高中数学人教A版本册总复习总复习 全市获奖4_第1页
高中数学人教A版本册总复习总复习 全市获奖4_第2页
高中数学人教A版本册总复习总复习 全市获奖4_第3页
高中数学人教A版本册总复习总复习 全市获奖4_第4页
高中数学人教A版本册总复习总复习 全市获奖4_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023学年海南省海南中学高一(下)期中数学试卷一、选择题(本大题共12个小题,每小题5分,共60分.在每小题所给的四个答案中有且只有一个答案是正确的.)1.不等式x2<﹣2x+15的解集为()A.{x|﹣5<x<3}B.{x|x<﹣5}C.{x|x<﹣5或x>3}D.{x|x>3}2.若数列{an}满足an+1=,且a1=1,则a17=()A.12B.13C.15D.163.在△ABC中,a,b,c分别是A,B,C的对边,若==,则△ABC是()A.等边三角形B.锐角三角形C.任意三角形D.等腰直角三角形4.等差数列{an}的前n项和为Sn,若a2+a4+a6=12,则S7的值是()A.21B.24C.28D.75.已知a>b>c且a+b+c=0,则下列不等式恒成立的是()A.ab>bcB.ac>bcC.ab>acD.a|b|>|b|c6.在等比数列{an}中Tn表示前n项的积,若T5=1,则一定有()A.a1=1B.a3=1C.a4=1D.a5=17.已知x>y>0,则x+的最小值是()A.2B.3C.4D.98.设Sn是等比数列{an}的前n项和,,则等于()A.B.C.D.9.已知等比数列{an}满足anan+1=4n,则其公比为()A.±4B.4C.±2D.210.△ABC各角的对应边分别为a,b,c,满足+≥1,则角A的范围是()A.(0,]B.(0,]C.[,π)D.[,π)11.已知a,b为正实数,且,若a+b﹣c≥0对于满足条件的a,b恒成立,则c的取值范围为()A.B.(﹣∞,3]C.(﹣∞,6]D.12.已知函数f(x)=m(x﹣2m)(x+m+3),g(x)=2x﹣2,若对于任一实数x,f(x)与g(x)至少有一个为负数,则实数m的取值范围是()A.(﹣4,﹣1)B.(﹣4,0)C.(0,)D.(﹣4,)二、填空题(本大题共4个小题,每小题5分,共20分.)13.等比数列,,,…前8项的和为.14.已知数列{an}的前n项和为Sn,且a1=1,an+1=2Sn,则数列{an}的通项公式为.15.我舰在敌岛A处南偏西50°的B处,且A,B距离为12海里,发现敌舰正离开岛沿北偏西10°的方向以每小时10海里的速度航行.若我舰要用2小时追上敌舰,则其速度大小为海里/小时.16.关于x的不等式ax2﹣|x+1|+3a≥0的解集为(﹣∞,+∞),则实数a的取值范围是.三.解答题(本大题共6个小题,共70分)17.在△ABC中,角A、B,C所对的边为a,b,c,若(1)求角B的值;(2)求△ABC的面积.18.在数列{an}中,.(Ⅰ)设,证明:数列{bn}是等差数列;(Ⅱ)求数列的前n项和Sn.19.在△ABC中,三个内角A、B、C所对的边分别为a、b、c,且2bcosC=2a﹣c.(1)求角B;(2)若△ABC的面积S=,a+c=4,求b的值.20.阿海准备购买“海马”牌一辆小汽车,其中购车费用万元,每年的保险费、汽油费约为万元,年维修、保养费第一年是万元,以后逐年递增万元.请你帮阿海计算一下这种汽车使用多少年,它的年平均费用最少?21.已知f(x)=|ax﹣1|(a∈R),不等式f(x)>5的解集为{x|x<﹣3或x>2}.(1)求a的值;(2)解不等式f(x)﹣f()≤2.22.设Sn是公差不为0的等差数列{an}的前n项和,且S1,S2,S4成等比数列,a5=9.(1)求数列{an}的通项公式;(2)证明:++…+<(n∈N*).

2023学年海南省海南中学高一(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分.在每小题所给的四个答案中有且只有一个答案是正确的.)1.不等式x2<﹣2x+15的解集为()A.{x|﹣5<x<3}B.{x|x<﹣5}C.{x|x<﹣5或x>3}D.{x|x>3}【考点】一元二次不等式的解法.【分析】把不等式化为(x+5)(x﹣3)<0,根据不等式对应方程的实数根为﹣5和3,写出解集即可.【解答】解:不等式x2<﹣2x+15可化为(x+5)(x﹣3)<0,且不等式对应方程的两个实数根为﹣5和3,所以该不等式的解集为{x|﹣5<x<3}.故选:A.2.若数列{an}满足an+1=,且a1=1,则a17=()A.12B.13C.15D.16【考点】数列递推式.【分析】an+1=,可得an+1﹣an=,利用等差数列的通项公式即可得出.【解答】解:∵an+1=,且a1=1,∴an+1﹣an=,∴数列{an}是等差数列,公差为,则a17=1+×16=13.故选:B.3.在△ABC中,a,b,c分别是A,B,C的对边,若==,则△ABC是()A.等边三角形B.锐角三角形C.任意三角形D.等腰直角三角形【考点】正弦定理.【分析】根据正弦定理及条件即可得出sinB=cosB,sinC=cosC,于是B=C=,A=.【解答】解:∵由正弦定理得:,又==,∴sinB=cosB,sinC=cosC,∴B=C=,∴A=.∴△ABC是等腰直角三角形.故选:D.4.等差数列{an}的前n项和为Sn,若a2+a4+a6=12,则S7的值是()A.21B.24C.28D.7【考点】等差数列的性质;等差数列的前n项和.【分析】根据等差数列的性质由a2+a4+a6=12得到a4=4,然后根据等差数列的前n项和公式,即可得到结论.【解答】解:∵a2+a4+a6=12,∴a2+a4+a6=12=3a4=12,即a4=4,则S7=,故选:C.5.已知a>b>c且a+b+c=0,则下列不等式恒成立的是()A.ab>bcB.ac>bcC.ab>acD.a|b|>|b|c【考点】不等关系与不等式.【分析】a>b>c且a+b+c=0,可得a>0,c<0.再利用不等式的基本性质即可得出.【解答】解:∵a>b>c且a+b+c=0,∴a>0,c<0.∴ab>ac.故选:C.6.在等比数列{an}中Tn表示前n项的积,若T5=1,则一定有()A.a1=1B.a3=1C.a4=1D.a5=1【考点】等比数列的性质.【分析】由题意知T5=(a1q2)5=1,由此可知a1q2=1,所以一定有a3=1.【解答】解:T5=a1•a1q•a1q2•a1q3•a1q4=(a1q2)5=1,∴a1q2=1,∴a3=1.故选B.7.已知x>y>0,则x+的最小值是()A.2B.3C.4D.9【考点】基本不等式.【分析】由x+=x﹣y++y,利用基本不等式的性质求解即可.【解答】解:∵x>y>0,∴x+=x﹣y++y≥3•=3,当且仅当x=2,y=1时取等号,故x+的最小值是3,故选:B.8.设Sn是等比数列{an}的前n项和,,则等于()A.B.C.D.【考点】等比数列的前n项和;等比数列的性质.【分析】根据所给的前三项之和除以前六项之和,利用前n项和公式表示出来,约分整理出公比的结果,把要求的式子也做这种整理,把前面求出的公比代入,得到结果.【解答】解:∵∴s6=3s3∴3=∴1+q3=3,∴==故选B.9.已知等比数列{an}满足anan+1=4n,则其公比为()A.±4B.4C.±2D.2【考点】等比数列的通项公式.【分析】由已知得q2===4,=4,由此能求出公比.【解答】解:∵等比数列{an}满足anan+1=4n,∴q2===4,∴=4,∴q>0,∴q=2.故选:D.10.△ABC各角的对应边分别为a,b,c,满足+≥1,则角A的范围是()A.(0,]B.(0,]C.[,π)D.[,π)【考点】余弦定理.【分析】已知不等式去分母后,整理得到关系式,两边除以2bc,利用余弦定理变形求出cosA的范围,即可确定出A的范围.【解答】解:由+≥1得:b(a+b)+c(a+c)≥(a+c)(a+b),化简得:b2+c2﹣a2≥bc,同除以2bc得,≥,即cosA≥,∵A为三角形内角,∴0<A≤,故选:A.11.已知a,b为正实数,且,若a+b﹣c≥0对于满足条件的a,b恒成立,则c的取值范围为()A.B.(﹣∞,3]C.(﹣∞,6]D.【考点】基本不等式.【分析】a+b=(a+b)()=(3++),利用基本不等式可求出a+b的最小值(a+b)min,要使a+b﹣c≥0对于满足条件的a,b恒成立,只要值(a+b)min﹣c≥0即可.【解答】解:a,b都是正实数,且a,b满足①,则a+b=(a+b)()=(3++)≥(3+2)=+,当且仅当即b=a②时,等号成立.联立①②解得a=,b=,故a+b的最小值为+,要使a+b﹣c≥0恒成立,只要+﹣c≥0,即c≤+,故c的取值范围为(﹣∞,+].故选A.12.已知函数f(x)=m(x﹣2m)(x+m+3),g(x)=2x﹣2,若对于任一实数x,f(x)与g(x)至少有一个为负数,则实数m的取值范围是()A.(﹣4,﹣1)B.(﹣4,0)C.(0,)D.(﹣4,)【考点】函数的零点与方程根的关系.【分析】f(x)与g(x)至少有一个为负数,则f(x)=m(x﹣2m)(x+m+3)<0在x≥1时恒成立,建立关于m的不等式组可得m的范围.【解答】解:∵g(x)=2x﹣2,当x≥1时,g(x)≥0,又∵∀x∈R,f(x)与g(x)至少有一个为负数,即f(x)<0或g(x)<0∴f(x)=m(x﹣2m)(x+m+3)<0在x≥1时恒成立所以二次函数图象开口只能向下,且与x轴交点都在(1,0)的左侧,即,解得﹣4<m<0;故选B二、填空题(本大题共4个小题,每小题5分,共20分.)13.等比数列,,,…前8项的和为.【考点】等比数列的前n项和.【分析】利用等比数列的前n项和公式求解.【解答】解:等比数列,,,…前8项的和:S8==.故答案为:.14.已知数列{an}的前n项和为Sn,且a1=1,an+1=2Sn,则数列{an}的通项公式为.【考点】数列的概念及简单表示法.【分析】先看n≥2根据题设条件可知an=2Sn﹣1,两式想减整理得an+1=3an,判断出此时数列{an}为等比数列,a2=2a1=2,公比为3,求得n≥2时的通项公式,最后综合可得答案.【解答】解:当n≥2时,an=2Sn﹣1,∴an+1﹣an=2Sn﹣2Sn﹣1=2an,即an+1=3an,∴数列{an}为等比数列,a2=2a1=2,公比为3,∴an=2•3n﹣2,当n=1时,a1=1∴数列{an}的通项公式为.故答案为:.15.我舰在敌岛A处南偏西50°的B处,且A,B距离为12海里,发现敌舰正离开岛沿北偏西10°的方向以每小时10海里的速度航行.若我舰要用2小时追上敌舰,则其速度大小为14海里/小时.【考点】解三角形的实际应用.【分析】由题意推出∠BAC=120°,利用余弦定理求出BC=28,然后推出我舰的速度.【解答】解:依题意,∠BAC=120°,AB=12,AC=10×2=20,在△ABC中,由余弦定理,得BC2=AB2+AC2﹣2AB×AC×cos∠BAC=122+202﹣2×12×20×cos120°=784.解得BC=28.所以渔船甲的速度为=14海里/小时.故我舰要用2小时追上敌舰速度大小为:14海里/小时.故答案为:14.16.关于x的不等式ax2﹣|x+1|+3a≥0的解集为(﹣∞,+∞),则实数a的取值范围是[,+∞).【考点】其他不等式的解法.【分析】将不等式恒成立进行参数分类得到a≥,利用换元法将不等式转化为基本不等式的性质,根据基本不等式的性质求出的最大值即可得到结论.【解答】解:不等式ax2﹣|x+1|+3a≥0,则a(x2+3)≥|x+1|,即a≥,设t=x+1,则x=t﹣1,则不等式a≥等价为a≥==>0即a>0,设f(t)=,当|t|=0,即x=﹣1时,不等式等价为a+3a=4a≥0,此时满足条件,当t>0,f(t)==,当且仅当t=,即t=2,即x=1时取等号.当t<0,f(t)==≤,当且仅当﹣t=﹣,∴t=﹣2,即x=﹣3时取等号.∴当x=1,即t=2时,fmax(t)==,∴要使a≥恒成立,则a,方法2:由不等式ax2﹣|x+1|+3a≥0,则a(x2+3)≥|x+1|,∴要使不等式的解集是(﹣∞,+∞),则a>0,作出y=a(x2+3)和y=|x+1|的图象,由图象知只要当x>﹣1时,直线y═|x+1|=x+1与y=a(x2+3)相切或相离即可,此时不等式ax2﹣|x+1|+3a≥0等价为不等式ax2﹣x﹣1+3a≥0,对应的判别式△=1﹣4a(3a﹣1)≤0,即﹣12a2+4a+1≤0,即12a2﹣4a﹣1≥0,(2a﹣1)(6a+1)≥0,解得a≥或a≤﹣(舍),故答案为:[,+∞)三.解答题(本大题共6个小题,共70分)17.在△ABC中,角A、B,C所对的边为a,b,c,若(1)求角B的值;(2)求△ABC的面积.【考点】正弦定理.【分析】(1)由A的度数求出sinA的值,再由a与b的长,利用正弦定理求出sinB的值,由a小于b,得到A小于B,利用特殊角的三角函数值即可求出B的度数;(2)由A与B的度数,利用三角形的内角和定理求出C的度数,利用三角形的面积公式即可求出三角形ABC的面积.【解答】解:(1)∵a=2,b=6,A=30°,∴由正弦定理=得:sinB===,∵a<b,∴A<B,∴B=60°或B=120°;(2)当B=60°时,C=180°﹣30°﹣60°=90°,∴S△ABC=ab=×2×6=6;当B=120°时,C=180°﹣30°﹣120°=30°,∴S△ABC=absinC=×2×6×=3.18.在数列{an}中,.(Ⅰ)设,证明:数列{bn}是等差数列;(Ⅱ)求数列的前n项和Sn.【考点】数列的求和;等差关系的确定.【分析】(Ⅰ)依题意可求得bn+1=bn+1,由等差数列的定义即可得证数列{bn}是等差数列;(Ⅱ)可求得=3n﹣1,利用等比数列的求和公式即可求得数列的前n项和Sn.【解答】解:(Ⅰ)由已知an+1=3an+3n得:bn+1===+1=bn+1,又b1=a1=1,因此{bn}是首项为1,公差为1的等差数列…(Ⅱ)由(1)得=n,∴=3n﹣1,…∴Sn=1+31+32+…+3n﹣1==…19.在△ABC中,三个内角A、B、C所对的边分别为a、b、c,且2bcosC=2a﹣c.(1)求角B;(2)若△ABC的面积S=,a+c=4,求b的值.【考点】余弦定理;正弦定理.【分析】(1)已知等式利用正弦定理化简,利用诱导公式及两角和与差的正弦函数公式变形,根据sinC不为0求出cosB的值,即可确定出B的度数;(2)利用三角形面积公式列出关系式,将已知面积与sinB的值代入求出ac的值,利用余弦定理列出关系式,将cosB的值代入并利用完全平方公式变形,把a+c与ac的值代入即可求出b的值.【解答】解:(1)根据正弦定理化简2bcosC=2a﹣c,得:2sinBcosC=2sinA﹣sinC,即2sinBcosC=2sin(B+C)﹣sinC,整理得2sinCcosB=sinC,∵sinC≠0,∴cosB=,则B=;(2)∵△ABC的面积S=,sinB=,∴S=acsinB=,即ac=,∴ac=3,∵a+c=4,cosB=,∴由余弦定理得:b2=a2+c2﹣2accosB=a2+c2﹣ac=(a+c)2﹣3ac=16﹣9=7,则b=.20.阿海准备购买“海马”牌一辆小汽车,其中购车费用万元,每年的保险费、汽油费约为万元,年维修、保养费第一年是万元,以后逐年递增万元.请你帮阿海计算一下这种汽车使用多少年,它的年平均费用最少?【考点】基本不等式在最值问题中的应用.【分析】由题意可得每年维修、保养费依次构成以万元为首项,万元为公差的等差数列,运用等差数列的求和公式,设汽车的年平均费用为y万元,则有y==1++(x>0),再由基本不等式即可得到所求最小值,及等号成立的条件.【解答】解:依题意知汽车每年维修、保养费依次构成以万元为首项,万元为公差的等差数列.因此汽车使用x年总的维修、保养费用为=(x+1)万元,设汽车的年平均费用为y万元,则有y==1++(x>0),由x>0,可得+≥2=,当且仅当,即x=16时等号成立.则y≥,当x=16时,取得最小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论