1024,(n+1)n=625,此时,nn+1>(n+1)n,根据上述结论,我们猜想:当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.①当n=3时,nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假设当n=k时,kk+1>(k+1)k成立,即:kk+1(k+1)k>1则当n=k+1时,(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即当n=k+1时也成立,∴当n≥3时,nn+1>(n+1)n(n∈N*)恒成立.45.已知P:2+2=5,Q:3>2,则下列判断错误的是()A.“P或Q”为真,“非Q”为假B.“P且Q”为假,“非P”为真C.“P且Q”为假,“非P”为假D.“P且Q”为假,“P或Q”为真答案:∵P:2+2=5,假;Q:3>2,真;∴“非P”为真,“非Q”为假,∴“P或Q”为真,“P且Q”为假,∴A,B,D均正确;C错误.故选C.46.已知:如图,四边形ABCD内接于⊙O,,过A点的切线交CB的延长线于E点,求证:AB2=BE·CD。
答案:证明:连结AC,因为EA切⊙O于A,所以∠EAB=∠ACB,因为,所以∠ACD=∠ACB,AB=AD,于是∠EAB=∠ACD,又四边形ABCD内接于⊙O,所以∠ABE=∠D,所以△ABE∽△CDA,于是,即AB·DA=BE·CD,所以。47.如图放置的等腰直角三角形ABC薄片(∠ACB=90°,AC=2)沿x轴滚动,设顶点A(x,y)的轨迹方程是y=f(x),则f(x)在其相邻两个零点间的图象与x轴所围区域的面积为______.答案:作出点A的轨迹中相邻两个零点间的图象,如图所示.其轨迹为两段圆弧,一段是以C为圆心,CA为半径的四分之一圆弧;一段是以B为圆心,BA为半径,圆心角为3π4的圆弧.其与x轴围成的图形的面积为12×22×π2+12×2×2+12×(22)2×3π4=2+4π.故为:2+4π.48.若直线过点(1,2),(),则此直线的倾斜角是()
A.60°
B.45°
C.30°
D.90°答案:C49.已知F1(-2,0),F2(2,0)两点,曲线C上的动点P满足|PF1|+|PF2|
=32|F1F2|.
(Ⅰ)求曲线C的方程;
(Ⅱ)若直线l经过点M(0,3),交曲线C于A,B两点,且MA=12MB,求直线l的方程.答案:(Ⅰ)由已知可得|PF1|+|PF2|
=32|F1F2|
=6>|F1F2|=4,故曲线C是以F1,F2为焦点,长轴长为6的椭圆,其方程为x29+y25=1.(Ⅱ)方法一:设A(x1,y1),B(x2,y2),由条件可知A为MB的中点,则有x129+y125=1,
(1)x229+y225=1,(2)2x1=x2,
(3)2y1=y2+3.
(4)将(3)、(4)代入(2)得4x129+(2y1-3)25=1,整理为4x129+4y125-125y1+45=0.将(1)代入上式得y1=2,再代入椭圆方程解得x1=±35,故所求的直线方程为y=±53x+3.方法二:依题意,直线l的斜率存在,设其方程为y=kx+3.由y=kx+3x29+y25=1得(5+9k2)x2+54kx+36=0.令△>0,解得k2>49.设A(x1,y1),B(x2,y2),则x1+x2=-54k5+9k2,①x1x2=365+9k2.②因为MA=12MB,所以A为MB的中点,从而x2=2x1.将x2=2x1代入①、②,得x1=-18k5+9k2,x12=185+9k2,消去x1得(-18k5+9k2)2=185+9k2,解得k2=59,k=±53.所以直线l的方程为y=±53x+3.50.已知|a|<1,|b|<1,求证:<1.答案:证明略解析:∵<1<1a2+b2+2ab<1+2ab+a2b2a2b2-a2-b2+1>0
(a2-1)(b2-1)>0又|a|<1,|b|<1,∴(a2-1)(b2-1)>0.∴原不等式成立.第3卷一.综合题(共50题)1.已知空间四边形ABCD中,M、G分别为BC、CD的中点,则等于()
A.
B.
C.
D.
答案:A2.设点P对应的复数为-3+3i,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P的极坐标为()
A.(3,π)
B.(-3,π)
C.(3,π)
D.(-3,π)答案:A3.若点M到定点F和到定直线l的距离相等,则下列说法正确的是______.
①点M的轨迹是抛物线;
②点M的轨迹是一条与x轴垂直的直线;
③点M的轨迹是抛物线或一条直线.答案:当点F不在直线l上时,点M的轨迹是以F为焦点、l为准线的抛物线;而当点F在直线l上时,点M的轨迹是一条过点F,且与l垂直的直线.故为:③4.直线上与点的距离等于的点的坐标是_______。答案:,或5.“因为对数函数y=logax是增函数(大前提),而y=logx是对数函数(小前提),所以y=logx是增函数(结论).”上面推理的错误是()
A.大前提错导致结论错
B.小前提错导致结论错
C.推理形式错导致结论错
D.大前提和小前提都错导致结论错答案:A6.平面直角坐标系中,O为坐标原点,设向量其中,若且0≤μ≤λ≤1,那么C点所有可能的位置区域用阴影表示正确的是()
A.
B.
C.
D.
答案:A7.把函数y=4x的图象按平移到F′,F′的函数解析式为y=4x-2-2,则向量的坐标等于_____答案:(2,-2)解析:把函数y=4x的图象按平移到F′,F′的函数解析式为y=4x-2-2,则向量的坐标等于_____8.如图,AB,AC分别是⊙O的切线和割线,且∠C=45°,∠BDA=60°,CD=6,则切线AB的长是______.答案:过点A作AM⊥BD与点M.∵AB为圆O的切线∴∠ABD=∠C=45°∵∠BDA=60°∴∠BAD=75°,∠DAM=30°,∠BAM=45°设AB=x,则AM=22x,在直角△AMD中,AD=63x由切割线定理得:AB2=AD?ACx2=63x(63x+6)解得:x1=6,x2=0(舍去)故AB=6.故是:6.9.参数方程为t为参数)表示的曲线是()
A.一条直线
B.两条直线
C.一条射线
D.两条射线答案:D10.否定结论“至少有一个解”的说法中,正确的是()
A.至多有一个解
B.至少有两个解
C.恰有一个解
D.没有解答案:D11.圆x=1+cosθy=1+sinθ(θ为参数)的标准方程是
______,过这个圆外一点P(2,3)的该圆的切线方程是
______;答案:∵圆x=1+cosθy=1+sinθ(θ为参数)消去参数θ,得:(x-1)2+(y-1)2=1,即圆x=1+cosθy=1+sinθ(θ为参数)的标准方程是(x-1)2+(y-1)2=1;∵这个圆外一点P(2,3)的该圆的切线,当切线斜率不存在时,显然x=2符合题意;当切线斜率存在时,设切线方程为:y-3=k(x-2),由圆心到切线的距离等于半径,得|k-1+3-2k|k2+1=
1,解得:k=34,故切线方程为:3x-4y+6=0.故为:(x-1)2+(y-1)2=1;x=2或3x-4y+6=0.12.两条直线x-y+6=0与x+y+6=0的夹角为()
A.
B.
C.0
D.答案:D13.若P(A∪B)=P(A)+P(B)=1,则事件A与事件B的关系是()
A.互斥事件
B.对立事件
C.不是互斥事件
D.前者都不对答案:D14.已知点D是△ABC的边BC的中点,若记AB=a,AC=b,则用a,b表示AD为______.答案:以AB,AC为临边作平行四边形ACEB,连接其对角线AE、BC交与点D,易知D是△ABC的边BC的中点,且D是AE的中点,如图:由向量的平行四边形法则可得AB+AC=a+b=AE=2AD,解得AD=12(a+b),故为:AD=12(a+b)15.设集合M={x|0<x≤3},N={x|0<x≤1},那么“a∈M”是“a∈N”的()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件答案:B16.下列命题中为真命题的是(
)
A.平行直线的倾斜角相等
B.平行直线的斜率相等
C.互相垂直的两直线的倾斜角互补
D.互相垂直的两直线的斜率互为相反数答案:A17.有一批数量很大的产品,其中次品率是20%,对这批产品进行抽查,每次抽出一件,如果抽出次品则抽查终止,否则继续抽查,直到抽出次品,但抽查次数最多不超过9次,那么抽查次数为9次的概率为(
)
A.0.89
B.0.88×0.2
C.0.88
D.0.28×0.8答案:C18.如图,圆O上一点C在直径AB上的射影为D.AD=2,AC=25,则AB=______.答案:∵AB是直径,∴△ABC是直角三角形,∵C在直径AB上的射影为D,∴CD⊥AB,∴AC2=AD?AB,∴AB=AC2AD=202=10,故为:1019.已知正方体ABCD-A1B1C1D1中,M、N分别为BB1、C1D1的中点,建立适当的坐标系,求平面AMN的法向量.答案:(-3,2,-4)为平面AMN的一个法向量.解析:以D为原点,DA、DC、DD1所在直线为坐标轴建立空间直角坐标系.(如图所示).设棱长为1,则A(1,0,0),M(1,1,),N(0,,1).∴=(0,1,),=(-1,,1).设平面AMN的法向量n=(x,y,z)∴令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).∴(-3,2,-4)为平面AMN的一个法向量.20.已知f(x)=3mx2-2(m+n)x+n(m≠0)满足f(0)•f(1)>0,设x1,x2是方程f(x)=0的两根,则|x1-x2|的取值范围为()
A.[,)
B.[,)
C.[,)
D.[,)答案:A21.已知D是△ABC所在平面内一点,,则()
A.
B.
C.=
D.答案:A22.甲、乙两人参加一次考试,已知在备选的10道试题中,甲能答对其中6题,乙能答对其中8题.若规定每次考试分别都从这10题中随机抽出3题进行测试,至少答对2题算合格.
(1)分别求甲、乙两人考试合格的概率;
(2)求甲、乙两人至少有一人合格的概率.答案:(1)(2)解析:(1)设甲、乙考试合格分别为事件A、B,甲考试合格的概率为P(A)=,乙考试合格的概率为P(B)=.(2)A与B相互独立,且P(A)=,P(B)=,则甲、乙两人至少有一人合格的概率为P(AB++A)=×+×+×=.23.某班有40名学生,其中有15人是共青团员.现将全班分成4个小组,第一组有学生10人,共青团员4人,从该班任选一个学生代表.在选到的学生代表是共青团员的条件下,他又是第一组学生的概率为()A.415B.514C.14D.34答案:由于所有的共青团员共有15人,而第一小组有4人是共青团员,故在选到的学生代表是共青团员的条件下,他又是第一组学生的概率为415,故选A.24.在区间[-1,1]上任取两个数s和t,则关于x的方程x2+sx+t=0的两根都是正数的概率是[
]A.
B.
C.
D.答案:A25.将函数进行平移,使得到的图形与抛物线的两个交点关于原点对称,试求平移后的图形对应的函数解析式.答案:函数解析式是解析:将函数进行平移,使得到的图形与抛物线的两个交点关于原点对称,试求平移后的图形对应的函数解析式.26.集合{0,1}的子集有()个.A.1个B.2个C.3个D.4个答案:根据题意,集合{0,1}的子集有{0}、{1}、{0,1}、?,共4个,故选D.27.袋中有5个小球(3白2黑),现从袋中每次取一个球,不放回地抽取两次,则在第一次取到白球的条件下,第二次取到白球的概率是()
A.
B.
C.
D.答案:C28.用数学归纳法证明不等式:1n+1n+1+1n+2+…+1n2>1(n∈N*且n.1).答案:证明:(1)当n=2时,左边=12+13+14=1312>1,∴n=2时成立(2分)(2)假设当n=k(k≥2)时成立,即1k+1k+1+1k+2+…+1k2>1那么当n=k+1时,左边=1k+1+1k+2+1k+3+…+1(k+1)2=1k+1k+1+1k+2+1k+3+…+1k2+2k+1(k+1)2-1k>1+1k2+1+1k2+2+…+1(k+1)2-1k>1+(2k+1)•1(k+1)2-1k>1+k2-k-1k2+2k+1>1∴n=k+1时也成立(7分)根据(1)(2)可得不等式对所有的n>1都成立(8分)29.下列程序表示的算法是辗转相除法,请在空白处填上相应语句:
(1)处填______;
(2)处填______.答案:∵程序表示的算法是辗转相除法,根据辗转相除法,先求出m除以n的余数,然后利用辗转相除法,将n的值赋给m,将余数赋给n,一直算到余数为零时m的值即可,∴(1)处应该为r=mMODn;(2)处应该为r=0.故为r=mMODn;r=0.30.如图,花园中间是喷水池,喷水池周围的A、B、C、D区域种植草皮,要求相邻的区域种不同颜色的草皮,现有4种不同颜色的草皮可供选用,则共有______种不同的种植方法(以数字作答).答案:若AD相同,有4×(3+3×2)种种植方法,若AD不同,有4×3×(2+2×1)种种植方法∴共有4×(3+3×2)+4×3×(2+2×1)=36+48=84种不同方法.故为84.31.直线y=3x的倾斜角为______.答案:∵直线y=3x的斜率是3,∴直线的倾斜角的正切值是3,∵α∈[0°,180°],∴α=60°,故为:60°32.有一矩形纸片ABCD,按图所示方法进行任意折叠,使每次折叠后点B都落在边AD上,将B的落点记为B′,其中EF为折痕,点F也可落在边CD上,过B′作B′H∥CD交EF于点H,则点H的轨迹为()A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案:由题意知:点H到定点B的距离以及到定直线AD的距离相等,根据抛物线的定义可知:点H的轨迹为:抛物线,(抛物线的一部分)故选D.33.三棱柱ABC-A1B1C1中,M、N分别是BB1、AC的中点,设,,=,则等于()
A.
B.
C.
D.答案:A34.以下命题:
①二直线平行的充要条件是它们的斜率相等;
②过圆上的点(x0,y0)与圆x2+y2=r2相切的直线方程是x0x+y0y=r2;
③平面内到两定点的距离之和等于常数的点的轨迹是椭圆;
④抛物线上任意一点M到焦点的距离都等于点M到其准线的距离.
其中正确命题的标号是______.答案:①两条直线平行的充要条件是它们的斜率相等,且截距不等,故①不正确,②过点(x0,y0)与圆x2+y2=r2相切的直线方程是x0x+y0y=r2.②正确,③不正确,若平面内到两定点距离之和等于常数,如这个常数正好为两个点的距离
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单位管理制度呈现大全【员工管理】十篇
- 《物业管理服务业》课件
- 三年级数学数学广角课件
- 2024年农业综合开发和扶贫开发工作总结
- 2024年公司劳动社保科上半年的工作总结
- 空调机运输协议三篇
- 农业产品销售主管工作总结
- 通信科技前台工作总结
- 家政服务前台工作总结
- 机电装备话务员工作总结
- 研究生年终总结研一
- 医美行业股权合作合同
- 丝绸之路上的民族学习通超星期末考试答案章节答案2024年
- 无人机操作教案
- 铁路基础知识题库单选题100道及答案解析
- 口腔正畸科普课件
- 2024年广东省普通高中学业水平合格性地理试卷(1月份)
- 住宅楼安全性检测鉴定方案
- 配送管理招聘面试题与参考回答2024年
- 江苏省语文小学三年级上学期期末试题及解答参考(2024年)
- 黑龙江哈尔滨市省实验中学2025届数学高一上期末监测试题含解析
评论
0/150
提交评论